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The elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with
general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in
terms of simple line integrals for the first time. These expressions are very similar to their isotropic
full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dis-
location dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degener-
ate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities
intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector
anisotropically around every point on the dislocation line according to three particular spreading func-
tions. This non-singular treatment guarantees the equivalence among different versions of the energy for-
mulae and their consistency with the stress formula presented in this paper. Several numerical examples
are provided as verification of the derived dislocation solutions, which further show significant influence
of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation
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1. Introduction

It has been known for a long time that dislocations are the fun-
damental carriers of plastic deformation and are also responsible
for the mechanical strength of crystalline solids (Taylor, 1934).
As a powerful tool in mesoscale simulation, three-dimensional
(3D) dislocation dynamics (DD) aims mainly at predicting macro-
scopic properties of crystals by directly simulating the interaction
and evolution of large groups of discrete dislocation lines within
crystals in response to external loads (Arsenlis et al., 2007; Cai
et al.,, 2004; Devincre and Condat, 1992; Ghoniem and Sun, 1999;
Ghoniem et al., 2000; Kubin et al., 1992; Kubin and Canova,
1992; Kubin, 1993; Rhee et al.,, 1998; Schwarz, 1999; Verdier
et al, 1998; Wang et al., 2006; Zbib et al., 2000; Zbib et al.,
1998). In 3D-DD simulations, dislocation lines are discretized into
a set of straight or curved dislocation segments, and the most time-
consuming computational task is to evaluate the interactions
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among all these dislocation segments with arbitrary orientations
and general Burgers vectors. For the sake of computational simplic-
ity and time efficiency, when dealing with such dislocation interac-
tions, nearly all 3D-DD simulations assume linear-elastic isotropy
(with the exception of Capolungo et al., 2010; Han et al., 2003;
Rhee et al., 2001) in spite of the fact that most crystalline materials
exhibit elastic anisotropy. For dislocations in isotropic bulk crystals
which are far away from any external or internal interfaces (e.g.
free surface, grain or phase boundary), simple analytical solutions
for infinite solids can be utilized to compute the dislocation inter-
actions efficiently (Blin, 1955; Cai et al., 2006; Devincre, 1995; de-
Wit, 1960; Hills et al., 1996; Hirth and Lothe, 1982; Paynter et al.,
2007; Peach and Koehler, 1950). When the dislocation lines are
close to an interface, however, some special numerical methods
are generally required to account for the influence of the interface
on the elastic stress field and interaction energy of dislocations
(Bulatov et al., 2000; Han et al., 2006).

Obviously, it would be very desirable to derive 3D analytical
solutions as simple as those in infinite isotropic solids, which
meanwhile take into consideration the effects of material anisot-
ropy and crystal interface. The related issue has received a great
deal of attention in recent years. Gosling and Willis (1994) deduced
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a line-integral representation for the stress field due to an arbi-
trarily shaped dislocation loop in an isotropic half-space via the
Fourier transform. By virtue of Rongved’s solution (Rongved,
1955), Tan and Sun (2006) obtained a line-integral representation
for the stress field due to a piecewise planar glide dislocation loop
in isotropic bimaterials. Employing a general solution due to Wal-
pole (1996) and Akarapu and Zbib (2009) derived line-integral
solutions for the displacement and stress fields of an arbitrarily
shaped dislocation loop in isotropic bimaterials. (Chu et al.,
2012a,b) presented a line-integral expression for the elastic fields
due to a dislocation loop of triangular shape in anisotropic bimate-
rials (or a half-space) using the Fourier transform technique. By
introducing the hexagonal stress vector, Yu et al. (1995) derived
analytical displacement solutions due to an infinitesimal disloca-
tion loop of arbitrary orientation in transversely isotropic
bimaterials.

In 3D-DD simulations, another challenge originates from the
requirement for accurate evaluations of the self-stress and self-en-
ergy of dislocations. According to the classical continuum theory of
dislocations, there exist several different but equivalent versions of
the energy formulae for infinite isotropic media (Blin, 1955; deWit,
1960). These energy formulae are consistent with the stress for-
mula of dislocations (deWit, 1960; Hirth and Lothe, 1982) in the
sense that the negative derivative of the energy with respect to
the dislocation position is equal to the force produced by the stress
through the Peach-Koehler formula (Peach and Koehler, 1950).
However, the classical self-stress and self-energy expressions con-
tain singularities due to the unrealistic assumption that the Bur-
gers vector distribution is a delta function. Several attempts were
made to remove such singularities since 1960s (Brown, 1964;Gav-
azza and Barnett, 1976; Hirth and Lothe, 1982; Lothe, 1992). Re-
cently, Cai et al. (2006) proposed a non-singular, self-consistent
continuum theory for computing the stress field and the elastic en-
ergy of dislocations in infinite isotropic media by spreading the
Burgers vector isotropically around every point on the dislocation
line according to a spreading function characterized by the spread-
ing radius.

To the best of the authors’ knowledge, for arbitrarily shaped dis-
location loops with general Burgers vectors in transversely isotro-
pic bimaterials, explicit line-integral representations of the elastic
displacements, stresses and interaction energy are still unavailable
in the literature. As an extension to our recent work (Yuan et al.,
2013), we attempt to fill this gap via the potential theory of linear
elasticity and solve (i) the displacement and stress fields due to an
arbitrarily shaped dislocation loop, and (ii) the interaction energy
between two arbitrarily shaped dislocation loops in transversely
isotropic bimaterials. The bimaterial considered in this paper con-
sists of two dissimilar semi-infinite transversely isotropic solids
either perfectly bonded together or in frictionless contact with
each other at a planar interface which is parallel to the plane of
isotropy of both solids. The expressions presented here are very
similar to their isotropic full-space counterparts, and therefore
can be easily incorporated into 3D-DD simulations for hexagonal
crystals. Following Cai’s approach (Cai et al., 2006), we also develop
a self-consistent method to remove the singularities of the self-
stress and self-energy of dislocation loops in transversely isotropic
media.

The present paper is organized as follows. In Section 2, the
Green’s tensor for the non-degenerate or degenerate transversely
isotropic bimaterials is expressed in a new, simple and unified
form so that it is very suitable for later derivations of the disloca-
tion solutions. In Section 3, based upon the obtained Green'’s ten-
sor, we derive line-integral expressions for the displacement and
stress fields of an arbitrarily shaped dislocation loop and the inter-
action energy between two arbitrarily shaped dislocation loops in
transversely isotropic bimaterials. In Section 4, we propose a non-

singular, self-consistent approach for calculating the self-stress
and self-energy of dislocations in transversely isotropic media. In
Section 5, several numerical examples are provided to verify the
formulations presented in this paper, and to reveal further the con-
siderable influence of material anisotropy and bimaterial interface
on the elastic field and interaction energy of dislocation loops. Con-
cluding remarks are drawn in Section 6.

