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China; bDepartment of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA

(Received 15 January 2013; final version received 1 May 2013)

The coupled elastic, electric and magnetic fields produced by an arbitrarily
shaped three-dimensional dislocation loop in general anisotropic magneto-elec-
tro-elastic (MEE) bimaterials are derived. First, we develop line-integral expres-
sions for the fields induced by a general dislocation loop. Then, we obtain
analytical solutions for the fields, including the extended Peach–Koehler force,
due to some useful dislocation segments such as straight line and elliptic arc.
The present solutions contain the piezoelectric, piezomagnetic and purely elastic
solutions as special cases. As numerical examples, the fields induced by a
square and an elliptic dislocation loop in MEE bimaterials are studied. Our
numerical results show the coupling effects among different fields, along with
various interesting features associated with the dislocation and interface.

Keywords: three-dimensional dislocation loop; extended Peach–Koehler
force; bimaterials; magneto-electro-elastic materials

1. Introduction

The magneto-electro-elastic (MEE) materials are a new kind of functional materials.
MEE materials are usually composites made of multi-phases or laminae and exhibit
magneto-electric coupling effect that is not present in the single-phase piezoelectric or
piezomagnetic material [1]. It is particularly important for the energy conversion among
the mechanical, electric and magnetic ones, and thus it has potential application as a
multifunctional device [2]. In MEE composite materials, the coupling fields are trans-
ferred through interfaces; so, the interfaces should have great influence on the properties
of MEE materials/devices. At the same time, MEE materials/devices usually contain
multi-phase or laminate crystal structures in which dislocations are common defects.
Besides mechanical properties, dislocations in them should have effects on their coupled
fields and other physical properties.

In the past decade, attention has been paid to predict the effective properties of MEE
composites according to the theories of micromechanics [1]. But, for dislocation problems
in MEE, relatively little work has been done. Until now, only one-dimensional
dislocations in such coupling materials were studied [3–5]. In reality, however,
dislocations usually form three-dimensional (3D) loops, and thus it calls for the analysis
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of 3D dislocations in MEE. Recently, the authors developed a method to analyse the fields
produced by 3D dislocations in MEE materials [6], in which the MEE materials are taken
to be homogeneous in an infinite space and no interface effects were considered.

The fields of dislocations and fracture in bimaterials are fundamental to understand
the interaction between a dislocation/crack and the interface in composites or hetero-
structures [7,8]. However, analytical solution is difficult and rare for the fields of 3D
dislocations interaction with interfaces. One approach is to use a point-force Green’s
function and derive the field produced by a dislocation loop in the corresponding mate-
rials by integration over the dislocation surface [9]. This method is general, no matter if
the dislocation is in a homogeneous or inhomogeneous, elastic or general MEE med-
ium, provided the corresponding point-force Green’s function is known [6]. In an infi-
nite homogeneous medium, using the spatial symmetry property of the Green’s
function, the surface integral can be reduced to a line integral for the field induced by a
dislocation loop [6,10,11]. In an inhomogeneous medium, however, there is no such
spatial symmetry in the Green’s function, and thus no line-integral solution is available
for a dislocation loop. Since area integration is time-consuming, efforts have been taken
for treating some special cases. For examples, Gosling and Willis derived a line-integral
expression for the stress field associated with an arbitrary dislocation in an isotropic
half-space [12]. Ghoniem and Han proposed an approximate line-integral expression for
the elastic field produced by dislocations in multilayered materials of elastic anisotropy
[13]. Akarapu and Zbib constructed line-integral expressions for the displacement and
stress fields induced by an arbitrarily shaped dislocation in an isotropic bimaterial and
derived analytical expressions for the stress field due to a straight dislocation segment
in it [14]. Tan and Sun obtained line-integral solutions for the stress fields induced by
dislocation loops in an isotropic thin film-substrate system and multilayered heteroge-
neous thin-film system [15,16]. Recently, the authors derived line-integral expressions
for the displacement and stress fields due to a 3D dislocation loop in an anisotropic
elastic bimaterial [17] and in a piezoelectric bimaterials [18]. There is, however, no
solution available for 3D dislocations in MEE inhomogeneous materials.

In the present paper, we will analyse the field induced by a 3D dislocation loop in an
MEE bimaterial system. First, by utilizing the Green's functions and their derivatives in
MEE bimaterials, we derive line-integral expressions for the coupled fields induced by an
arbitrary 3D dislocation loop in a general anisotropic MEE bimaterial system. Then, we
obtain analytical solutions for the dislocation loops made of piecewise straight lines and
elliptic arcs. Finally, numerical examples are presented for the fields induced by a square
and an elliptic dislocation loop in an MEE composite made of BaTiO3–CoFe2O4/BaTiO3

bimaterial. Our results show clearly the important coupling effects along with
various interesting features on the mechanical, electric and magnetic fields and on the
dislocation–interface interaction.

2. Problem description and line-integral solutions

The problem of interest consists of a dislocation loop in two joined half-spaces with
dissimilar MEE (or piezoelectric/piezomagnetic) material properties, see Figure 1. We
will derive the fields induced by a dislocation loop in such a bimaterial system. We first
write the governing equations for a linear anisotropic MEE solid. Then, based on the
Green’s function in MEE bimaterials, we derive the dislocation-induced fields.

