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The third-order linear piezoelectricity tensor seems to
be simpler than the fourth-order linear elasticity one,
yet its total number of symmetry types is larger than
the latter and the exact number is still inconclusive. In
this paper, by means of the irreducible decomposition
of the linear piezoelectricity tensor and the multipole
representation of the corresponding four deviators,
we conclude that there are 15 irreducible piezoelectric
symmetry types, and thus further establish their
characteristic web tree. By virtue of the notion of
mirror symmetry and antisymmetry, we define three
indicators with respect to two Euler angles and plot
them on a unit disk in order to identify the symmetry
type of a linear piezoelectricity tensor measured in an
arbitrarily oriented coordinate system. Furthermore,
an analytic procedure based on the solved axis-
direction sets is also proposed to precisely determine
the symmetry type of a linear piezoelectricity tensor
and to trace the rotation transformation back to its
natural coordinate system.

1. Introduction

In most smart materials (single crystals, ceramics, and
thin films, etc.), an electric displacement is induced in
response to an applied mechanical stress. This property
is called the piezoelectric effect and a third-order matter
tensor relates the induced electric displacement vector
to the second-order stress tensor. This is expressed in
the form

P =djjoj, (1.1)

where P; represents the electric displacement vector
and oj the stress tensor. The third-order piezoelectric

© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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matter tensor djj has the symmetry dj = dj; due to the symmetry of the stress tensor. Here and
henceforth, all lowercase Latin subscripts range from 1 to 3, and the summation convention for
repeated subscripts or indices is implied.

The linear piezoelectricity tensor has a maximum of 18 distinct components. This number
might be remarkably reduced if certain symmetries exist in the crystal structure, microstructure,
etc. For instance, according to the definition on the piezoelectric effect, i.e. equation (1.1), all
components of the piezoelectric tensor should vanish in materials possessing the centre of
symmetry. It is further observed that, among all the three-dimensional material symmetry groups,
namely the 41 compact-point groups comprising 32 crystal classes, seven Curie groups and two
icosahedral groups [1-3], all the 15 centrosymmetric groups (i.e. the 11 crystal classes

{Ci/ Czh/ D2h/ C4hr D4h/ 56/ D3d1 C6hr Déh/ Th/ Oh} ’

the three Curie groups {Coop, Doon, K} and the icosahedral group Ij,) will make the piezoelectricity
property of materials null. Three other groups, namely crystal class O, Curie group K and
icosahedral group I, also eliminate all piezoelectric components owing to their high symmetry
restrictions. Thus, one needs to study at most 23 piezoelectric symmetry groups.

As for the remaining 23 piezoelectric symmetry groups, they could be further degenerated
into certain independent symmetry types according to the invariance of the linear piezoelectricity
tensor djj under the symmetry transformation. While the number of d;j in different forms derived
in a straightforward way was found to be 16 [1-6], Geymonat & Weller [7] claimed that ‘the
symmetry classes of piezoelectric tensors are found to be 14'. It is obvious that, up to now,
the classification on linear piezoelectric symmetries is still contradictory and thus inconclusive.
This motivates the present study. Therefore, in this paper, we would like to seek answers to the
following three key questions: (i) The third-order piezoelectricity tensor is one order lower than
the fourth-order elasticity tensor, and one would expect it to be simpler than the elasticity tensor;
then why is the number of the irreducible symmetry types in the former larger than that in the
latter which is 8 [8]? (ii) How many irreducible symmetry types are involved in a general linear
piezoelectricity tensor? (iii) Is there any way to identify the type of a linear piezoelectricity tensor
measured in an arbitrarily oriented coordinate system?

In order to answer these important questions, we make use of the irreducible decomposition
and representation of high-order tensor [9,10], and further use for reference the recent approach
on the identification of elasticity symmetry [11]. This paper is organized as follows. In §2, we
decompose the linear piezoelectricity tensor into its irreducible parts, which in general consists of
two vectors, a second-order deviator and a third-order deviator. We further express each deviator
in terms of a scalar module and an axis-direction set. In §3, by virtue of the notion of mirror
symmetry and antisymmetry (MP*/~, MP stands for mirror plane), we are able to clearly present
the symmetry structures of a linear piezoelectricity tensor. This is achieved by analysing the
associated deviators and by establishing the characteristic web tree of the symmetry groups. In §4,
for the linear piezoelectricity coefficients measured in an arbitrarily oriented coordinate system,
we define several indicators with respect to two Euler angles and plot them on a unit disk in order
to recognize the MP*/~s of the piezoelectricity tensor. Furthermore, by solving the axis-direction
sets, we also establish a procedure to analytically identify the symmetry types and eventually
trace the rotation transformation back to its natural coordinate system. Finally, some concluding
remarks are given in §5.

2. Structures of a linear piezoelectricity tensor

(a) Irreducible decomposition

A tensor is called a deviator if it is traceless and symmetric for any pair of indices of its Cartesian
tensor components. For instance, any scalar and vector are, respectively, zeroth- and first-order
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deviators, and a second-order deviator D® (where the superscript ‘(2)" represents the order of
the deviator) has components satisfying

D;=Dj, Dy=0. @2.1)

It is well known from the theory of group representations that a tensor of any finite order can
be decomposed into a sum of irreducible tensors, in which each irreducible tensor belongs to an
irreducible and invariant subspace of the tensor space made of a deviator and two basic tensors
(i-e. the identity tensor §;; and the permutation tensor €;j). From Zou et al. [9], we know that the
linear piezoelectricity tensor in general has the orthogonal irreducible decomposition

dije = 8jxi + (870 + 8ixvi — 38j%vi) + (€ixsDsj + €ijsDsi) + Dijis (2.2)

where u; and v; are two vectors, Dj; and Djj are second- and third-order deviators, respectively.
The decomposition is orthogonal because there is no coupling between different deviators in the
square of Frobenius norm of d such that