2. Green’s tensor for transversely isotropic bimaterials

In this paper, summation with respect to a repeated (or multi-
repeated) index is assumed unless this index occurs on both sides
of an equation. Also, the range of values of Roman indices (i,j, k
etc.) is 1, 2, 3, and that of Greek ones (o, 8, y etc.) is 1, 2, unless
otherwise  specified. @For example, in the equation
Dy = A.Bi,Ciy,i(=1,2,3) is a free index without summation be-
cause it occurs on both sides of this equation, while ¢ is a dummy
index which should be summed from 1 to 2 because it occurs only
on the right-hand side of this equation and repeats itself three
times. The single index j(=1,2,3) on the left-hand side of the above
equation is also a free one which indicates that D;; = Di, = Dj3.

In Cartesian coordinates (xi,X2,X3), as shown in Fig. 1a, the
bimaterial consists of two joined elastic half-spaces, one (x; > 0)
occupied by transversely isotropic material 1 and the other
(x3 < 0) occupied by transversely isotropic material 2. These two
half-spaces are either perfectly bonded together or in frictionless
contact with each other at the planar interface (x; = 0). The per-
fectly-bonded interface indicates the continuity of the displace-
ments u; and the stresses o3 at x3 = 0, while the interface in
frictionless contact indicates the continuity of the normal displace-
ment uz and the normal stress ¢33, and the vanishing shear stresses
03, at x3 = 0.

We suppose that the plane of isotropy of both materials is par-
allel to the bimaterial interface (x3; = 0). Then the elastic stiffness
tensor of material i can be expressed as

et = ai"dyou + af” (Sudyi + Sudy) + af" 9303043015
+ af{”(é,-géjgé,d + 5k35135ij) + aéﬂ)(5j35k35il + 51’35135]'!(
+ 030130k + 0i30k30j1) (1)

where §; is the Kronecker delta, and a (n=1,2,3,4,5) is related to
the contracted elastic stiffness constants as

(W) _ A1) (1) () _ A~
ay’ =cfy —2Cgg, 0y =Cgg
= i+ e - 2 - ach @

(W _ (W (1) (1) (W _ (1)
a;’ =Ci3 —Cjy +2Cg5, 05 =Cgy — Cgg

X (X1, X2, X3)

T.1. half-space 1

Perfectly bonded
or in frictionless contact

T.I. half-space 2

T.I. material 1: x3> 0
Planar interface: x3= 0 - -
T.I. material 2: x3< 0

X
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Fig. 1. (a) Two transversely isotropic half-spaces which are either perfectly bonded
together or in frictionless contact with each other at the planar interface. (b) A 3D
dislocation loop of arbitrary shape located completely within one half-space of the
transversely isotropic bimaterial. T.I. is the abbreviation for “transversely isotropic”.
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For the sake of convenience, we first introduce some basic constants
in terms of the contracted elastic stiffness constants (Ding et al.,
2006; Fabrikant, 2004), i.e.

() 1) _ ()2 (0 1) ( 032] [0 1) _ (o) (12
i C35 — (Ci3) ] + \/[Cn c35 —(ciy) } [Cn 35— (Cfy +2C4) }

() _
mE=Tlt 2+ ) 5
and
(,U) (1) (1) A1)
y(u) _ 1 C44 +m/ ( 13 +Cag) My C33
BT () ) (1 ()
S Ch my~cyy + (Ci3 +Cyy)
W ==
S0

(3b)

A transversely isotropic material is said to be non-degenerate if
P 52980 ie. mY = miY; otherwise it is degenerate. Two useful
relations among these basic constants are shown as follows (Fabrik-
ant, 2004)

m(lﬂ) — ]/m(zli)

() (1) () (1) (1) (ny(11) (1) (1) ()
m{ — my* :@(“)(Vlu -3, ew = (0 +990)/(cY5 +cdy)

(4)

As is well-known, there exist many different but equivalent forms
of the Green'’s tensor for transversely isotropic bimaterials in the lit-
erature (Ding and Chen, 1997; Ding et al., 2006; Pan and Chou,
1979). However, for the sake of convenience in later derivations,
it is necessary to express the Green’s tensor in an alternative way,
as will be shown below.

Denote the Green’s tensor for transversely isotropic bimaterials
by u" (y; x), which means the ith component of the displacement
vector at 'y (y;,¥,,¥;) in material /1 due to a unit force in the jth
direction applied at X (x;,x2,x3) in material p. Using the image
method, the Green’s tensor for transversely isotropic bimaterials
can be expressed in terms of simple superposition of two individ-
ual parts as

u P (y;x) = 5, U4 (v; ) + U™ (v: %) ®)

where U )(y;X) is the Green’s tensor for a transversely isotropic full
space occupled by material u, while U ) (y;x) accounts for contri-
butions of the image sources due to the presence of bimaterial
interface. According to the reciprocity theorem in linear elasticity,
the following relations should be satisfied, i.e.

Ul (y;x) = Ul (x;y) = UYL
Uy (y:x) = U (x:y)

As a key advance in the bimaterial Green’s tensor, we express the
two parts in Eq. (5) in a new, simple and unified way as

(¥;x) ©)

Ul | 1 2 | X
" (y:x) 4m%%%‘%WWm

5 04 o (y;X)
Y ancl 8x2 (W) (y:x)
where
l}’i!;)(y;x) :{ Y (y;x) — i (y; %) }
‘P(iﬁ(“)(y;x) l/,(/-)(u) . —l//(()">(") )

;%)
{ vy (¥;X) }
vy )

P (v;x)
“(y;x)

{ in)}:{wme>}
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We emphasize that Eq. (7) is the main result in this section.
For the non-degenerate case of transversely isotropic bimateri-
als, we have (Ding et al., 2006)

(8b)

{:w&kmx)}é{ w$>}__Hw{ 1 ¥:x) } (9a)
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(9b)
with
V;}H) 8(#)Hﬁ . q W pgg(#) (10)

The symbol “£” in Egs. (9a,b) means that, without confusion,
¥ (y;x) and P ™ (y;x) can be written, respectively, as ¥ and
YW for short, where n=0,1,2,3,4. Note that Eq. (10) suggests a
simple relationship between the horizontal and vertical point force
solutions for transversely isotropic bimaterials, and this has never
appeared explicitly in the literature to the best of the authors’
knowledge.

The other unknown coefficients in Egs. (9a,b) are determined by
(Ding et al., 2006)

(1)’

HW — VW) HW _ (11)
3 30 B (1) (1)
m},’”(m]" _ mz" )
and
r -1
{ 173(3@(’”[) } = (]u) ¢ u_)1<3 u)} {_wl)} (12a)
p33 (¢ _53 ﬁw) Sy S5
p{/? Tl -1 -1 e
Pz/; m ggm 8(2;4) 8537”) 8(23711) 6;}”)
= (1) (1) (3=4) ;,,(3—1) (3-4) ,,,(3-1) ()
p{j’,” 1) Wi Wy Ly oy Ly @3 oy
(£) () _ B pB=p)  _ yB-p) n(3-p) (1)
p Loy 0y~ (105 0}
(12b)
for the perfectly—bonded interface, and
G-
pf =1, piM =0 (13a)
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-1

p];/? 0 0 W H W 0
P N T
P (ol o o 0 off
p(zz};p)(y) 0(]#) 0(2#) _géz)ﬂl)()(ﬁﬂl) 5(3 10l 0 ol _02/4)
(13b)
for the interface in frictionless contact, where
4;;)) = 44/C44 8;;/” m/; /V/; (14)

of =m0/ 6 =

(1)
5 my +1

Also in Egs. (9a,b), the so-called potential functions are defined
as (Ding et al., 2006; Fabrikant, 2004)