3292 X. Han et al.
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The linear constitutive relations for the coupled MEE media can be written as [19]

rij ¼ cijlmclm � ekijEk � qkijHk

Di ¼ eijkcjk þ eijEj þ aijHj

Bi ¼ qijkcjk þ aijEj þ lijHj

8>>>><
>>>>:

ð1aÞ

where σij, Di and Bi are the stress, electric displacement and magnetic induction,
respectively; γij, Ei and Hi are the strain, electric field and magnetic field, respectively;
cijlm, eijk, qijk and αij are the elastic, piezoelectric, piezomagnetic and magnetoelectric
coefficients, respectively; and ɛij and μij are the dielectric permittivities and magnetic
permeabilities, respectively.

Using the extended notation of Barnett and Lothe [20], Equation (1a) can be
rewritten in a compact form as [21–23]:

riJ ¼ CiJKlcKl ð1bÞ
with a repeated lowercase (uppercase) index taking the summation from 1 to 3 (5) and
σiJ, CiJKl, γKl being the extended stresses, elastic constants and strains, respectively.
Thereafter, for simplicity, the word “extended” will be omitted for all extended quanti-
ties, unless otherwise specified.

We now consider the field produced by an extended dislocation loop in an MEE
medium. The dislocation loop L is defined as the boundary of a surface S across which
the elastic displacement, electric potential and magnetic potential experience discontinu-
ities, which can be described by an extended Burgers vector b= [b1,b2,b3, Δ/, Δψ]

T.
The elastic displacement jump is the traditional dislocation; Δ/ corresponds to an elec-
tric dipole layer along the surface S [20] and is called the electric potential dislocation
[24]; and Δψ is called the magnetic potential dislocation [25]. The extended displace-
ment field produced by a dislocation loop in an MEE medium can be expressed as [6]:

uM ðyÞ ¼
Z
S

CiJKlðxÞGKM ;xlðy;xÞbJ ðxÞniðxÞdSðxÞ ð2aÞ

x1

Interface 
(x1, x2 plane)

1
3( 0)iJKlC x

n

x2

x3

Dislocation 
Loop L

2
3( 0)iJKlC x

Surface S

Figure 1. Schematic for an arbitrary dislocation loop in MEE bimaterials.
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where n is the unit normal to the surface S; GKM(y;x) are the Green’s functions in the
corresponding medium, i.e. the K-th displacement component at the field point x due to
the M-th unit “point force” component at the source point y; and a subscript comma
denotes the partial differentiation with respect to the coordinates, i.e.
GKM ;xl ¼ @GKM=@xl. The Green’s functions and their derivatives in MEE bimaterials
are given in Appendix A.

Besides the displacement field, other field, such as the strain and stress, is also
important, which requires the derivative of the displacement field. The derivatives of
the displacement field can be expressed as:

uM ;yp...ðyÞ ¼
Z
S

CiJKlðxÞGKM ;xlyp...ðy;xÞbJ ðxÞniðxÞdSðxÞ ð2bÞ

In MEE materials, due to piezoelectric and magnetoelectric effects, the strain field and
magnetic field can induce a polarization field P as:

Pi ¼ eijkcjk þ aijHj ¼ eijkuj;k þ aijHj ð3aÞ

Furthermore, the gradient of P may induce an electronic polarization charge, with the
volume charge density being

q ¼ r � P ¼ eijkuj;ki þ aijHj;i ð3bÞ

In order to obtain the strain/stress field, the polarization field P and polarization charge
field ρ, one would need the first and second derivatives of the dislocation-induced dis-
placement field. When a dislocation loop lies on a plane where the material properties
are constants or piecewise constants on the dislocation loop surface S, the displacement
field and its derivatives can be expressed in terms of the surface integrals as:

uM ;p...ðyÞ ¼ CiJKlbJni

Z
S

GKM ;xlyp...ðy;xÞdSðxÞ ð4Þ

Thus, the key issue is to convert the surface integrals into line integrals. In order to do
so, we first analyse the point-force Green’s functions involved and their derivatives in
Equation (4).

The point-force Green’s functions in MEE bimaterials can be separated into two
parts:

Gðy;xÞ ¼ G1ðy;xÞ þGImageðy;xÞ ð5Þ

where G1ðy;xÞ corresponds to the full-space part and GImageðy;xÞ is called the image
or complementary part which is associated with the bimaterial interface. Correspond-
ingly, the derivatives of the Green’s function can also be separated into a full-space and
an image part. Thus, the integral

R
S GKM ;xl ...ðy;xÞdSðxÞ can be also separated into two

parts as:

Z
S

GKM ;xl ...ðy;xÞdSðxÞ ¼
Z
S

G1
KM ;xl ...

ðy;xÞdSðxÞ þ
Z
S

GImage
KM ; xl ...

ðy;xÞdSðxÞ ð6Þ

3294 X. Han et al.
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Substituting G1
KM ;xl ...

ðy;xÞ in Appendix A, for the case of a point force at y3 > 0, we
have

Z
L

Gðy;xÞ1;xl ...dLðxÞ ¼
�1

2p2

Z p

0

A
1
Z
S

ðG1
upÞ;xl ...dLðxÞ

� �
ðA1ÞTdh; x3[y3

1

2p2

Z p

0

A1

Z
S

ðG1
ul Þ;xl ...dLðxÞ

� �
ðA1ÞTdh; x3\y3

8>><
>>: ð7Þ

with R
L
@nðG1

upÞIJ=@xl . . . dLðxÞ ¼ Hn
1

R
S

dLðxÞ
½hðh; �p1I Þ � ðx� yÞ�nþ1R

L
@nðG1

ul ÞIJ=@xl . . . dLðxÞ ¼ Hn
2

R
S

dLðxÞ
½hðh; p1I Þ � ðx� yÞ�nþ1

8>><
>>: ð8Þ

where Hn
1 and Hn

2 are independent of x and y and their expressions can be found in
Appendix A.