20
Id)? =3]ul® + gnvnz +6[D@ |2+ DO, (2.3)

Multiplying §;; or € on both sides of (2.3) for index contraction, one can find the following
reciprocal representations for u;, v;, and Dj;

wi= sdpg,  vi= 15k — dikk) (2.4)
and
Dij = %(eimndmnj + Ejmndmni)r (2.5)

Substituting equations (2.4) and (2.5) back to equation (2.2), we thus solve the third-order deviator
Dijk~

In practice, the two-index ‘engineering’ notation is often used. In terms of this notation, the
two symmetric indices (i.e. j,k in equation (1.1)) ranging from 1 to 3 are replaced by a single index
ranging from 1 to 6 as

11— 1;22—-2;33—3;23 - 4,31 - 5,12 — 6. (2.6)

Therefore, the matrix form of the electric displacement-stress relation (1.1) becomes

o1
Py din dip diz V2 N2dis V2die Z;
Py|=|dy dpp dpz 2dpy 2dy5 2dog V204 (27)
Ps d31 dxp dsz V2dss  N2d35  2d36
V203
V2054
Also in terms of the engineering notation, the two vectors in equation (2.4) become
ui=3(di +dp +dip),i=1,2,3;
v1 = 15(3d26 + 3d3s + 2d11 — dip — di3), 28)
V2 = 15(3d16 + 3d3s + 2d2y — doz — da1),
v3 = 15(3d15 + 3dos + 2d33 — da1 — d3p);
and the second-order deviator Dj; with five distinct components in equation (2.5) becomes
D11 = 3(das — dse), Doo = 3(d36 — dia), D12 = & (dos — dap + d31 — dis), 29)

Do = #(dss — diz + dip — dag), D13 = £(do3 — das + d1g — don).
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Finally, the third-order deviator D;j with seven distinct components has the following
expressions

D111 = £ (2d11 — dip — di3 — 2da6 — 2d35), Do = (2 — do1 — dag — 216 — 2d34),
D112 = 15 (8d16 — 2d3s — 3dyy — do3 + 4dz1), D1z = 75(8d15 — 2day — 3dds3 + 4d31 — dap),
Doo1 = 15(8ddog — 2d35 — 3d11 + 4dia — d13), Daos = 75(8das — 2d15 — 3dsz — da1 + 4d3p)

and D13 = 3(d3e + d14 + dos).
(2.10)

(b) Multipole representations

Following Zou and Zheng [10], a generic pth-order deviator has the Maxwell’s multipole
representation. In other words, the pth-order deviator D) can be expressed as the tensor product
of p unit vectors n,(r=1, ..., p) (or called the multipoles of the deviator) multiplied by a scalar A,

DY =A[n® - ®n,|, (2.11)

where |T| denotes the traceless symmetric part of tensor T. Thus, we need a total of seven
unit vectors

n, =n(0;, ;) = e3 cos b, + (e1 cos ¢y + ex sing,)sinb,, r=1,...,7, (2.12)

to form four sets {n1}, {ny}, {n3, n4} and {ns, ng, n7} in order to represent the two vectors, a second-
and a third-order deviator of the piezoelectricity tensor (2.2) as

u=Ain;,v=Amy;, D@ =A5|n3®ns), D®=As|ns@n6@n7], (2.13)

where the four scalars Aq to A4 can be positive if we properly choose the unit vectors and their
antipodes in the corresponding unit-vector sets.

As shown in Zou et al. [11], the angular variables in (2.11) (without the scalar A) can be solved
from the algebraic equation of x

!
ot Z % [, + (1 apr] =0, (214)

where the overbar is used to denote the complex conjugation, and m indicates the largest
second-index value 7 in the non-zero expansion coefficients a,,. In this equation, the variable
x corresponds to a direction n(9, ¢) by

; 0
x=e "Ytan 5 (2.15)

with i = v/—1 being the unit imaginary number, and 4, are the components of the deviator D)
in terms of the orthonormal bases

p [(p—r)/2] 1\
E — op—r _ = ®p—r—2s Qr+s —~ RS — 1.... . 21
DT <p+r> ; ( 2) <e W ®w >/ r 0/ s P ( 6)
In other words, in terms of these orthonormal bases, we have [12,13]
p -
= ap,Bp, ap,=Ep, 0DV, (2.17)
r=—p

due to the orthogonality E,oE,s=38s. Also in equation (2.16), e=ej3; w:%(q +iep);

p+r (p+n)l(p—1)!

by e®?; the operator ‘o’ indicates the complete scalar product; and the operator “(-)” represents the

( 2 ) =@ __ s the binomial coefficient; the pth tensor powers of a vector e is denoted
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symmetrization operation without normalization by the total number of the terms involved. As
an example for the operator (-), we will have,

(e®w®2>:e®w®2+w®e®w—|—w®2®e. (2.18)

We also point out, without loss of generality, that we have assumed ap, #0 while in
equation (2.17) ap , = 0(r=m + 1, ..., p) with respect to the selected coordinate system. This means
that there are p — m unit vectors among the set {n,, (r=1,...,p)} taking to be e or —e. Since x, and
X, 1 happen to be two roots of equation (2.14), corresponding to a unit vector n, = n(6y, ¢;) and
its antipode by

; [ _ ; —6
Xy =e ¥ tan Er' —xl= e i(prtrmod27) 15y %, (2.19)

the solution of equation (2.14) actually represents a set of axis-directions. Once the set of unit
vectors of a deviator is given, the modular variable A can be calculated by the formula

m
A= |[22m—p (P ip m) p,m l—[ e 1 sech,. (2.20)
r=1

This concludes our derivation where a generic pth-order deviator is expressed by the Maxwell’s
multipole representation. As for the two vectors, the second- and third-order deviators of the
piezoelectricity tensor, the expansion components can be derived from (2.8)-(2.10) and (2.17); as
follows (superscripts u and v are used to distinguish the expansions for the two vectors u and v):

aty= 1(ds1 +d3p + da3),
w1 . 2.21)
ayq = rﬁ[(dn +dip +diz) — i(da1 +dx +d23)];
aj o= L (3d15 + 3dos + 2d33 — da1 — dao),
1 ) (2.22)
a1 = 1575 Bddas + 3ddss + 2d11 — diy — di3) — iBdde + 3dsa + 2y — dos — dm)],

a0 = —\/%(d25 —d4),a21 = %[dza —d34 4 di6 — do1 — i(d3s — d13 +di2 — dze)],} 2.23)
122 = ¢ldos + d1a — 2d36 — i(das — daz + d31 — dis)],

azp = —\/1»% (2d15 + 2dp4 — 2d33 + d31 + d32),
a1 = —2%/3—0[(30111 +dip — 4d3 + 2do — 8d3s)
—i(3dan + do1 — 4da3 + 2d16 — 8d34)], (2.24)

azp = %[(21115 — 2dp4 — d3p +d31) — 2i(d3e + d14 + d25)]

and az3 = %[(du —d1p — 2dz) +i(d2 — d21 — 2d16)].