)y _ RWif RW 4 W
ln( +z )—R" ifRY +27 #0

7" (vix) 2y =
In( z)—R" if R =0
In( 2"y —RW ifR #0

or=
W In(RY +2) — R if R =0

2 2 A+1 (4 i+1 A
XEJ')(H)(Y§x)éXEj)(H) :(_1) + Z(.)(#) In {Rx(] )(It)+( 1) + Zl] } R( )(1)

(15)
where
RY = RM(y:%) = [y —x0)* + (02 )" + (") (16)
REW = ROW (%) = /1 — %)% + (0 — %) + (2 ™)?
and
(W _
Z (y X) = s/ (y3 X3) (17)

Zl(j)(ﬂ) (y X) = 5 }/3 (- )/+#s( )X

The potential functions shown in Eq. (15) are quasi-harmonic and
satisfy the following basic relations

w2 P 1
") ; e A
U R TR
(18a)
(y</>)28_27<_g><u>:_ & w0 _ 1
1 ayg ) ayfay ) R;/)(H)
and
1 J i
7 = ot 75)&(]_)(#)
¢ (18b)
) 9

Note that the double indices ij in Egs. (15
binations o or 33.

We emphasize that, throughout this paper, multi-valued func-
tions Inz and /z take values in their own single-valued analytic
branches which satisfy, respectively, —m <Im(lnz) <7 and
Re(y/z) > 0 with —7 < argz < m, where “Re” or “Im” denotes the
real or imaginary part of a complex number, and “arg” means its
argument.

For future applications, we now write Eq. (9b) in another way.
With aid of Egs. (4) and (14), we can solve Egs. (12b) and (13b)
by Cramer’s rule as

_ 1 (7])1+1p§}5)(ﬂ)
AT

)-(18b) only take the com-

pog” (19)

in which
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for the perfectly-bonded interface, and
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for the interface in frictionless contact.
The unknown constants in Egs. (20a)-(21b) are defined as

QW) _ )
e g — EW(yl gy g Z P 1

POy
W 0 g0 () 00 w Ol —m +1)
Wy — Wy :Wl(yl =72 )7 W = W
77073

(22)

After substitution of Egs. (10), (11) and (19) into Eq. (9b), we
thus obtain

B
LI L) i U
q L 1)~ 4q;
O 1T _ 0
a+p+1p(4) (1)
YW — 1 D Pas m%n Xuﬁxm (23)
q ). ~y (4 )N (n q;0, %
AYOW () =yt 4
(q=1,2,3,4)
in which
w _ 5 W (W
0 _ W _ ()0 (0)
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B B

(24)

While Eq. (23) is obtained based on the assumption of non-degen-
erate property of transversely isotropic bimaterials, it is actually va-
lid for all possible degenerate cases after proper limiting processes.
The main steps as well as the final result are shown in Appendix A.
In other words, no matter if the transversely isotropic bimaterial is
non-degenerate or not, the Green’s tensor has exactly the same
structure as given in Eqgs. (5), (7) and (8a,b). This will lead to a sim-
ple and unified derivation of the dislocation solutions in the next
section.
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3. Line-integral representations for the elastic fields and
interaction energy of arbitrary dislocation loops in transversely
isotropic bimaterials

3.1. Displacement field of an arbitrarily shaped dislocation loop

According to the theory of dislocations, the elastic displacement
field induced by a dislocation loop C of arbitrary shape, which
bounds some curved surface A in transversely isotropic bimaterials
(Fig. 1b), can be expressed as (Hirth and Lothe, 1982)

W0 / dahyc) 2 By "y %) (25)

where ul"”(x) is the mth component of the displacement vector at
X (X1,X2,x3) in material u due to a dislocation loop located com-
pletely within material 4, b; is the jth component of the Burgers vec-
tor b, and dA; aty (y;,¥,,¥3) is the ith component of the vector area
element dA. The positive normal of dA is associated with the posi-
tive direction of the dislocation curve according to the right-hand
rule (Fig. 1b).

Substituting Eqs. (1), (5), (7) and (8a,b) into Eq. (25) and utiliz-
ing the Stokes’ theorem (Mura, 1987)

0 0
/A (dA’ayj —d4; 5}4) o) = 8ijkfé¢(wdy}<
7]
or /A 81'jka_yi¢j(Y)dAk = i(bm (Y)dym

we finally obtain the elastic displacement field of an arbitrarily
shaped dislocation loop with a general Burgers vector as

U (x) = 6,U5) (%) + U (%) (27)

(26)

where U (x) denotes the displacement field of an arbitrarily
shaped dislocation loop in a transversely isotropic full space occu-
pied by material 2, while U¥¥(x) accounts for contributions of
the image sources due to the presence of a bimaterial interface.
Both of them can be expressed in terms of line integrals as

U | be [ QY be u;i3<y-x)
URee | T AT 00 x) a7 f et U i)
(2)
1 9 ?{ 9 Mmuw X)
ey (28)
i€ijk Yk -
T 4T Xy oy; { :ij M (y; X)

where & is the permutation tensor, and
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(29c¢)

Note that the line integrals in Eq. (28) are integrated along the po-
sitive direction of the closed dislocation loop. The area integral
0l”(x) shown in Eq. (29a) is the quasi-solid angle subtended by
the cut surface of the dislocation loop in material / at point X, which
can also be transformed into a line integral (For further details, see
Yuan et al., 2013.)

In the above derivation, use has been made of both the quasi-
harmonic property and spatial symmetry of potential functions
as given in Egs. (18a,b), respectively, and the variants of Eq. (3b)
as follows

) A 2 2 A A ) AN [ ny(2)1\2
(@ +a)mP ) + (@ + 0’ + 0 +ag)0)

= (@ +2d) +a}’ + 24 + 4aym;

(@) o)+ (@ + )+ )+ om0+ 2050
(@) + o)) - f
(30)

As verification, in the special case of an isotropic full-space, Eq.
(28) reduced to the well-known Burgers’ formula (Burgers, 1939;
Hirth and Lothe, 1982) due to the fact that

QY (x) — Q(x),
(31)

p 1 g R G
U (Y3 X) — R UL (Y X) — L when 7’ — 1
where Q(x) is the classical solid angle, R(
between two points y and X, and 2

material 4.

=R(y;x)) is the distance
is the Poisson’s ratio of

3.2. Stress field of an arbitrarily shaped dislocation loop

Let 0',3.")(” (x) denote the stress tensor at X (x;,X,,X3) in material
1 due to an arbitrarily shaped dislocation loop located completely
within material /. Using the stress-strain relation, we can derive
from Eq. (27) that

o’ (x) = 6,8 (x) + S (x) (32)
where

S0 0 9 o S ) — w9 e 33
ij (X) = Uk'(?ixl k (X)7 ij ( )— Cx]kl I, (X) ( )

In Eq. (33), S;(x) denotes the stress field of an arbitrarily
shaped dislocation loop in a transversely isotropic full space occu-
pied by material Z, while SEJ.“)(") (x) accounts for the contribution of
the image sources due to the presence of the bimaterial interface.
By virtue of Eq. (28), both of them can be expressed in terms of line
integrals as
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In the above derivation, use has been made of both the
quasi-harmonic property and spatial symmetry of the potential
functions as given in Eqs. (18a,b), and the identity/relation as
follows

Ouzpy3 — OunEpcs = Ouplens (36)

92 % 5 ‘//g)
?{ (3i1dyi1 ay 8y { lp ) } f bd\3dy3 8y18y3 l// (1)

. 82 '100
+ ¢ e3:dy, 37
}é 3cady 3yﬁ3y/;{1p ) } (37)

Eq. (37) can be easily proved by using the Stokes’ theorem given in
Eq. (26).