Using GImage
KM ;xl ...ðy ; xÞ in Appendix A, for the case of a point force at y3 > 0, we have

Z
S

Gðy;xÞImage
;xl ...

dSðxÞ ¼
1

2p2

Z p

0

A
1
Z
S

ðGupÞ;xl ...dSðxÞ
� �

ðA1ÞTdh; x3[0

1

2p2

Z p

0

A2

Z
S

ðGulÞ;xl ...dSðxÞ
� �

ðA1ÞTdh; x3\0

8>><
>>: ð9Þ

with R
L
@nðGupÞIJ=@xl . . . dLðxÞ ¼ Hn

1

R
S

dLðxÞ
½�hðh; �p1I Þ � xþ hðh; p1J Þ � y�nþ1R

L
@nðGulÞIJ=@xl . . . dLðxÞ ¼ Hn

2

R
S

dLðxÞ
½�hðh; p2I Þ � xþ hðh; p1J Þ � y�nþ1

8>><
>>: ð10Þ

where Hn
1 and Hn

2 are different to those in Equation (8) and their expressions are also
given in the Appendix A.

For the case of a point force at y3 < 0, similar results can be obtained.
From Equations (6)–(10), it can be seen that the key problem is to solve the follow-

ing kind of integration over the dislocation loop surface S:

Fnðy; h; p1; p2Þ ¼
Z
S

dSðxÞ
�hðh; p1Þ � xþ hðh; p2Þ � y½ �n n ¼ 2; 3; 4 ð11Þ

where p1 and p2 can be assigned to different eigenvalues according to the requirements
in the corresponding expressions of the Green’s functions.

In order to carry out the surface integration in Equation (11), we first transform the
global coordinate system (O:x1,x2,x3) to a local one (x0:ξ1,ξ2,ξ3) by ½x� x0� ¼ ½D�½n�.
Then, the integration in Equation (11) becomes
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Fnðy; h; pÞ ¼
Z
S

dn1dn2
f1ðy; hÞn1 þ f2ðy; hÞn2 þ f3ðy; hÞ½ �n n ¼ 2; 3; 4 ð12Þ

with faðy; hÞ ¼ �Dkahkðh; p1Þ; a ¼ 1; 2 and f3ðy; hÞ ¼ ykhkðh; p2Þ � x0khkðh; p1Þ .
By introducing

Lnðn1; n2Þ ¼
Z n2

�1

dn2
ðf1n1 þ f2n2 þ f3Þn ¼ � 1

ðn� 1Þf2
1

ðf1n1 þ f2n2 þ f3Þn�1

n ¼ 2; 3; 4

ð13Þ

we arrive at

Fn ¼
Z
S

@Lnðn1; n2Þ
@n2

dn1dn2 ¼
Z
L

Lnðn1; n2Þdn1 ¼
�1

ðn� 1Þf2

Z
L

dn1
ðf1n1 þ f2n2 þ f3Þn�1

n ¼ 2; 3; 4

ð14Þ

Thus, the surface integrals over the dislocation surface S are reduced to the line inte-
grals along the dislocation loop line L.

3. Analytical solutions for dislocation segments

In Section 2, the fields produced by an arbitrarily shaped dislocation loop in MEE
bimaterials have been expressed by line integrals along the dislocation line. They can
be evaluated directly by a numerical integration method. However, for some dislocation
lines, the line integral can be carried out analytically, and thus analytical solutions can
be obtained for these dislocation segments.

3.1. Straight line segment

For the special case of a straight line segment, in the local (ξ1, ξ2) plane, it can be
described by

nðtÞ ¼ ð1� tÞP1 þ tP2; 0 � t � 1 ð15Þ

with P1ðP11;P12Þ; P2ðP21;P22Þ being the position vectors of the start and end points
of the straight line. Substituting it into Equation (14), the integration can be obtained
as:

F2 ¼ �H0In
H2

H1
; F3 ¼ 1

2
H0

1

H2
� 1

H1

� �
; F4 ¼ 1

6
H0

1

ðH2Þ2
� 1

H1ð Þ2
" #

ð16Þ

with H0 ¼ 1

f2

P21 � P11

f1ðP21 � P11Þ þ f2ðP22 � P12Þ; H1 ¼ f1P11 þ f2P12 þ f3;H2 ¼ f1P21þ f2P22 þ f3.
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3.2. Elliptic arc segment

For a dislocation curve described by an elliptic arc segment, in the local (ξ1, ξ2) plane,
the corresponding whole ellipse can be expressed as,

nðtÞ ¼ q1 cos t þ q2 sin t þ q0; �p � t � p ð17Þ

with q1ðq11; q12Þ; q2ðq21; q22Þ; q0ðq01; q02Þ being vectors to determine the ellipse, see
Figure 2(a).