3. Symmetry types of the linear piezoelectricity tensor

(a) Symmetries of deviators

The starting point for analyzing the symmetry of a physical tensor is the symmetry
transformation. An orthogonal transformation is called a symmetry transformation of a tensor
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if the tensor is invariant under this transformation. For the linear piezoelectricity tensor d, the
symmetry transformation Q means that
Q%d=d or Q;pQjsQudpg = dijk. (3.1)

All the symmetry transformations of tensor d form a group, called the symmetry group of d and
denoted by G[d].
Due to the property

51’]1) 5iq Sir
€ijk€pgr = 9jp  Sjg Sjr|, (3.2)
‘Skp (Skq Skr

the permutation tensor must (and at most) appear in an irreducible tensor and it further plays a
role of making an even (odd)-order deviator into an odd (even)-order irreducible tensor, while
every identity tensor d;; involved increases the tensor order by 2, i.e. equation (2.2). For more
detailed discussions on this, one can refer to the paper by Zou et al. [9]. Thus, since the identity
tensor is isotropic, the anisotropy of an irreducible tensor in a deviator D must be determined by
D alone or its combination with a permutation tensor, expressed as €D which may indicate

e®Dore-D. (3.3)

In summary, the symmetry group of a tensor can be derived from the intersection of the symmetry
groups of all deviators, in the form D or €D, resulting in the irreducible decomposition of the
tensor. For instance, we can express, from equation (2.2), the symmetry group of the linear
piezoelectricity tensor d as

G[d] = G[u] N G[v] N G[eDP] N G[DO)]. (3.4)

Let n be a unit vector representing the normal to a plane and m be any vector perpendicular to n,
then m - n = 0. Typically, one can choose two unit vectors m; and m; orthogonal to each other in
such a plane to form, together with n, a right-hand coordinate system {mj, m, n}. The vector m
can be represented in general as

my =mj Cos ¢ + mp sin ¢. (3.5)

The reflection transformation in the plane normal to n, denoted by Ra=1—-2n®n, has
the properties

Ryn=—-nRymg =my, V¢el0,27). (3.6)

It is easy to prove that a rotation Q(6,n) of angle 6 about an axis n can be achieved by two
reflection transformations. For example, for 6 =2 /k, we have

Q (27”) n = Ron, R, . (37)

As is well known, the deviator is the simplest tensor, and so we study the symmetry types of
deviators of different orders first. A zeroth-order deviator (scalar) « is isotropic (Kj,) and a first-
order deviator (vector) v is transversely isotropic (Cooy or T2) while ea is hemitropic (K) and ev
is transversely hemitropic (Cy, or T3). For a single deviator of finite order, the symmetry type
can be classified according to the symmetry or antisymmetry with respect to a given plane. A
plane with normal n is referred to as the symmetry or antisymmetry mirror plane (MP*/~) of a
pth-order deviator D) if and only if the transformation relation takes the form

R,'D? =D® or Ry'DY) =_DW. (3.8)
It is easy to prove that the identity tensor 1 and the permutation tensor € satisfy
2 3
R;“1=1, R ’¢e=—€¢ Vn, (3.9

and thus, they have co® MP*s and 0o® MP~s, respectively.
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Table 1. Symmetry types of the second-order deviator € - D?.

MPs symmetry groups MP+/=s axis direction set
overstepped G, G
orthogonal ............................ DZ ............................................................................ A
tetl’agona|(5(2US4Dzd ...................................................... e
T|C3D3(4CGD406COODOO ................................ (oo+1)_ .......................................................
nuIIC3v(3,,D3,,C4v(6vTTd(DOU ........................... e

Because of the multipole representation (2.11), one can investigate the anisotropic structure of
a deviator through its axis-direction set. A plane is said to be the MP* (MP™) of an axis-direction
set if the mirror of the axis-direction set with respect to the plane is invariant or becomes a set in
which the even (odd) axis-directions change their signs when compared with their original ones.
Thus as an MP™, the axis-directions under the MP transformation are either unchanged, in other
words, the axes must lie on the MP, or changed in pair(s). In the latter case, the pairs can both be
perpendicular to the MP, or making the MP as their mid-separate surface. For the MP~, besides
the above cases, an additional axis-direction perpendicular to the MP is needed. Once the MPs of
a deviator D are determined, the p MP*s and ¢ MP~s of D will become p MP~s and ¢ MP*s of
€D correspondingly (due to (3.9),).

Based on the above analysis, we can now derive three symmetry types for the second-order
deviator € - D® and seven symmetry types for the third-order deviator D® as follows. A second-
order deviator in the form e - D® is at least orthogonal, tetragonal if nz Lny and transversely
isotropic (TI) if n3||ng. The corresponding symmetry groups of € - D? (except for the non-
piezoelectric groups), their MPs and axis-direction sets are listed in table 1. The results for a
third-order deviator D©® are listed in table 2. As can be observed from table 2, there are seven
types of symmetry:

I. Transverse isotropy (TI) if the three axis-directions are the same.
II. Tetragonal symmetry if the three axis-directions form a Cartesian coordinate frame.
III. Hexagonal symmetry if the three axis-directions are coplanar and have the same (120°)
separation angle to each other.
IV. Orthogonal symmetry if one axis-direction is a principal direction of the other two.
V. Trigonal symmetry if the three axis-directions can be obtained by rotating an axis-
direction around another one at 120°.
VI. Monoclinic symmetry if one axis-direction lies on a MP of the other two.
VII. Triclinic symmetry if no MP exists for the axis-direction set.