As verification, in the special case of an isotropic full-space, Eq.
(34) reduced to the classical stress formula as follows (deWit,
1960; Hirth and Lothe, 1982)

) GW 91 GW
) (x) — _ e . e __ =
Spq (X) - AT ]{bj(gUPdYq + qudyp) Oyi R 47'C(1 _ 7/(/1))
o [ &R o*R
x ¢ bigpdy, — | ——— — Opg ——— 38
?{ 1k By, (aypayq m 8y18yz> 8

due to the fact that

. 1 i R X
S5 (y;X) — R’ Sii(V;X) — o When PP =1 (39)
where R and v are defined the same as those in Eq. (31), and G is
the shear modulus of material /.

3.3. Interaction energy between two arbitrarily shaped dislocation
loops

Suppose that C is an arbitrarily shaped dislocation loop with
Burgers vector b which is located completely within material 2
and bounds some curved surface A, whilst C is another arbitrarily
shaped dislocation loop with Burgers vector b which is located
completely within material 4 and bounds some curved surface A.
According to the theory of dislocations (Hirth and Lothe, 1982), if
a second loop C is created while the first loop C is present, then
the interaction energy between these two dislocation loops can

be expressed as
WA(C,C) = 5,W (C,C) + WP (C,C) (40)

in which

M%O:AﬂM%W,MW%@

_ j[dﬁpbqs< 1) (x) (41)
A

where S} (x) and S{"
Eq. (34).

In Eq. (41), W(’ (C C) denotes the interaction energy between
two arbitrarily shaped dislocation loops CandCina transversely
isotropic full-space occupied by material 4, while W* (C,C) ac-
counts for the contribution of the image sources due to the pres-
ence of bimaterial interface. According to the reciprocity theorem
in linear elasticity, the following relations should be satisfied, i.e.

W(C,0)=wW(C,C), WY (C,C) =

Substituting Eq. (34) into Eq. (41) and utilizing the Stokes’ theorem
given in Eq. (26), we finally obtain the interaction energy in terms of
double line integrals as

W (C,0) c44 Wi (y:X)
{W}‘”(’*)(E,C) = b b; %dxpf dy,&jicépa WO y:x)
(%) Z
G ‘/’
an bib; : dx; ?{ dyj o=~ X30Y { // (1) }

(4) _ 82
Cas 1 S
- S by ]%dxm ?{ 0Yséiinéin 57 . {

“(x) are the stress field of loop C, as given in

Wy (c, €) (42)

WWWX)}
Sintt (y; x
(43)

in which
{M&w#>}{wﬁmm } & {w>}
Wi f o g Px J o Badys g

W (¥: %) > [ v W5 (¥:X) vy
WFQ“" (¥:X) 0y3 </ (1) Wg})(m (¥:X) 0x3 /)(u)

(44)

In the above derivation, use has been made of the spatial symmetry
of potential functions as given in Eq. (18b) and the following iden-
tity/relation

Eap38ey3 = OucOpy — Ounlpe  (Bap3beps = ) (45)

o @[\ _ o' | _ [0
fdylaylah{//()) %da% e 7{0} (46)
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Noting that S}, (y;X) = Si3,,(y:X) due to the relation v’ = y{’ as
indicated in Eq. (24), we can thus derive another useful version of
the interaction energy from Eq. (43) for a transversely isotropic
full-space, i.e.

W ) C44 ygd&%dy]b bja 2lﬁo

o i > o > o
- 44 % dy;bib [W‘Skj};gg(wx) - 287})%%& }

P & @ (y-
%d"k%dh( Ja ; bibiayj(?yj) Wi (V:X)

(47)
where
x/}c(yl X) = 1/; L3(y X), Wé:/33 (V;X) = Sg}?:n()’? X)
WEL(Y:X) = WL (Y:X) = S5 (V:X). (48)
W3j:3 (V;X) = j3;3(Y3x) = S};?n (V; %)

In the above derivation, use has also been made of Eq. (45), and the
spatial symmetry of potential functions as given in Eq. (18b) for a
transversely isotropic full-space, and the following relations

>
]g Exp3dxs 9%,0%, Sop3 (Y3 X)

L &
= ]g 83/31dxr m‘sa/j;ﬁ (y7 X) + ié 8a31dx1 m Sg(/j;é3 (Y7 X)
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= yé &35:dy; m%ﬁ;gg(yx) + 7€ £y3:dY; m‘saﬁ;@(MX)

(49)
9 0
7§d o g s jﬁd

g g St = f

Eq. (49) can be easily proved by using the Stokes’ theorem given in
Eq. (26).

As verification, in the special case of an isotropic full-space,
by virtue of Eq. (39) the energy formulae in Eq. (43) and Eq. (47)
reduced to the following well-known Blin’s formula and deWit’s
formula, respectively (Blin, 1955; deWit, 1960; Hirth and Lothe,
1982)

ocq &3 y X) 0
(50)
o(q &3 y X) 0

o 1
W; J(C,C) =_ ?{ dng,-jkqukﬁ
bby{,dxlfdy]R (51)
G¥» R
L ]ﬁdxm 7{ Wtrntan 5
A 1
Wi o} g

T c
GW - 1 oR__2
Ebibjygdxj j{ dy; <1 — v dy 0y, R
R
bb %dxk%dyk<aylayj U@yﬁ%)

(52)

where R,G” and v¥ are the same as those in Eq. (38).

According to Hirth and Lothe (1982), the self-energy of an arbi-
trarily shaped dislocation loop C in material 4 of a transversely iso-
tropic bimaterial can be expressed in terms of the associated
interaction energy as

w{(0) = W) + W (0) (53)
where

A 1 A A 1 ) (2
W(C) =W (C.C), W) =W (C.C) (54)

with W (C, C) and WP (C, C) being defined in Eq. (41).

In Eq. (54), W(S” denotes the self-energy of an arbitrarily shaped
dislocation loop C in a transversely isotropic full-space occupied by
material 4, while W}é) is the image self-energy which accounts for
contributions of the image sources due to the presence of bimate-
rial interface.

As presented in Egs. (28), (34), (43) and (47), we have obtained
the line-integral representations for the elastic displacements,
stresses and interaction energy due to arbitrarily shaped disloca-
tion loops in transversely isotropic bimaterials. These expressions
are the main results of this paper, and they are valid for both
non-degenerate and degenerate cases of transversely isotropic
bimaterials (See Appendix A).