We denote

f1n1 þ f2n2 þ f3 � faq1a cos t þ faq2a sin t þ faq0a þ f3 � c1 cos t þ c2 sin t þ c3

dn1 ¼ ð�q11 sin t þ q21 cos tÞdt � ðc4 cos t þ c5 sin tÞdt
ð18Þ

Then, substituting Equation (18) into (14), the integration along an elliptic arc
t1 � t � t2 can be obtained as:

F2 ¼ �1

f2

1

c21 þ c22
d1ðt � c3I1Þ þ ðc2c4 � c1c5Þ lnðc1 cos t þ c2 sin t þ c3Þ½ �jt2t1

F3 ¼ � 1

2f2

1

d1
d1I1 þ c1c5 � c2c4 þ c3c5 cos t � c3c4 sin t

c1 cos t þ c2 sin t þ c3

� �����
t2

t1

F4 ¼ 1

6f2

1

d2

d1
d2

3c3I1 � 3c2c3 þ ð2d2 þ 3c23Þ sin t
c1ðc1 cos t þ c2 sin t þ c3Þ

� �
þ c2d1 � c5d2 þ c3d1 sin t

c1ðc1 cos t þ c2 sin t þ c3Þ2
#" �����

t2

t1

ð19Þ

q0 

q1 

q2 P2 

T2 

T1 

P1 q0 

q2 q1

(b)

(a)

1

21

2

Elliptic arcs 

Figure 2. (a) Schematic of an elliptic loop. (b) Schematic of representing a smooth dislocation
curve segment via a couple of elliptic arcs.
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with d1 ¼ c1c4 þ c2c5, d2 ¼ c21 þ c22 � c23 and I1 ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 � c21 � c22

p arctan
ðc1 � c3Þ tan t

2 � c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 � c21 � c22

p . It is

noted that when t1 ¼ 0 and t2 ¼ 2p, they are the solutions for an elliptic dislocation loop.

The elliptic arc solution can be a powerful tool in simulating a dislocation loop.
Although the elliptic arc range t can be chosen freely, for convenience, we will use
a quarter of the elliptic arc with 0 � t � p=2 to describe a curved dislocation loop.
We assume a smooth curved dislocation segment, with P1, P2 being the position
vectors of the start and end points of the curve and T1, T2 being the tangent vec-
tors at the two points, see Figure 2(b). In order to describe the curve by a quarter
of elliptic arc, first, at point P1, we draw a straight line parallel to T2 and at point
P2 we draw another line parallel to T1. Consequently, the intersection point of the
two lines is the centre q0 of the ellipse. We then set q1 ¼ P1 � q0; q2 ¼ P2 � q0
and use the quarter elliptic arc nðtÞ ¼ q1 cos t þ q2 sin t þ q0 (0 � t � p=2) to model
the dislocation curve. In this way, the elliptic arc and the dislocation curve will
have the same tangents at the start and end points. When we use this elliptic arc
piece by piece, the continuity of the tangent direction of the dislocation curve will
be kept, and thus the loop will be smooth.

We point out that a dislocation loop can be described by other kinds of parametric
dislocation segments, such as quadratic or cubic spline curves, for which analytical
solutions may also be available.

4. Dislocation interaction with interfaces in MEE materials

A dislocation loop in an MEE material will induce coupled elastic-electric-magnetic
fields and we have the formulae and methods to evaluate them now. On the other hand,
when a dislocation is located in an MEE material under an extended stress field, there
will also be a force applied on the dislocation loop and this force is known as the
Peach–Koehler force for an elastic material. Now, we extend the Peach–Koehler force
to dislocations in MEE materials.

We assume that an extended dislocation loop with b= [b1,b2,b3, Δ/, Δψ]
T is located

in an MEE material. When the dislocation loop is created, work is done by the
extended stress field:

W ¼ �
Z
S

ðbjrij þ DiDuþ BiDwÞdSi ¼ �
Z
S

bJriJdSi ð20Þ

As the dislocation expands, assuming every line element dl on the loop L has a virtual
displacement δr, the loop area S will be increased by δr� dl, and consequently the
variation of the work by σiJ is

dW ¼
Z
L

dF�dr ¼ �
Z
L

bJriJ ðdr� dlÞi ¼
Z
L

½ðbJriJ Þ � dl� � dr ð21Þ

In the last expression in Equation (21), (bJσiJ) is a vector with i (i= 1,2,3) being the free
index. Thus, the change of the extended Peach–Koehler force dF, i.e. the force acting
on a dislocation element dl in MEE medium is

3298 X. Han et al.
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dF ¼ ðbJriJ Þ � dl ð22Þ

Or writing it in the component form, we have the extended Peach–Koehler force acting
on a unit length dislocation element as

Fl ¼ eiklbJriJmk ð23Þ

where ɛikl is the permutation tensor and ν is the unit tangent vector along the loop
segment.

The stress field σiJ in materials may originate from various sources, such as applied
force, image stress (due to surfaces/interfaces), other dislocations and even the
dislocation itself (self-force). When a dislocation resides in a solid with surfaces/inter-
faces, the stress field induced by a dislocation is divided into two parts: the full-space
stress r1iJ and the complementary (or called image) stress rImage

iJ . The stress r1iJ corre-
sponds to the one induced by the dislocation in a homogeneous and infinite space and
this stress will induce a self-force on the dislocation line itself. The Peach–Koehler

force induced by the stress rImage
iJ reflects the surface/interface effect on modifying the

infinite and homogenous medium stress field of the dislocation and will be termed the
image force FImage.

5. Numerical examples and results

We have checked the present formulation for a dislocation loop in anisotropic elastic
bimaterials. The numerical results are the same as those by the surface integration
method [26]. We have also calculated the field produced by a curved dislocation loop
in MEE bimaterials using both the straight line solution in Equation (16) and the elliptic
arc solution in Equation (19) and obtained the same results. However, we notice that
the elliptic arc solution is more powerful for a curved dislocation loop, i.e. one can pro-
duce more accurate results using less dislocation segments using Equation (19) than
using Equation (16).