Also in table 2, the seven symmetry types of a single third-order deviator are numbered from I to
VII, and their symmetry groups are called groups type I-VII which will be used as the framework
for symmetry classification of the linear piezoelectricity tensor. From these discussions, we also
find that the symmetry types of a single deviator can be distinguished simply through their
numbers of MP*/~s.

(b) Symmetry types of a linear piezoelectricity tensor

A linear piezoelectricity tensor consists of at most two vectors, a second-order deviator and a
third-order deviator without the isotropic part. From equation (3.4), we can obtain the symmetry
types of the linear piezoelectricity tensor from the symmetry properties of the vectors, the second-
and third-order deviators. The route to carry out the intersection can be described as follows:

— The intersection of two vectors results in two kinds of symmetries: the monoclinic (II)
symmetry when the two vectors have distinct axis-directions, or the TI (VII) symmetry if
the two vectors have the same axis-direction or one of them vanishes.
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Table 2. Symmetry types of the third-order deviator D®). Note: for simplicity, the coplanar MP normals are hereinafter assumed
to lie on the (e, e;)-plane, and the single MP normal is set to be the e; (e)-axis.

classes/types symmetry groups MP*/~s axis direction set

triclinic/l G null {ns, ng, n;}

S (S ....................................................... [ {n(n/z W n(92<p2) n( 92 <p2+n)} .....
e or{n(n/z . w]) n(n/2<p2) n(n/2¢3) }
orthogonal/lll ................. (2 (Zv ............................................... S {en(yr/Z (p1) n(7r/2¢2)} ......................
.................................................................................................................................... or{en(9<p)n(9(p+n)}
tngonal/lv ...................... (3 C;U ................................................ i {n(@ ¢ +an/ 3) - 0 12} ..................
hexagonal V| DGuly §3- /20 + k3 k=012
e Dz S4DZ,,TT,, ................................. B {e,n(n/z (p+k71/2)k=01} ...............
S (4 . (6 (4v(6v . OOCOOU .................. e {e} ..................................................................
T 0406000 ........................................ —A4_0 .......................................................

— The intersection of the two vectors and the third-order deviator does not yield any
new symmetry type. Table 3 shows that the monoclinic symmetry of u and v may be
combined with the monoclinic symmetry of D® if their MP*s are the same, and that the
TI symmetry of u and v can be combined with the orthogonal, trigonal and TT symmetries
of D® without changing the symmetry type. However, combination of the TI symmetry
of the two vectors with the hexagonal and cubic symmetries of D could reduce the
symmetry to the trigonal and orthogonal symmetry, respectively.

— The intersection of u, v, D® and € - D@ results in 15 irreducible symmetry types of linear
piezoelectricity tensor, as shown in table 4 with the details being further discussed in
the next subsection. The main points to construct the new type are the combination of
the symmetry groups and the coupling of the axis-direction sets in tables 1 and 3. We
should also point out that the remarkable property of the different symmetry types are
their decisive number and pattern of MP*/~s, with the exception for trigonal type IV~
tetragonal type VI~ and TI type VII™. These three types are indistinguishable from the
triclinic type I or monoclinic type I~ through their MP*/~s, as will be explained in detail
in §4b.

With the detailed analysis on the symmetry types of the involved vectors and deviators, we are
now in a position to answer the first key question. That is, why the number of the irreducible
symmetry types in a linear piezoelectric tensor is larger than that in a linear elasticity tensor?

We note that the number of the symmetry types of a single third-order deviator cannot
exceed that of a single fourth-order deviator. Even the intersection of two vectors and a third-
order deviator does not yield a larger number of symmetry types than the intersection of two
second-order deviators and a fourth-order deviator yields where the latter intersection completely
determines the elasticity tensor. Thus, the complexity in the piezoelectricity tensor is due to the
symmetry incompatibility between the second-order deviator and third-order deviator, which
then results in a greater number of irreducible symmetry types in a linear piezoelectric tensor
than that in the elasticity tensor.

Again, the 15 irreducible symmetry types for the linear piezoelectric tensor are listed in table 4,
which contains important and useful information. For instance, from the patterns of the axis-
direction sets in this table, one can count the numbers of modular and angular variables for every
symmetry type. We point out that attention should be paid that in a natural coordinate system,
there are two or three pre-determined angular variables. For example, the tetragonal type VI
with symmetry group (T, T;} is usually treated as having only one independent variable. Thus
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Table 3. Intersection of u, v and D®. Note: the module within a square bracket means that the corresponding deviator is
optional.

classes/types symmetry groups MP+/=s axis direction sets
triclinic/l G null [A1{n}[A1{m }As{ns, ng, n;}

(Al{n(7 /2, )} A ){n(r /2, 5)}
monoclinic/Il G 1+ {n /2, 1), 06y, ), n(6y, ; + 1)}

Of{“ 7T /2, @), 0 /2, 1), N /2, 3)}

[A]{e}iA;l{e}

orthogonal/Ill G, Gy 271~ A {e,n(®, p),n(0, ¢ + )}
_________________________________________________________________________________________________________________________________ orfen(m/2 ¢ nGr/2 el
trigonal/IV G, Gy 3* hlie}ldalie}

Adn(0, ¢ + 27 /3),k=0,1,2)
hexagonal/v ............ b 4+3_A4{n7t/2(p+k7t/3_012} .................
abioVl DS D TTs 63 Mden(r/L¢+kr/D k=01

o (4C6C4UC6UCOOUDOOC\(I’ .......... T [A1]{e}[A2]{e}[A4]{e} ........................................
T B i

when getting back to the omitted angular variables, the modular variable and angular one (in the
parentheses) are counted separately, as listed in table 5, for the whole independent variables of
different symmetry types.