3.4. Further reductions of the elastic fields and interaction energy

Introduction of the potential functions defined in Eq. (15) is just
an intermediate step which largely simplifies the derivation of our
dislocation solutions. Substituting these potential functions into
Eqgs. (28), (34), (43) and (47), we find that the elastic fields and
interaction energy can be expressed in terms of the kernel integrals
below (Yuan et al., 2013)

—x)(@/s)
T (x1,X2,%3) = f{ e N dyy (553)
NM:iy A r[[\’ln (Rl( ) )M
Ve —x)(z " s7) -
T30y X2, X :]{ d
NM:;ij;k ( 1,42, 3) A r[F\)Jn(REJ{-)(I‘-))M Yk
= Tid (%1, %2, 51 (55b)

where N is even (or zero), M is odd (or zero), and

T'pn = \/(yl —x1)’ +

Note that the above reduction is independent of the specific form of
the potential functions XE") defined in Eq. (15), and thus indepen-
dent of the specific configuration of the cut face of a dislocation loop
due to the following relations, i.e.

g =0
W +yy) ) = g,‘”‘/f“yf‘) (57)
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We also point out that, for a dislocation loop C which is approx-
imated by a set of straight dislocation segments, the kernel inte-
grals defined in Egs. (55a,b) can be solved analytically (Yuan
et al, 2013). Moreover, the elastic displacements, stresses and
interaction energy as given in Egs. (28), (34), (43) and (47) can
be further simplified with the aid of Eqgs. (18a,b) and (26) if one
is interested in analytical dislocation solutions (Yuan et al,
2013). There are two minor errors in Yuan et al. (2013) and we
correct them here for future reference:

(i) The correct expression of Eq. (39) in Yuan et al. (2013)
should be

(X15—X14)(X1
arctan e

_ (x18—X14) (%1
arctan ap—on) (X1

—X18)—(X1p—X14) (X2 —X2p)
—X14)+(X28—X24) (X2 —X24)
—X14)—(X15=X14) (X2 —X2)

D(X) = sgn(S(x1,X3) — X3)

—X1p)+(X2p—Xn) (X2 —X2p) ]

(ii) (x45 — X5,) in Eq. (61) of Yuan et al. (2013) should be replaced
by (X33 — X3A).

It is obvious that in numerical computation (e.g. Ghoniem and
Sun, 1999), the integrands of the kernel integrals in Egs. (55a,b) be-
come unbounded once rp,= 0. Fortunately, this singular behavior
can be circumvented by expressing Egs. (28), (34), (43) and (47)
in terms of another type of integrals as follows

B

T )= [
E3er( v ( _XC)(Zl(/)/SE/ ) ) 4

ICNEi\J;i:(k)(X;C):// (R(/) Z(/))N(R(/ )M dyk ( ( 7é0 OnC)

1
1

dy, (R”+z"0 onC)

(60a)

P Ve =)z /sy -
T (%) = fé THON ] _dy, (60D)

2 I+1 (2 N 2
Rl{j)(ll) + (_1) + ZE‘)(!D] (RQ)(#))
where N and M are non-negative integers, and C' is a certain seg-
ment of loop C. However, there exists another singularity due to
RE” = 0in Eqgs. (55a) and (60a) which is intrinsic to the classical con-
tinuum theory of dislocations. This issue is discussed in the next
section.

4. A self-consistent approach for removing the singularities

As is well-known, the self-energy W{" defined in Eq. (54) al-
ways diverges due to the presence of singularity when R — 0.
Following Cai’s approach (Cai et al., 2006), we now propose a
self-consistent method to remove such singularities for infinite
transversely isotropic media.

To facilitate our discussion, let us first denote the stress field in
Eq. (34) and the interaction energy in Eq. (43) or (47) as

S ) ~ B[], WP(C.0) ~

which means that S,
(n=0,1,2,3,4).

Then, similar to Cai et al. (2006), we introduce a Burgers vector
density function that removes the dislocation singularity by
spreading its Burgers vector around every point on the dislocation
line as follows

b = bn / p(X)d’X, by = by, / p(x)d’x (62)

For dislocation loops whose Burgers vector are spread out according
to Eq. (62), the local stress field and the interaction energy origi-
nally given in Eq. (61) become

@[w,@], n=0,1,2,3,4 (61

and W are expressed in terms of ¥

S o) ~ B [07]. WPC.O~ B[], n=01234 (63)
where

VO =90 WX) = py) = (v %) (64)
P = v (y:x) = p(y) * Y (:X)  p(X)

which satisfy the spatial symmetry as follows

d -, d -+, a 9~y

W = = gWw W — W)

ayi n axi n > ayl n 8Xi n (65)
In Eq. (64), the star “+” means the convolution operator defined by

:/f(x—x’ /f gx—x)d’x  (66)

As is indicated in Section 3, when deriving the interaction energy
expression in Eq. (43) from the stress field in Eq. (34) and then
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Fig. 2. Variation of 013 with x5 (x;/b =5, x,/b = 0) due to a circular prismatic dislocation loop in isotropic Cu/Ni bimaterials with a perfectly-bonded interface.
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transforming it into another form as given in Eq. (47), we only make
use of the spatial symmetry and the single-valued property of the
potential functions as shown in Eq. (18b) and Egs. (46) and (50),
respectively, without using the quasi-harmonic property of the po-
tential functions as shown in Eq. (18a). Therefore, if we introduce a
relevant measure of the local stress field as

SYI(X) = 82 (%) * p(X) ~ Fpg [l//,@], n=0,1,2,3,4

(67)
then W in Eq. (63) can be derived from S}, in Eq. (67) due to the
fact that v defined in Eq. (64) sustains both the spatial symmetry
and the single-valued property of y{) (n=0,1,2,3,4). In other
words, S} is consistent with W{", and the equivalence is also estab-
lished between two different versions of WI("‘) corresponding to Eq.
(43) and Eq. (47), respectively.

However, it seems difficult to find a Burgers vector density
function such as in Eq. (62) which leads to simple analytical formu-
lations for the stress field and interaction energy. Alternatively, we

J.H. Yuan et al./International Journal of Solids and Structures 50 (2013) 3472-3489

assume that the Burgers vector density function is associated with
the material constants yf,”) in Eq. (3b), i.e.

by = by, /pgz) x)d’X, by = b / pY (x)d’x  corresponding to 7"
(68)

This assumption is reasonable from the physical point of view be-
cause the deviation of y” from unity can be considered as a mea-
sure of the degree of anisotropy. In so doing, Eqs. (63) and (67)
are changed to

WPCO~W[z"), speo~Swu[r], i=1.23  (69)
where

7 = 19 %) = PO W) 1P ;%) ¢ p 70
1= 2w = p(y) 1 (v %)+ P (%) (70)

Obviously, the expressions in Eq. (69) are still consistent with each
other.
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Fig. 3. Variation of stress components with x; (x; = 50 nm, X, = 50 nm) due to an inclined, circular glide dislocation loop in isotropic GaAs/Si bimaterials with a perfectly-

bonded interface.
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Suppose now that we find a Burgers vector density function
such that

20w =+ (RO 2) R

. R (71)
or=-z"1In (R}”') - z§”> — RV
in which
RY =ROWx) =\ —x)’ + 0 —x + &P w2 (72)

with ¢ being an arbitrary real constant. Then, from Eq. (70), we can
obtain that

> PIeRZa r
{6y53y§+("/i ) o2 8_3/§)Ci (¥;X)

; s 2 19 4 e
—p,")(y)*{{—ﬂv,"))z—}8—ﬁx§'>(y;x)}*p§')(x)
3

0y:0y: ay§
(73)
which leads to
J ~ (A 1 382
P X)) = = (74)
4Ty (RY)
due to the fact that
i 2 O 1 .
+ (P2 = ———— = AP (y—x 75

where 6%(x) is the 3D Dirac delta function. The Burgers vector
density functions can be determined by Eq. (74) in combination
with the following normalization conditions as indicated in Eq.
(68), ie.