As numerical examples, we consider dislocation loops in BaTiO3–CoFe2O4/BaTiO3

bimaterials, with BaTiO3–CoFe2O4 having 25% BaTiO3 and 75% CoFe2O4. BaTiO3 is
a piezoelectric material, CoFe2O4 is a piezomagnetic one and BaTiO3–CoFe2O4 is
composed as the MEE material as listed in Appendix B. All materials are transversely

x3

x1

x2

BaTiO3 (x3<0) 

BaTiO3-CoFe2O4 (x3>0) 

Interface
(x1, x2 plane)

h

d

Figure 3. Schematic for a square dislocation loop in BaTiO3–CoFe2O4/BaTiO3 bimaterials.
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Figure 4. (colour online) Contours of extended stress fields (normalized by b/d) on vertical
planes y/d=�0.005 and x/d= 0 (a) Stress σ12 (in Pa), (b) |D| (in Cm�2) and (c) |B| (in Tm).
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isotropic (or hexagonal) with their poling direction along z-axis (i.e. x3-axis). The
material properties of BaTiO3 are from Han and Pan [6] and those of BaTiO3–CoFe2O4

are obtained based on the micromechanics theory [27–28].
In the numerical calculation, the character length d of the loop is used as the unit

length of the coordinates. The fields have the following dimension relations:

Uðu;u;wÞ / bðb;Du;DwÞ
Rðr;D;BÞ;Cðc;E;HÞ;P / b=dðb=d;Du=d;Dw=dÞ

q / b=d2ðb=d2;Du=d2;Dw=d2Þ
F / b2=Rðb2=R;D2u=R;D2w=RÞ

ð24Þ

For instance, U ðu;u;wÞ in Equation (24) means the extended displacement U which
includes the elastic displacement u, electric potential u and magnetic potential ψ.
These quantities are proportional to the Burgers value b for a traditional dislocation,
or proportional to Du for an electric dislocation, or proportional to Δψ for a mag-
netic dislocation. Thus, in our numerical results, these field quantities are normalized
accordingly. Similar relations can be found in Equation (24) for other important
quantities.

In the first numerical example, we assume that the dislocation loop is of a square
on the x–z plane (i.e. x1-x3 plane), with Burgers vector b= b[1,0,0,0,0]T. The side length
of the square loop is d (the character length of the square) and the distance of the loop
centre to the interface is h = 0.7d. The upper half-space is MEE BaTiO3–CoFe2O4 and
the lower half-space is piezoelectric BaTiO3 (Figure 3).

The extended stress fields on the vertical planes y/d=�0.005 (on the slip plane)
and x/d= 0 (on the plane normal to the slip plane) are shown in Figure 4(a)–(c). It is
observed in Figure 4(a) that there is a large shear stress σ12 within the dislocation loop

Figure 5. (colour online) Contours of polarization field |P| (normalized by b/d and in unit Cm�2)
on horizontal plane z/d= 0.68 and vertical plane x/d= 0.
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Figure 6. (colour online) Contours of polarization charge density ρ (normalized by b/d 2 and in
unit Cm�2) on different planes (a) on horizontal plane z/d= 0.68 and vertical plane x/d = 0, (b) on
horizontal plane z = 0+ (above interface) and (c) on horizontal plane z = 0� (below interface).

3302 X. Han et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

kr
on

],
 [

A
li 

Sa
ng

gh
al

eh
] 

at
 0

8:
36

 0
8 

O
ct

ob
er

 2
01

3 



area and that this shear stress changes its sign outside the dislocation loop on the slip
plane. The stress field decreases fast to zero outside the dislocation area. It is noted that
an elastic dislocation loop can induce an electric displacement field D around the edge
dislocation segment in the upper MEE half-space and near the interface area of the
lower piezoelectric half-space (Figure 4(b)). It also induces a magnetic induction field B
around both the edge and screw dislocation loops and near the interface area in the
MEE half-space (Figure 4(c)).

The elastic dislocation-induced polarization field on the horizontal plane z/d= 0.68
and vertical plane x/d = 0 is shown in Figure 5. It is clear that the edge dislocation will
induce a large polarization field along the two sides of the edge dislocation line in the
upper MEE half-space and also a large polarization field near the interface area in the
lower piezoelectric half-space.

The dislocation-induced polarization charge density ρ is shown in Figure 6. Its
contours on the horizontal plane z/d = 0.68 and vertical plane x/d= 0 are plotted in
Figure 6(a), on horizontal plane z= 0+ in Figure 6(b) and on horizontal plane z= 0�
in Figure 6(c). It can be clearly seen that the edge dislocation will induce a dipole-
like polarization charge along the dislocation line (see ρ on the horizontal plane z/
d= 0.68 in Figure 6(a)). While there is no evident charge in the lower piezoelectric
half-space, a large charge is observed on both sides of the interface directly below
the edge dislocation line (Figure 6(b) and (c) on z= ± 0 planes). It is further
observed that the charge density contours are different on both sides of the interface
due to the material mismatch.

The Peach–Koehler force FImage on the dislocation loop induced by the interface
image stress field is shown in Figure 7. It can be seen that along the dislocation seg-
ment close to the interface, the force is pointing to the interface, attracting the disloca-
tion to the interface (towards the softer material). Along the two vertical segments of
the dislocation, the force tends to expand the dislocation loop laterally.

Figure 7. (colour online) The Peach–Koehler force FImage (normalized by b2/d and in unit Pa) on
the dislocation loop due to the interface image stress.
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In the second numerical example, we consider that an elliptic dislocation loop lies
on the horizontal plane z/d= 0.2. Its major axis is along x2-axis with a length d (the
character length of the ellipse) and its minor axis is along x1-axis with a length 0.712d.
The extended Burgers vector is again b= b[1,0,0,0,0]T.