(c) Characteristic web tree of the linear piezoelectricity tensor

It is well known that a symmetry group may contain some other symmetry groups inside so
that it possesses a relatively higher symmetry. Among the 23 piezoelectric symmetry groups, the
triclinic group which only possesses the identity transformation has the lowest symmetry. With
the insertion of an additional transformation, the number of independent variables in the linear
piezoelectricity tensor may be reduced, and the corresponding axis-direction sets are specialized.
In so doing, all possible consequences finally generate a characteristic web tree.

In order to draw the characteristic web tree, some definitions are presented first. For two basic
symmetry groups A and B, if A C B, then A is called the subgroup of B, and B the mother group of
A. B is called the nearest mother group of A if there is no other mother group of A contained by B.
A symmetry group B is called the eigengroup of a symmetry type of a tensor T if no mother group
results in the same symmetry type of the tensor T. A symmetry group is called the null group of
a tensor if there is no symmetry type of the tensor which is invariant under all transformations
of the symmetry group, except for the special case where all components of the tensor vanish. A
symmetry group is said to be an overstepped group of a tensor if the most generic symmetry type
of the tensor possesses a higher symmetry group than it.

According to these definitions, some basic propositions can be described: except for the null
case, every symmetry type of a tensor has only one eigengroup. If a symmetry group is a null
group of a tensor, all its mother groups, and all its subgroups that are not overstepped or belong
to any symmetry type are also null groups of the tensor. If a symmetry group is an overstepped
group, all its subgroups are also overstepped groups of the tensor. For examples, among the
piezoelectric symmetry groups, for a vector, Cooy is overstepped and Dy, D3, Cgj, and Sy are null;
for a second-order deviator, C, is overstepped and Cs,, C3j, C4, and T are null; for a third-order
deviator, D4 and Dg are null.
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Table 4. Symmetry types of a linear piezoelectricity tensor.

symmetry
classes/types groups MP+/=s pattern of axis direction sets
[A{m} (Al {my}
triclinic/I G null [As1{n3, ng}
A{ns, ng, n7}
........................................................................................................................................ [A1]n(71/2g01)[,42]n(71/2(p2)
monoclinic/Il G ™ Wlte /2 ¢3))
{n(m /2, ¢1), (77 /2, 1), (T /2, 03)}
or{n(n/z 1), N0, @5 + k), k=0,1}
................................................................................................................................ [A1]{e}[A2]{e}
{n(m /2, 1), n(z /2, 1)}
monoclinic/lll~ G 1~ 3or G, ¢ + k), k=0,1}
{e,n(7 /2, ¢3),n(7r /2, p4)}
or{e n(6y, p3 + k), k=0,1}
[A1]{e}Az]{e} ...................................
AI{n( /2, 1 + km /2),k=0,1}
orthogonal/Ill G, han {e,n(/2, @), (7 /2, ¢3)}
Ay or{e,n(0, ¢, + kr), k=0,1}
or {e,n( /3, <p+kn) k=0,1}
orthogonal/IlI™ D, 3~ perpendicular A0, ¢ + k) k=01
Ale,n(/2, ¢ + km /2),k=0,1}
[A1]{e}[A2]{e} .....................................
trigonal/IV~ G null As{e}
Ay{n(0, ¢ + 2kr /3),k =10,1,2}
trigonal/IV Gy 3F hlie}lalie)
Ay{n(0, ¢ + 2km /3),k=10,1,2}
trigonal/V Dy 3~ coplanar Alal
Ag{n( /2, 0 + krr /3),k =10,1,2}
hexagonaI/V ................. C3,,D3,, ........................... ; +3—A4{nn/2<p+kn/3 ...... _012} ,,,,,,,,,,,,,,,,
tetragonal/VI~ S 1~ Ant/2 g (2 + D /4 k=01)
Asle,n(m /2, ¢y + kmr /2),k = 0,1}
mragonal/\” ................. D Zd .............................. 2 +3_A3{n(7'r/2(p+((2k+1)7'[/4))k=01} ........
Agfe,n( /2, ¢ + ki /2),k = 0,1}
cub|c/VI+A4{enn/2<p+kn/2_01} ...................

TIVII [Al{e}Al{e}As{e}

T+
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null: C,,C,.D,,C,,C,.C_TT, '

3PTT3 T 4Y T 6

4 6V

c,c,C,,C,,C.C_
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overstepped: C,, C, , ’ ‘\

Figure 1. Characteristic web trees of a second-order deviator € - D' (a) and a third-order deviator D® (b), where the
symmetry groups marked in bold with a large font in red are the eigengroups of the corresponding symmetry types and all
non-piezoelectric symmetry groups are omitted. (Online version in colour.)

Table 5. Independent modular and angular variables of a linear piezoelectricity tensor.

classes/types Tt TIAVII TINVI- cubic/vIt tetragonal/VI
e o o T 5o —
classes/types ............ tetragonaI/VI— ............. hexagonaI/V .............. . g R tr|gonaI/IV ............... tr|gonaI/IV_
S o W T T i
dasses/types  orthogonal/lll* orthogonal/ill  monodlinic/li=  monodlinic/ll  tidlinic/l
T T T e T Caen