/@%mfx:L /¢Wm@x:1 (76)

In summary, by introducing three particular spreading func-
tions characterized by the spreading radius ¢ as shown in Egs.
(68), (74) and (76), we thus obtain the non-singular stress field
and interaction energy which are consistent with each other. In
other words, the singularity can be removed if we replace the
function R involved in_the potential functions of Egs. (34),
(43) and (47) simply by Rl@ as given in Eq. (72). The treatment
to the self-energy of a dislocation loop is exactly the same
(p”(x) = p{”(x) in this case) due to the fact that the self-energy
is in terms of the interaction energy according to Eq. (54). We
also remark that the spreading radius ¢ should be so chosen
that the non-singular solution matches the atomistic simulation
(Cai et al., 2006).

In the special case of infinite isotropic media, it is verified that
the singularity can be removed if we replace R in Egs. (38), (51)
and (52) simply by R defined as

R=R:X) = /0 — %12+ (2 — %) + (3 — %) + & (77)

Note that this reduction leads to slightly different expressions from
those of Cai et al. (2006). In terms of the expressions by Cai et al.
(2006), the function 1/R in our Egs. (38), (51) and (52) would need
to be replaced by V?R/2, with V2 being the 3D Laplacian operator.

As an immediate application of our non-singular expressions,
we now calculate the self-energy of dislocation loops with simple
configurations.

For a circular glide dislocation loop of radius R located in the
plane of isotropy with a Burgers vector (b,0,0), the non-singular
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Fig. 4. Contours of the interaction energy between two hexagonal prismatic
dislocation loops of finite size in an infinite hexagonal crystal (a) magnesium; (b)
zinc.

solution for the self-energy can be obtained from Egs. (54), (69)
and (71) as

) R2 A
wy = 27t72c5‘i (i - Q) R
Y

s 50 90) Vare @

& &
X {(2 +E>K(K) - <4+F>E(K)
()12 ) 2
:2nRC44b i—hi ln8—R—2 +0 &
8n '))g’“) '))&") & Rz

Similarly, for a circular prismatic dislocation loop of radius R lo-
cated in the plane of isotropy with a Burgers vector (0,0,b), the
non-singular self-energy is

(78a)
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Fig. 5. Variation of u; with x3 (x;/a =0.5, x,/a = 0.5) due to hexagonal glide dislocation loop C in (a) GaN/InN bimaterial with a perfectly-bonded interface (i.e. perfect
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wy _onp Sl PP — AR ey~ Egwo)
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caab D12 8R &
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In Eqgs. (78a,b), K(x) and E(x) are the complete elliptic integrals of
the first and second kinds with modulus x defined as

2R
VAR? + ¢

We remark that the asymptotic solutions in Egs. (78a,b) agree well with
those in Chou and Eshelby (1962), except that the number “1” in our Eq.
(78b) would be “2” in Chou and Eshelby (1962). This discrepancy can be
reconciled by properly choosing the spreading radius e.

(79)

For a screw dislocation dipole which is located within
the plane of isotropy and is parallel to the x;-axis with a
Burgers vector (by,0,0), the non-singular solution of the self-en-
ergy per unit length can be obtained from Egs. (54), (69) and

D2\ b 4

(71) as
&2
In (1 +8—2> =gn y(;) (ﬁ) (80a)

W) _ Caabr 2

ST
where D is the distance between the two dislocations of the dipole
(Cai et al., 2006).

Similarly, for an edge dislocation dipole which is located within
the plane of isotropy and is parallel to the x;-axis with a Burgers
vector (0,b,,0) or (0,0,b3), the respective non-singular self-energy
per unit length is

ln2+(9
e
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interface); and in (b) GaN/InN bimaterial with an interface in frictionless contact (i.e. smooth interface). T.I. means transverse isotropy, and Iso. indicates isotropy of Voigt

average.
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5. Numerical examples and discussions

In this section, our solutions in Section 3 are applied to a couple
of dislocation cases to verify our formulations while illustrating

certain interesting features due to the presence of material anisot-
ropy and bimaterial interface.

Example 1. Stress field of a circular prismatic dislocation loop in
isotropic bimaterials with a perfectly-bonded interface.

This example was suggested by Akarapu and Zbib (2009). The
bimaterial system consists of Cu (material 1, x3 > 0) and Ni
(material 2, x3 < 0) which are perfectly bonded together at the
planar interface x3 = 0. The material parameters (i.e. shear modulus
and Poisson'’s ratio) used here are listed as follows: G = 54.6 GPa,
v = 0.324 for Cu, and G = 94.7 GPa, @ = 0.276 for Ni. Within
Cu, there exists a circular prismatic dislocation loop of radius
ro(= 50b) with a Burgers vector (0,0, b). The loop is parallel to the
bimaterial interface with its center being at (0, 0, 5b). We approx-
imate this circle with an inscribed regular 25-side polygon. As
verification, our numerical results are compared with those of
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Fig. 7. Contours of the interaction energy between two hexagonal glide dislocation loops in (a) GaN full-space; (b) GaN/InN bimaterial with a perfectly-bonded interface (i.e.
perfect interface); (c) GaN/InN bimaterial with an interface in frictionless contact (i.e. smooth interface). The inclined angle between the two dislocation planes is fixed at

0=0°.

Salamon and Dundurs (1971). It can be observed from Fig. 2 that the
shear stress g3 along the line parallel to x3-axis in both materials
(u =1,2) agrees very well with each other.

Example 2. Stress field of an inclined, circular glide dislocation
loop in isotropic bimaterials with a perfectly-bonded interface.
This example was suggested by Tan and Sun (2006). The
bimaterial system consists of GaAs (material 1, x3 > 0) and Si
(material 2, x3 < 0) which are perfectly bonded together at the
planar interface x3 =0. The material parameters (i.e. Young's
modulus and Poisson’s ratio) used here are listed as follows:
EV —=855GPa, v =031 for GaAs, and E® =165.5GPa,
v? =0.25 for Si. The circular glide dislocation loop of radius
ro(=25 nm) is located in GaAs with its center being at the point (0,
0, 50nm) and lies on the slip plane with positive normal

(cos30°,0,cos60°). The Burgers vector is (cos60°0,cos150°) x
0.384 nm. We approximate this circle with an inscribed regular
32-side polygon. As verification, our numerical results are
compared with those of Tan and Sun (2006). It can be seen
from Fig. 3 that all the stress components along the line parallel
to x3-axis in both materials (i = 1,2) agree very well with each
other. We should point out, however, that the discrete data in
Fig. 3 are 0.01 times the raw-data extracted directly from the
figures in Tan and Sun (2006). Moreover, due to possible
misprints, the stress components in Tan and Sun (2006) should
be normalized by the shear modulus instead of the Young's
modulus of GaAs.