Shown in Figure 8(a) and (b) are the magnitude contours of the elliptic dislocation
loop-induced electric displacement D and magnetic induction B on the vertical planes
y/d= 0 and x/d= 0. It is clear that while this elliptic loop can induce large magnetic
induction around its loop, it induces no electric displacement near it. However, it can
induce a large electric displacement field in the lower electric half-space immediately
below it.

Figure 8. (colour online) Contours of extended stress fields (normalized by b/d ) on vertical planes
y/d= 0 and x/d= 0 induced by the elliptic dislocation loop. (a) |D| (in Cm�2), (b) |B| (in Tm).
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The contour of polarization field |P| is shown in Figure 9 on vertical planes y/d = 0
and x/d= 0 induced by the elliptic dislocation loop. It is observed that there are four
(nearly symmetrically distributed) contour concentrations around the edge part of the
dislocation loop and also a large concentration below the loop in the lower piezoelectric
half-space. The latter feature is consistent with the large electric displacement field
observed in the piezoelectric half-space.

Similar to the square loop case, the elliptical dislocation-induced polarization
field will in turn induce a polarization charge density in the bimaterial system. This
is presented in Figure 10 where the contours of the charge density on two vertical
planes y/d= 0 and x/d= 0 are shown in Figure 10(a), those on horizontal plane
z= 0 + in Figure 10(b) and on horizontal plane z= 0� in Figure 10(c). Figure 10(a)
indicates clearly that on the plane of y/d = 0, there are two anti-symmetric points
which is the edge part of the dislocation loop (on both sides of the plane x= 0)
where a density with octal concentration pattern is formed. A large concentration
immediately below the loop on both sides of the interface can be also observed,
although their corresponding patterns are clearly different (Figure 10(b) vs. Figure 10
(c)).

Finally, the Peach–Koehler force FImage on the loop due to the image stress is pre-
sented in Figure 11. Similar to the square loop case, this image force is pulling the
elliptical dislocation towards the interface (or towards the softer material) with its large
magnitude on the minor axis section.

6. Conclusions

In this paper, we develop the formulae and methods to analyse the coupled fields
induced by an arbitrarily shaped 3D dislocation loop in general anisotropic MEE

Figure 9. (colour online) Contours of polarization field |P| (normalized by b/d and in unit Cm�2)
on vertical planes y/d= 0 and x/d = 0 induced by the elliptic dislocation loop.
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Figure 10. (colour online) Contours of polarization charge density ρ (normalized by b/d2 and in
unit Cm�2) on different planes induced by the elliptic dislocation loop (a) on vertical planes
y/d= 0 and x/d= 0, (b) on horizontal plane z = 0+ (above interface) and (c) on horizontal plane
z = 0� (below interface).
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bimaterials. The derived solutions are also suitable for dislocations in the corresponding
piezoelectric, piezomagnetic and purely elastic solids. As numerical examples, we have
analysed the fields induced by dislocations of both straight and curved loops in MEE/
piezoelectric bimaterials and observed the following interesting features:

(1) An elastic dislocation loop can induce electric displacement field D around the
edge dislocation segment in the MEE material; through the interface influence,
such a dislocation can also induce D near the interface of the half-space material
with high piezoelectric coefficients.

(2) An elastic dislocation loop can induce magnetic induction field B around both
the edge and screw dislocation loops in the MEE material and can also induce B
near the interface area in the MEE half-space or the material with high piezo-
magnetic coefficients.

(3) An elastic dislocation in MEE material can induce polarization field. Especially,
the edge dislocation will induce large polarization field along two sides of the dis-
location line in the MEE material and will also induce large polarization field near
the interface of the other half-space material with high piezoelectric coefficients.

(4) An edge dislocation in MEE material will induce a dipole-like polarization
charge along the dislocation line and also near the interface area of the other
half-space material with high piezoelectric coefficients, while a screw dislocation
does not induce any polarization charge.

(5) When an edge dislocation is close to the interface of the MEE bimaterial, it will
induce a large polarization charge on the interface directly below the edge dislo-
cation line.

(6) The interface image stress field in MEE bimaterials will induce an extended
Peach–Koehler force FImage acting on the dislocation loop close to the interface.

Figure 11. (colour online) The Peach–Koehler force FImage (normalized by b2/d and in unit Pa)
on the elliptic dislocation loop due to the interface image stress.
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This force will attract the dislocation towards the softer material, and further-
more the image force tends to expand the dislocation loop laterally.

In the present model, we only considered one dislocation loop and assumed that the
dislocation was located entirely within one material. Other kinds of dislocations, such
as misfit dislocations, threading dislocations or dislocations piercing through interface,
need to be considered in the future.
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Appendix A: Extended Green’s functions and their derivatives

The 3D Green’s functions in anisotropic elastic bimaterials were obtained by Pan and Yuan by
virtue of the two-dimensional Fourier transform method [29]. Later on, the extended Green’s
functions in piezoelectric bimaterials and in MEE bimaterials were also obtained by Pan and Yuan
[30] and Pan [23]. We will summarize the Green’s functions in general anisotropic bimaterials in
a uniform form and will also provide the solutions of their derivatives with respect to the field
and/or source coordinates.

Using the 2D Fourier transformation

~f ðn1; n2; x3Þ ¼
Z Z

f ðx1; x2; x3Þ eiðn1x1þn2x2Þdx1dx2 ðA1Þ

to the extended equilibrium equation for the extended Green’s function problem, we have

�CaJKbnanb ~GKM � i CaJK3 þ C3JKað Þna ~GKM ;3 þ C3JK3
~GKM ;33 þ dJMe

iyana ¼ 0 ðA2Þ

where α, β= 1, 2, i ¼ ffiffiffiffiffiffiffi�1
p

. The lowercase index takes values 1�3 and uppercase index (such as
J, K, and M ) takes value 1�Nindex, with Nindex = 3 for elastic materials, Nindex = 4 for piezoelectric
materials and Nindex = 5 for MEE materials. Repeated indexes take their corresponding
summation.