We first elaborate the characteristic web trees (figure 1) of a single deviator. For a second-order
deviator D@ in the appearance of € - D@, let us begin with the lowest orthogonal symmetry
group D : (i) consider three nearest mother groups Dy, D¢ and D, in the up routine of the web
tree, we find that Dy; results in n3_Lng while both D4 and D¢ make n3 =ny4 so that two higher
symmetry types over the generic one happen; (ii) list the subgroups of D4, Dg and D54 other than
D», and check whether they are overstepped or belong to the lower symmetry types. If not, say
Cy4 of Dy, C3, D3 and Cg of Dg, and Cs, Ca, and Sy of Dyy, we can confirm that they must result in
the same symmetry types as their mother groups and add them to the corresponding symmetry
types; (iii) investigate the next nearest mother groups of Dy, D¢ and D;;. Here, we have only Do
of both D4 and D¢ since T of Dy is null. We see no new symmetry type associated with Dy, so we
add it and its subgroup C to the same type; (iv) continue until the null or eigengroup is reached.
If some new symmetry types appear, we then repeat from step (ii); (v) find out the symmetry
groups of every type whose mother groups do not appear entirely, say C3 and C4, and mark all
the omitted mother groups of them to be null; (vi) modify the characteristic web tree according
to the eigengroups after finding the positions for all the possible symmetry groups. Namely a
symmetry type « is said to be higher than g if the eigengroup of « contains that of . Finally, we
obtain the characteristic web tree of € - D® with three symmetry types as shown in figure 1a. We
remark that in judging the new symmetry types, the visual pattern of the axis-direction set is very
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helpful. For the third-order deviator D®, we begin with the lowest triclinic symmetry of group
C1, follow the same steps as above, and then derive its seven symmetry types and construct its
characteristic web tree as shown in figure 1b.

For a single vector there is only TI type with the eigengroup Cso,. The groups type I, II, 111,
IV and all the groups in type VII but Co, are overstepped, while groups type V and VI become
null. In combining the two vectors, the group Cs will separate itself out to be monoclinic type,
and most groups are in the overstepped state except for groups type I, II which are stepped up
to the TI type. Thus, since we know that the groups of symmetry types of a single third-order
deviator is totally the subset of those of two vectors, further combination of two vectors with a
third-order deviator does not produce any new symmetry type other than those of a single third-
order deviator. For instance, the group types I, V and VI revive from the overstepped and null
states, respectively, when the third-order deviator appears, type II of the third-order deviator can
coexist with the monoclinic type of two vectors, and the TI type of two vectors may participate
into the types III, IV and VII of a third-order deviator.

Finally, the combination of two vectors, a second-order deviator and a third-order deviator
is complicated. Two fundamental features should be noticed: (i) the detached groups must be
detached after the combination; (ii) the routes of eigengroups in the web trees must be unchanged,
and the groups with a higher position in the original web tree cannot have a lower position in the
new web tree. Thus, using the notations given in table 4, groups Cp, C3, D3 and S4 have to be
separated out to form types III~, IV™, V™ and VI~ individually, and the original eigengroups D,
Dyy, C1, Cs, Cy and Cs,, will still stay in the types III*,VI, I, II, IIT and IV. For types with several
groups, the results are: type V with Cy, and Dy, and type VIT with T and Ty are given by a
single third-order deviator while type VIIT with D4, D¢ and Do is given by a single second-order
deviator; type VII with Cy,, Cs, and Cu, is defined by two vectors and a third-order deviator,
and in type VII with Cy4, Cs and Cx, both the second- and third-order deviators exist. Therefore,
as the answer to the second key question, we have finally obtained 15 irreducible symmetry types in seven
classes for two vectors u and v, a second-order deviator D@ in the form € - D@ and a third-order
deviator D®. When the evolving routes between different symmetry types are determined, the
characteristic web tree of the linear piezoelectricity tensor can be illustrated in figure 2.

4. Symmetry identification of the linear piezoelectricity tensor

(a) Two kinds of modulus

From the Frobenius norm

P
[p®| = /Di.., Dy, = J 2o+2Y apdp,=1Al|[m @ - @0y (4.1)

k=1

for a pth-order deviator, we know that the norm is actually the product of two kinds of modulus,
namely, the scalar module A and the phase module B defined as

B=|[nm®: - ®ny|. 4.2)

While the scalar module determines the existence of the deviator, the phase module contains
certain information on its axis-direction set. For example, the phase part of a second-order
deviator with axis-direction set {n3, ny} takes the form

lns ®ng) = (N3 ® s +ng ® nz) — ysl, (4.3)

where y34 =n3 - ng. The corresponding phase module has the span

B=/1+12¢ [%,fg] ~[0.7071,0.8165], (4.4)

where the maximum corresponds to the TI symmetry, the minimum to the tetragonal symmetry
and any value in between means the orthogonal symmetry.
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Figure 2. Characteristic web tree of the linear piezoelectricity tensor, where the symmetry groups marked in bold with a large
font size are the 15 eigen or irreducible groups of the corresponding symmetry types, and the symmetry group within the circle
and route arrows in dashed lines are the modification to the result given by Geymonat & Weller [7]. (Online version in colour.)

A third-order deviator with axis-direction set {n5, ng, ny} has its phase-part expression as
lns ® ng ® n7] = § (N5 ® N ® n7) — 15[y56(1 @ 17) + ¥57(1 @ ng) + y67(1 @ ms)], (45)

where the symbol ’(-)” is again the symmetrization operator without dividing by the number of the
involved terms. The phase module of equation (4.5) depends on three cosines vij G <i#j<7)and
its generic formula is complicated. For the third-order deviators with TI or tetragonal symmetries,
their phase parts simply become

n®3 _ %(1 ®n) or %(n®m1 ® my). (4.6)

Thus, the phase module has the maximum \/g ~(0.6325 and minimum \/g ~(0.4082. It is
interesting to point out that they actually represent two kinds of the highest symmetries.