Example 3. Interaction energy between two hexagonal prismatic
dislocation loops in a transversely isotropic full-space.
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Fig. 8. Variations of the interaction energy between two hexagonal glide dislocation loops vs. the inclined angle 0 between the two dislocation planes. The center of the

second loop is fixed at (X;,0,X3) = (0,0, 5a/4).

This example was suggested by Willis (1965). We first intro-
duce a hexagonal prismatic dislocation loop C of side-length a with
a Burgers vector (0,0,b) lying in the basal plane of an infinite
hexagonal crystal (magnesium or zinc in this example). In the
Cartesian coordinates, the center of this loop is fixed at the
origin (0,0,0) while its six vertices are located at (a,0,0),
(a/2,+/3a/2,0), (-a/2,/3a/2,0), (-a,0,0), (—a/2,—/3a/2,0)
and (a/2,—- /3a/2,0), respectively. We now bring in the second
prismatic dislocation loop C with a Burgers vector (0,0,b) by
simple translation of the first loop C, with its center being confined
in the x; — x; plane. Denoting the center of the second loop as
(X1,0,X3), the contours of the interaction energy in the
X1 — X3 plane between these two dislocation loops in (a) magne-
sium and (b) zinc are shown in Fig. 4, where the symbol E
denotes the non-dimensional interaction energy normalized by
(casbba), i.e. E=W;(C,C)/(casbba). It can be seen from these
figures that the slopes of the asymptotic line (i.e. E=0)
are the same as those of infinitesimal loops in Willis (1965). When
the second loop is far away from the first one, the contours
coincide with those in Willis (1965) for the infinitesimal
loop case. However, when these two loops become close to each
other, the contours show significant deviation from those of Willis
(1965). Comparison of Fig. 4(a) with Fig. 4(b) also indicates that the
degree of material anisotropy can significantly influence the
contour shapes. The material parameters used here are:
Cc11 =59.7, ¢33 =61.7, c44 =164, c13 =21.7, ce6 = 16.75 (GPa)
for magnesium, and c¢;; =158.35, ¢33 =61.6, cy4q =40.0,
C13 = 47.44, cgs = 63.42 (GPa) for zinc.

Example 4. Displacements, stresses, interaction energy and image
self-energy of glide dislocation loops in transversely isotropic
bimaterials.

In Cartesian coordinates, we consider a transversely isotropic
bimaterial which is composed of GaN (material 1, x3 > 0) and InN
(material 2, x3 < 0), with the basal plane of both materials being
parallel to the bimaterial interface (i.e. x3 =0). The material
parameters used are: cqq = 390, c33 = 398, c44 = 105, c13 = 106,
Ces = 122.5 (GPa) for GaN, and cq1 = 223, ¢33 = 224, C44 = 48,

c13 = 92, cgg = 54 (GPa) for InN. There are two hexagonal glide
dislocation loops in this bimaterial. The first loop C of side-length a
with a Burgers vector (b,0,0) is located in GaN and is parallel to the
bimaterial interface. The center of loop C is fixed at (0,0, H) where
H = a/4, and its six vertices are fixed at (a,0,H), (a/2,+/3a/2,H),
(-a/2,+/3a/2,H), (-a,0,H), (—a/2,—+/3a/2,H) and (a/2,—/3a/2,
H), respectively. The second loop C with a Burgers vector (B, 0,0) is
introduced by superpositions of the following operations: (i)
simple translation of the first loop C with its center being confined
in the x; — x3 plane, and (ii) pure rotation of the first loop C about a
rotation-axis which is parallel to the x;-axis while passing through
the center of C. The center of loop C is thus denoted as (X1,0,X3),
and the orientation of loop C is described by the rotation angle 0,
i.e. the inclined angle between the two dislocation planes.

Shown in Figs. 5 and 6 are, respectively, the displacement com-
ponent u3 and stress component g, in GaN/InN bimaterial spaces
under both perfect and smooth interface conditions, induced by
the first dislocation loop C only. It can be observed from these fig-
ures that material anisotropy can have a considerable influence on
the displacement and stress fields at some field points (i.e. with
different x3). We point out that the corresponding isotropic Lamé
constants used here are 2 =294, u=121.2 (GPa) for GaN and
2 =104.4, u=54.7(GPa) for InN, which are determined by the
Voigt average (Hirth and Lothe, 1982).

Shown in Fig. 7 are the contours of the interaction energy be-
tween the two dislocation loops C and C in the X; — X5 plane (with
0 = 0°), where the symbol E denotes the non-dimensional interac-
tion energy normalized by (c44Bba), with c44 being the modulus of
GaN. Obviously, the presence of bimaterial interface causes the
asymmetry of the contours about X5;/a = 0.25 in Figs. 7(b) and
(c¢) in comparison with Fig. 7(a) for the GaN full-space case. Differ-
ent types of interfaces (perfect or smooth interface in this case) can
also substantially influence the contour shapes (Figs. 7(b) vs. (c)).
Moreover, the contour shape for glide loops is quite different from
that for prismatic loops as shown in Example 3 (Figs. 7(a) vs.
4(a,b)).

Fig. 8 shows the influence of the orientation of loop C on the
interaction energy between two dislocation loops, where the
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Fig. 9. Variations of the image self-energy of the second hexagonal glide dislocation loop vs. the center coordinate X5 of this loop. Other fixed parameters are X; =0, X, =0,

and 0 = 45°.

symbol E also denotes the non-dimensional interaction energy nor-
malized by (c44Bba), with c44 being the modulus of GaN. It can be
seen from Fig. 8 that there exist two extreme points (6 = 0° and
0 ~ 60°) at which the slope of E with respect to 0 becomes zero.
We further notice that 0 = 0° is stable if bb > 0 whilst 0 ~ 60° is
stable if bb < 0.

Fig. 9 shows the influence of the distance from the loop center
to the bimaterial interface on the image self-energy of a dislocation
loop, where the symbol EI™* denotes the non-dimensional image
self-energy normalized by (c445ba), with c44 being the modulus of
GaN. It can be observed from Fig. 9 that the smooth interface al-
ways imposes an attractive force upon the glide dislocation loop,
no matter whether this loop is located within GaN or within InN.
However, the perfect interface imposes an attractive force upon
the glide dislocation loop if it is located within GaN which has a
relatively large shear modulus, and imposes a repulsive force upon
this loop if it is located within InN which has a relatively small
shear modulus.

6. Conclusions

In this paper, we have obtained simple line-integral representa-
tions for the elastic displacements, stresses, self-energy and inter-
action energy of arbitrarily shaped dislocation loops with general
Burgers vectors in either non-degenerate or degenerate trans-
versely isotropic bimaterials. These expressions are very similar
to their isotropic full-space counterparts (e.g. Burgers’ formula, de-
Wit’s formula, Blin’s formula) and therefore can be easily applied
to 3D-DD simulations for hexagonal or isotropic crystals with
interfaces/surfaces. We have also proposed a non-singular and
self-consistent approach to evaluate the self-stress and self-energy
of a dislocation loop in transversely isotropic media efficiently. Our
numerical examples show clearly the significant influence of mate-
rial anisotropy and bimaterial interface on the elastic fields and
interaction energy of dislocation loops.