The general solution of Equation (A2) satisfies the following extended Stroh eigenrelation:

Qþ pðR þ RT Þ þ p2T
� 	

a ¼ 0 ðA3Þ
with

QJK ¼ CiJKsnins; RJK ¼ CiJK3ni; TJK ¼ C3JK3; n ¼ ½cos h; sin h; 0�T ðA4Þ

and pI, �pI are the eigenvalues, aI, �aI are the associated eigenvectors, respectively. We select
Imð pI Þ[0 and put the associated eigenvectors aI into a matrix form as A � ½a1; a2; . . . ; aNindex �.

The general solution in each half-space is available. Then, using the interface continuity con-
dition, the Green’s function tensor Gðy;xÞ in general bimaterial can be obtained. In the solutions,
the eigenvalues pI and associated eigenvectors aI or matrix A in corresponding materials will be
involved. We summarize them in the following.

When the point force acts at y (called source point) of the upper half-space of a bimaterial,
i.e. y3 > 0, the general Green’s function tensor at x (called field point) is expressed as

Gðy;xÞ ¼ G1ðy;xÞ þ GImageðy;xÞ; x3 [ 0
þ GImageðy;xÞ; x3 \ 0



ðA5Þ

where G1ðy;xÞ is the full-space Green’s function tensor with material properties in the source
point (y) half space. In other words,
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G1ðy;xÞ ¼
�1

2p2

Z p

0

A
1
G1

upðA
1ÞTdh; x3 [ y3

1

2p2

Z p

0

A1G1
ul ðA1ÞTdh; x3 \ y3

8>><
>>: ðA6Þ

with superscripts 1 and 2 denoting quantities in materials 1 (upper half space) and 2 (lower half
space), respectively, and

ðG1
upÞIJ ¼

dIJ
�p1I ðx3 � y3Þ þ ðx1 � y1Þ cos hþ ðx2 � y2Þ sin h ¼ dIJ

hðh; �p1I Þ � ðx� yÞ;

ðG1
ul ÞIJ ¼

dIJ
p1I ðx3 � y3Þ þ ðx1 � y1Þ cos hþ ðx2 � y2Þ sin h ¼ dIJ

hðh; p1I Þ � ðx� yÞ

8>><
>>: ðA7Þ

For compaction in writing, the vector hðh; pÞ is introduced as

hðh; pÞ ¼ ½cos h; sin h; p�T ðA8Þ

The complementary part of Green’s function added to satisfy the interface continuity condition
is

GImageðy;xÞ ¼
1

2p2

Z p

0

A
1
GupðA1ÞTdh; x3 [ 0

1

2p2

Z p

0

A2GulðA1ÞTdh; x3 \ 0

8>><
>>: ðA9Þ

where

ðGupÞIJ ¼
ðG1ÞIJ

��p1I x3 þ p1J y3 � ½ðx1 � y1Þ cos hþ ðx2 � y2Þ sin h� ¼
ðG1ÞIJ

�hðh; �p1I Þ � xþ hðh; p1J Þ � y
;

ðGulÞIJ ¼
ðG2ÞIJ

�p2I x3 þ p1J y3 � ½ðx1 � y1Þ cos hþ ðx2 � y2Þ sin hÞ� ¼
ðG2ÞIJ

�hðh; p2I Þ � xþ hðh; p1J Þ � y

8>><
>>:

ðA10Þ

G1 ¼ �ðA1Þ�1ð �M1 þM2Þ�1ðM1 �M2ÞA1

G2 ¼ �ðA2Þ�1ð �M1 þM2Þ�1ðM1 þ �M
1ÞA1

; Ma ¼ �iBaðAaÞ�1 ða ¼ 1 ; 2Þ ðA11Þ

Similarly, when the point force y acts at the lower half-space of a bimaterial, i.e. y3 < 0, the
extended Green’s function at the field point x is

Gðy;xÞ ¼ þ GImageðy;xÞ; x3 [ 0
G1ðy;xÞ þGImageðy;xÞ; x3 \ 0



ðA12Þ

where G1ðy;xÞ is similar to that in Equation (A5), but with the correspondent quantities being
those in material 2 (lower space). In other words, we have
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G1ðy;xÞ ¼
�1

2p2

Z p

0

A
2
G1

upðA
2ÞTdh; x3 [ y3

1

2p2

Z p

0

A2G1
ul ðA2ÞTdh; x3 \ y3

8>>><
>>>:

ðA13Þ

with

ðG1
upÞIJ ¼

dIJ
hðh; �p2I Þ � ðx� yÞ

ðG1
ul ÞIJ ¼

dIJ
hðh; p2I Þ � ðx� yÞ

8>><
>>: ðA14Þ

The complimentary part is

GImageðy;xÞ ¼
1

2p2

Z p

0

A
1
GupðA2ÞTdh; x3 [ 0

1

2p2

Z p

0

A2GulðA2ÞTdh; x3 \ 0

8>>><
>>>:

ðA15Þ

where

ðGupÞIJ ¼
ðG1ÞIJ

�hðh; �p1I Þ � xþ hðh; �p2J Þ � y
;

ðGulÞIJ ¼
ðG2ÞIJ

�hðh; p2I Þ � xþ hðh; �p2J Þ � y

8>>><
>>>:

ðA16Þ

G1 ¼ ðA1Þ�1ð �M1 þM2Þ�1ð �M2 þM2ÞA2

G2 ¼ �ðA2Þ�1ð �M1 þM2Þ�1ð �M1 � �M
2ÞA2

; Ma ¼ �iBaðAaÞ�1 ða ¼ 1; 2Þ ðA17Þ

The derivatives of the extended Green’s functions can be also obtained.
For the case of a point force at y3 > 0, we have the infinite part as

Gðy;xÞ1;xl ...yp ¼
�1

2p2

Z p

0

A
1ðG1

upÞ;xl ...ypðA
1ÞTdh; x3 [ y3

1

2p2

Z p

0

A1ðG1
ul Þ;xl ...ypðA1ÞTdh; x3 \ y3

8>>><
>>>:

ðA18Þ

with

Philosophical Magazine 3311

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

kr
on

],
 [

A
li 

Sa
ng

gh
al

eh
] 

at
 0

8:
36

 0
8 

O
ct

ob
er

 2
01

3 



ðG1
upÞIJ ;xl ¼

H1
1

½hðh; �p1I Þ � ðx� yÞ�2; H1
1 ¼ �dIJ hlðh; �p1I Þ

ðG1
ul ÞIJ ;xl ¼

H1
2

½hðh; p1I Þ � ðx� yÞ�2; H1
2 � dIJ hlðh; p1I Þ

8>>><
>>>:

ðA19aÞ

ðG1
upÞIJ ;xlyp ¼

H2
1

½hðh; �p1I Þ � ðx� yÞ�3; H2
1 ¼ �2dIJ hlðh; �p1I Þhpðh; �p1I Þ

ðG1
ul ÞIJ ;xlyp ¼

H2
2

½hðh; p1I Þ � ðx� yÞ�3; H2
2 ¼ �2dIJ hlðh; p1I Þhpðh; p1I Þ

8>>><
>>>:

ðA19bÞ

ðG1
upÞIJ ;xlypyq ¼

H3
1

½hðh; �p1I Þ � ðx� yÞ�4; H3
1 ¼ �6dIJ hlðh; �p1I Þhpðh; �p1I Þhqðh; �p1I Þ

ðG1
ul ÞIJ ;xlypyq ¼

H3
2

½hðh; p1I Þ � ðx� yÞ�4; H3
2 ¼ �6dIJ hlðh; p1I Þhpðh; p1I Þhqðh; p1I Þ

8>>><
>>>:

ðA19cÞ

For the image part, we have

Gðy;xÞImage
;xl ...yp

¼
1

2p2

Z p

0

A
1ðGupÞ;xl ...ypðA1ÞTdh; x3 [ 0

1

2p2

Z p

0

A2ðGulÞ;xl ...ypðA1ÞTdh; x3 \ 0

8>>><
>>>:

ðA20Þ

with

ðGupÞIJ ;xl ¼
H1

1

½�hðh; �p1I Þ � xþ hðh; p1J Þ � y�2
; H1

1 ¼ ðG1ÞIJ hlðh; �p1I Þ

ðGulÞIJ ;xl ¼
H1

2

½�hðh; p2I Þ � xþ hðh; p1J Þ � y�2
; H1

2 ¼ ðG2ÞIJ hlðh; p2I Þ

8>>><
>>>:

ðA21aÞ

ðGupÞIJ ;xlyp ¼
H2

1

½�hðh; �p1I Þ � xþ hðh; p1J Þ � y�3
; H2

1 ¼ �2ðG1ÞIJ hlðh; �p1I Þhpðh; p1J Þ

ðGulÞIJ ;xlyp ¼
H2

2

½�hðh; p2I Þ � xþ hðh; p1J Þ � y�3
; H2

2 ¼ �2ðG2ÞIJ hlðh; p2I Þhpðh; p1J Þ

8>>><
>>>:

ðA21bÞ
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ðGupÞIJ ;xlypyq ¼
H3

1

½�hðh; �p1I Þ � xþ hðh; p1J Þ � y�4
; H3

1 ¼ 6ðG1ÞIJ hlðh; �p1I Þhpðh; p1J Þhqðh; p1J Þ

ðGulÞIJ ;xlypyq ¼
H3

2

½�hðh; p2I Þ � xþ hðh; p1J Þ � y�4
; H3

2 ¼ 6ðG2ÞIJ hlðh; p2I Þhpðh; p1J Þhqðh; p1J Þ

8>>><
>>>:

ðA21cÞ

and ðG1ÞIJ and ðG2ÞIJ can be found in Equation (A11).
For the case of a point force at y3 < 0, similar results can be obtained for the derivatives of

the Green’s functions.

Appendix B: Material properties

Material properties of BaTiO3 and MEE (with 25% BaTiO3 and 75% CoFe2O4), assuming that all
materials are transversely isotropic with poling directions along x3-axes [27–28].

C11 C12 C13 C33 C44 e31 e33 e15

BaTiO3 166 77 78 162 43 �4.4 18.6 11.6
MEE 245 139 138 235 47.6 �1.53 4.28 0.05

ɛ11 ɛ33 q31 q33 q15 μ11 μ33 α11 α33
BaTiO3 11.2 12.6 0 0 0 0.05 0.1 0 0
MEE 0.13 3.24 378 476 331.2 3.57 1.21 �3.09 2334.15

Elastic constants Cij are in GPa, piezoelectric constants eij in C/m2, dielectric constants ɛij in 10�9 F/m (or
10�9 C2/Nm2), piezomagnetic coefficients qijk in N/Am, magnetic permeabilities μij in 10�4 Ns2/C2 and magne-
toelectric coefficients αij in 10�12 Ns/VC.
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