(b) Identification of the linear piezoelectric tensor using indicators

In this subsection, we will develop the identification method for the linear piezoelectric tensor as
the answer to our third and finally key question in this paper. It is based on the following facts:
(1) the anisotropy of a deviator is determined by its phase part; (2) since the symmetry type of a
deviator can be distinguished by its MP*/~s, most symmetry types of the linear piezoelectricity
tensor can then be identified by its MP*/~s; others need further investigation on the deviators
in their irreducible decomposition; (3) the e-axis is the normal of the MP*/= (MP~/*) of an
odd (even)-order deviator if and only if its components in the orthonormal bases (2.16) satisfy
the condition Ap2ks2k+1 =0, k=0,1,...,[p/2]. Therefore, one can make use of the zero points of
the sum of the component modulus normalized by the Frobenius norm to identify the MP+/~s
of a deviator, and also can extend this approach to the linear piezoelectricity tensor as a set of
deviators. This is explained in detail below.
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It is noted that the components a,,(r=—p,...,p) in equation (2.17) of a deviator D® are
functions of two Euler angles 6 and ¢ when the rotation transformation

R(0,0,9) =Q(0,e2)Q(¢, e), (4.7)
is applied on the frame {ej, >, e}; but

[p/2]

o +2 ) (lapl* + lay 00417 = DV
k=1

is invariant. Thus, the judgment on MP*+/~s of the deviator must be mutually complementary.
That is, by introducing the normalized indicators

[p/2] [p/2]
Cp(0,9)=IDP 2 a2y +2 ) layal* | or 2IDP|72 Y " jay o1l (4.8)
k=1 k=1

we conclude that if Cp(d,9)=0 for the MP*s, then Cp(f,¢)=1 for the MP~s, and vice
versa. Thus, using the components calculated from equations (2.21) to (2.24) for the linear
piezoelectricity tensor d, equation (4.8) becomes

_ 2 w2, 2 v 2 2 2 2 2
NC(9,¢)—WILI1,1I +W|al’l| +W|ﬂ2,l| +W(|ﬂ3,l| + laz 31%), (4.9)

where N is the number of the nonzero scalar modulus. In equation (4.9), the indicator C(6, ¢) will
be zero for an MP~ and maximum 1 for an MP*. If the MP*/~ is null or there is only one MP~,
two auxiliary indicators

2 2 2
NoddCodd (8, ¢) = 5 lat > + =5 1a] 1 2 + — 75— (2311 + lasal?)
ul vl DO (4.10)
2
and Ceven (0, 9) = W |”2,1

’

are needed. In equations (4.9) and (4.10), a deviator term will disappear if its scalar module is zero.
It is obvious that all the indicators in equations (4.9) and (4.10) are nonnegative and are further
independent of the four scalar modules A; to A4.

According to table 4, most symmetry types can be identified by C(9, ¢) (figure 3). If the MP*/~
of C(0,¢) is null (figure 3a,m) but Cyqq(0, ¢) has three coplanar MP*s and Ceven(6, ¢) is TI on
the same plane (figures 4a and 5a), then the symmetry type is trigonal type IV~; otherwise, it
is triclinic. If C(6, ¢) has only one MP~ (figure 34,i,0), then the symmetry type is: (i) tetragonal
type VI~ if both Co4d(0, ) and Ceven(, ¢) are tetragonal (namely have two MP* and two MP~
normals) on the plane (figures 4b and 5b); (ii) TI type VII™ if both Cyqq(8, ¢) and Ceven(6, @) are TI
on the plane (figures 4c and 5c); (iii) otherwise, it is monoclinic type III™.

It is easy to confirm that the indicators have the symmetry of centre inversion, so the entire
information on them can be shown in the upper hemisphere. Thus, through the mapping

: 0
x=e'¥ tan 5 4.11)

we can plot the indicators on a unit disk. Some typical results on the modular parameters are listed
in table 6 (the phase modules of vectors always equal to unit) and the images of the indicators
are shown in figure 3. The piezoelectricity coefficients in their natural material coordinate system
are taken from Newnham [1], Chen ef al. [14] and the IEEE Standard on Piezoelectricity (1988)
[15], listed in appendix A for easy future reference, including four fictive materials. In figure 3,
we show also the images of the four fictive materials to make up the missing symmetry types.
These are the type II by setting da1, d3p, d33, d14, d15, d24, dos and dzg to be zero in the right-hand
quartz (YXwl), type IV~ by adding d11; = 6 and da5 = 16, type V by letting d31, d33 and d5 equal
to zero (all based on material LiTaO3), and type VI~ by setting d3; =7 and dq5 = —0.8 in material
KH;POy.
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(h)

0.005 0.1 03 05 0.7 090.995 0.005 0.1 03 05 0.7 090.995 0.005 0.1 03 0.5 0.7 090995

0.005 0.1 03 05 07 090995

0.005 0.1 03 05 0.7 090995 0.005 0.1 03 05 07 090.995 0.005 0.1 03 05 0.7 090995
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0.005 0.1 03 05 0.7 090.995 0.005 0.1 03 05 0.7 0.90.995 0.005 0.1 03 05 0.7 090.995

Figure 3. ((0, @) of various piezoelectric materials, where the last four materials /—o are fictive. Ten symmetry types can be
identified directly from the number and pattern of their MP+/—s, except for the trigonal type IV, tetragonal type VI~ and T|
type VII~. For these three symmetry types, we need the auxiliary indicators Cogq(6, ¢) and Ceyen (@, ), as shown in figures 4
and 5, to distinguish them from two lower symmetry types, triclinic type | and monoclinic type Il —, respectively. (a) Right-hand
quartz (Yxw|) type |, (b) sucrose type Il ~, (c) PbNb,0s type I, (d) wood type Il (e) LiTa0; type IV, (f) c-quartz type V—,
(9) KH,PO, type VI, (h) GaAs type VI, (i) Lil0, type VI~ (j) ZnO type VI, (k) TeO; type VII™, (/) fictive type II, (m) fictive type
IV, (n) fictive type V and (o) fictive type VI~ (Online version in colour.)

Since the properties of the number and pattern of MP*/~s are invariant under transformation
of the coordinate system, we can actually use the indicators for the identification of the linear
piezoelectricity tensor measured in its natural coordinate system or in an arbitrarily oriented
coordinate system.

We point out that there is actually another approach similar to that proposed for the linear
elasticity tensor [11], which can be used to identify the piezoelectric tensor. That is, one can
construct an explicit and analytical procedure from the solved axis-direction sets of the four
deviators of the linear piezoelectricity tensor to judge MP*/s, identify the symmetry type and
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(b) (©)
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0.005 0.1 0.3 05 07 09 0995 0.005 0.1 0.3 0.5 0.7 09 0.995

Figure 4. (o44(0, ) of materials m, 0 and i in figure 3. (a) Fictive type IV—, (b) fictive type VI~ and (c) Lil0, type VII~. (Online
version in colour.)