Our line-integral expressions for the elastic displacements,
stresses and interaction energy are also applicable to the important
case of a transversely isotropic (or isotropic) half-space with free
surface, provided that we slightly modify the associated coeffi-

cients of the Green’s tensor for bimaterials, as discussed in Appen-
dix B.
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Appendix A. Explicit expressions of the functions v and y*
(q9=1,2,3,4) for all possible degenerate cases of transversely
isotropic bimaterials

It can be easily observed from Eq. when

(23) that,

=300 =3 Gl i) ) — (1) or 3 ) — 37
(ie. m{—my —my(=1), the functions i and y\'®

(q=1,2,3,4) are ill-defined. However, we will show below that
they become well-defined after a proper limiting process. In the
following discussion, the symbol “~” indicates that there is no in-
dex in the given position.

We now deal with y” first. Using the method of undetermined
coefficients, the first of Eq. (23) can be expressed as

l//é#) _ (‘KEJH)X(#) + Q((JI‘)XSAI))/@(#) (A1)
in which
(u) _ V(#)X(]m — V;H)X(zw (AZ)
Tl
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When % — y% — 9% it can be verified that

lim X(u)éj{’(u) - —Rg‘)

(1)
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W=y
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o

lim QW TY /78" — T

LW =
Y4000y q
where R{" and Tl are defined the same as in Eq. (16) and Eq. (24),
respectively, provided that we replace the corresponding index by
“0”, and

?gm = —(pI02E®, ?(2;0 :?gm —1, ﬁlm = (3YY2EW 12 (A5)

In obtaining Eq. (A5), use has been made of Egs. (4) and (22).
Making use of Eq. (A4), we thus obtain the limit expression of
Eq. (A1) as
1
(W _— (1) p(1) ()
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_ fyt()ﬂ) Té/t)) X(().“)j| (AG)

where )(g”) is defined the same as in Eq. (15), provided that we re-
place the corresponding index by “0”.

As the next step, we deal w1th np A (q =1,2,3,4) as follows. (i)
P = 9 — 34 only; or 7! — 30" — 30 only.

Using the method of undetermined coefficients, the second of
Eq. (23) can be expressed as

_ 1 ( 1) A
A (Km YW _ QW </.><u>) A7a
q A @(# ')) 'V(2/ qo~ Ko~ q;0~ Koo ( )

or

8

gow — 1 1) (K 70— Q) (A7b)
q AP y(]u) —V(Z“) g~ A q~p App

in which

() (1) (W) o, (2 " NP O]
o _ PAAY — Py @ _ Y /ﬁ/f 72 72/?
Ko™ = (D P X
Vi V2 / _Vz
(A8)
and
Ko = P T w DI (m=3-a)
Kfq/)(//rl = pE/i qc/f /V: (5 =3- B
D BT
Q(/ﬁ)(u) _ 1 yl 052 q;o H )) Pl Tq/,d‘u (Ag)
qo~ T (W) (
73 T V
7AW BB
Q(;.)(;:): 1 Vl 2/; q/2/1 _Vz Pl/f Toas
g~ D)
V3l W =y

When % — p# — yi or y{? = 9" — y¥ it can be verified that
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in which Rg™ (R§)"), 250" (z)"), Tood" (Tih4") and PL* are de-
fined the same as in Eq. (16), Eq. (17), Eq. (24) and Eq. (20b) or
(21b), respectively, provided that we replace the corresponding in-
dex by “0”, and P§)" is defined the same as in Eq. (20b) or (21b),

provided that we replace the corresponding index by “3”, and
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for the perfectly-bonded interface, and
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for the interface in frictionless contact, and
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We remark that use has also been made of Egs. (4) and (22) in
obtaining Egs. (A12a,b) and (A13).

Making use of Egs. (A10) and (A11), we thus obtain the limit
expression of Eq. (A7a) or (A7b) as
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(ii) ' — y¥0 = ¥ and y¥) -y — 9§ simultaneously.

In this case, we only need to follow a similar limiting process
once more based on Eq. (A14a) or Eq. (A14b). The final result is gi-
ven as follows
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where 7% and 7% are defined the same as in Eq. (A10), pro-
vided that we replace the corresponding index by “0”, and

) 5w
SOW —  lim V1 71~ Y2 Xal
£ T o 0w o) _ 0
=T = 1=V
(05N (1520
= lim 7 XN](/» /meNz (A15)
P =1y s
— e s L paw
W ) pAW
78" Vo Rg)oﬂ
and

=(4) (/ )(/l)
=q W = P qOO / (Vo )

EP® = f;(j())(u Tq o0 + P T >/Vo

B0 _ (PAWTOW | phwFaiu
& )(u),(p3 Tood” + Py T )/Vo

_ BOWTOW | pAwFAw 7 (2)(1) (2)(1) T (2
=Py Tq;N0 +PN0 Tq;0~ +p( )W)Tq;oo +p30 Té/)(ﬂ)

O
£
0

(A16)

in which T80 T ’”(Té )y and PY® are defined the same as in Eq.
(24), Eq. (A13) and Eqgs. (A12a b), respectlvely, prov1ded that we re-
place the corresponding index by “0”, and P3N is defined the same
as in Egs. (A12a,b), provided that we replace the corresponding in-
dex by “3”, and P} is defined the same as in Eq. (20b) or (21b),
provided that we replace the corresponding indices by “3” and
“0”, and
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for the interface in frictionless contact, and
TOW _ g, TYW — _(y)2gm g,
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In obtaining Eqs. (A17a,b) and (A18), use has also been made of Egs.
(4) and (22).

As a special case, the solution for an isotropic bimaterial can be
achieved by simply setting
e =1, of =2

P =y 1, m =1, 69 =2,
d =349,

¢y =GY, 09 =4(1-209),
w®© — 2(1 - 21/(5))

(A19)

where G and ¢© are the shear modulus and Poisson’s ratio of the
isotropic material ¢, respectively.

Appendix B. Dislocation loops in a transversely isotropic half-
space with free surface (assuming that the plane of isotropy is
parallel to the free surface)

The whole treatment to transversely isotropic bimaterials is also
suitable for a transversely isotropic half-spacex; > 0(1=pu=1)or

X3 < 0 (4= pu = 2)with free surface (i.e. 63; = 0 at x3 = 0), provided
that we make some slight modifications to Egs. (12a)-(13b), (20a)-
(21b), (A12a,b) and (A17a,b) correspondingly, i.e.
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Here use has been made of Eqgs. (4) and (22) in obtaining Egs. (B3)
and (B4).

Obviously, for the specific problem of dislocation loops in a
transversely isotropic half-space, there is no need for us to calcu-
late any quantity with double material-indices (1)(¢t) where 1 # p.

For the special case of an isotropic half-space, the associated po-
tential functions can be significantly simplified and the final results
are listed below for future reference.

R

P gl = g = g gyl 41 — o)y ()
and
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in which »® is the Poisson’s ratio of the isotropic material y,
and

Z=y; X3, Z=Y3+% (B7)
R/ —x1) + 0= %) +22, R=\/ — %1 + (0 — %) + 2
(BS)
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