(b) (©)

(a)
I ]

0.005 0.1 03 05 0.7 09 0995

0.005 0.1 0.3 0.5 0.7 09 0.995

0.005 0.1 0.3 05 0.7 09 0.995

Figure 5. Ceven (0, @) of materials m, o and i in figure 3. (a) Fictive type IV, (b) fictive type VI~ and (c) LilO, type VII~. (Online
version in colour.)

Table 6. Modules of linear piezoelectricity materials (unit of scalar modulus: 10~2C/N).

materials

names classes/types

right-hand quartz triclinic/I 02829 x 1073 04243 x 107> 03628 0.8161 931 05
(YXwl) G

recover the rotation transformation R(¢, 8, ¢) with three Euler angles ¢, 6 and ¢ to trace back to the
tensor’s natural coordinate system. This is simply confirmed by observing the axis-direction sets
from tables 1 and 2 to tables 3 and 4, and can be realized with a short Fortran code so the MP1/~s
are identified. Then, from the final MP+/~s, except for the trivial triclinic case, the transformation
R(¢,0, ¢) back to the original natural coordinate system can be achieved as follows:

— Selecting a direction n(f, ¢) defined by two Euler angles 6, ¢: For the types with only one
MP* or MP~, say types II, IIl” and VII~, n is simply the normal of the MP* or MP~
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plane; for the types with more than two MP*/~ normals on a plane, say types IV, V,
V, VI, VI, VII and VIIT, it is the normal to the plane to be selected (especially for type
IV—, the MP*/~ normals of the second- and third-order deviators should be considered);
for types IIT and T+ with three MP*/~ normals perpendicular to each other, any one of
them can be selected.

— Determining the third Euler angle, or equivalently the direction m; on the plane normal
to n. For types II, III, IV, VI~, VII~, VIl and VII*, the third Euler angle is arbitrary and
can be set to be zero; for types III, I, IV, V- and V, m; can be any coplanar MP+/~
normal; for types VI and VIt, my is usually chosen as one of D®’s axis-directions on the
plane.

5. Concluding remarks

In this paper, the number of irreducible symmetry types of the linear piezoelectricity tensor has
been proved to be 15. Furthermore, two methods have been proposed to identify the symmetry
type of a linear piezoelectricity tensor measured in an arbitrarily oriented coordinate system.
Through decomposing the linear piezoelectricity tensor into the irreducible parts formed by at
most two vectors, a second- and a third-order deviators, and expressing each deviator by a scalar
and an axis-direction set, the symmetry groups of a linear piezoelectric tensor can be obtained
as the intersection of the symmetry groups of its deviators. By virtue of the mirror symmetry
and antisymmetry (MP*/~), the symmetry types of all deviators can be distinguished exactly,
and the combination analyses result in 15 symmetry types of the linear piezoelectricity tensor.
By expressing the components of a deviator in terms of the orthonormal base, the MP*/~s of the
deviator can be defined as the minimal/maximal points of a normalized characteristic function
with respect to two Euler angles, and so its symmetry type can be identified. We have introduced
an indicator so that the symmetry type of a linear piezoelectricity tensor can be determined by
the indicator in the most common cases, and by two auxiliary indicators in some special cases. We
have also proposed another method for identifying the symmetry type of a linear piezoelectricity
tensor. It is based on the precise analyses of the solved axis-direction sets, and in this procedure,
the rotation transformation back to the natural coordinate system is also available.

We point out that the developed methods will be particularly useful for symmetry
identification of an unknown piezoelectric material and for possible back calculation of the
involved piezoelectric coefficients. Furthermore, the methodology developed in this article for
classifying the symmetry is universal and can be extended to any higher-order matter tensor.

Z.W.N. acknowledges the financial supports from NSFC (grants nos. 10872086, 11072105).

Appendix A. Piezoelectric material properties used in this paper

In most literature, the piezoelectric coefficients were defined as

di,i=k; 1=1,2,3
dy =" (A1)
2dijk/] ;ﬁk, I=4,5, 6.

This is convenient for matrix operation, but inconvenient for tensor operation. Thus, in this paper,
we will not follow the definition by equation (A 1). In other words, in this paper, the coefficients
di;, I=4, 5, 6 will not be doubled as in equation (A 1), but will just be their original values (i.e.
dip = dijk, j#k;1=4,5, 6). The unit of all the piezoelectricity coefficients is in 10~12C/N.

The piezoelectric material with generic anisotropy material is the right-hand quartz (YXwl)

0895 —0281 -0614 -0551 —1.186 —1.766
dn=|-1766 1217 0549 0817 -0.164 —0784], (A2)
—1.186 0818 0368 0549 —0.110 —0.527
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Table7. Linear piezoelectricity coefficients in 10~"2C/N

materials non-zero piezoelectricity coefficients

PbNb,0s (G20 a3 ) a3 ths y

which are transformed with the elasticity tensor: djy = €;yn(C it (the IEEE Standard on
Piezoelectricity, 1988). The fictive type II material with symmetry group C; is constructed from
the right-hand quartz (YXwl) with 10 independent piezoelectricity coefficients as

0895 —0.281 —0.614 0 0 —1.766
dn=|-1766 1217 0.549 0 0 —0.784 |. (A3)
0 0 0 0.549 —-0.110 0

The type III™ material under symmetry group C; is taken as sucrose from Newnham [1], which
has 6 independent piezoelectricity coefficients as

0 0 0 0.625 —-1.21 0
@dn=1| 0 0 0 —-211 021 0 . (A4)
148 074 -3.42 0 0 —0.435

In table 7 above, all the piezoelectricity coefficients are taken from Newnham [1], except for LilO»,
which is from Chen et al. [14].
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The fictive material with symmetry group Cs is constructed from LiTaOj3 so that

6 —6 0 —-16 13 -9
dnp=1-9 9 0 13 16 -6, (A5)
-3 -3 9 0 0 0

in which there are six independent coefficients.
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