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Three-dimensional vertical cracks
in magnetoelectroelastic media via
the extended displacement
discontinuity boundary integral
equation method
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Abstract
In this article, the extended displacement discontinuity method is extended to study the fracture problem in a three-
dimensional transversely isotropic magnetoelectroelastic medium with a planar crack vertical to the plane of isotropy.
Considering the electric and magnetic fields in the crack cavity, and using the Somigliana identity along with the displace-
ment discontinuity Green’s functions, the hyper-singular boundary integral equations for the unknown displacement dis-
continuities across the crack face are derived. The singularity features along the crack fronts are analyzed, and the
extended field intensity factors are expressed in terms of the extended displacement discontinuities on the crack face.
Numerical examples on the field intensity factors are finally calculated for a vertical square crack using the exact closed-
form Green’s functions due to constant displacement discontinuities over a rectangular crack element, and some inter-
esting features are observed, which are different from the case where the crack is located in the plane of isotropy. The
influence of the electric and magnetic boundary conditions along the crack face on the field intensity factors is further
studied.

Keywords
Magnetoelectroelastic medium, displacement discontinuity solution, boundary integral equation method, vertical crack,
field intensity factor

Introduction

Due to the multifield coupling among the mechanical,
magnetic, and electric fields, magnetoelectroelastic
(MEE) materials are being widely used as smart struc-
tures in many high-tech fields (Dinzart and Sabar,
2012; Huang et al., 2009; Lee et al., 2005; Li and Dunn,
1998). In applications, however, unavoidable defects
(e.g. cracks) in these materials exist, which requires us
to analyze the fracture behavior of cracks in MEE
media (Chen, 2009; Feng et al., 2010; Gao and Noda,
2004; Li et al., 2009; Rojas-Dı́az et al., 2010; Wang,
2012; Zhao et al., 2010; Zhong, 2009; Gao et al., 2003a,
2003b; Jiang and Pan, 2004; Liu et al., 2001).

For some MEE materials, when the applied electric/
magnetic field is removed, the electric/magnetic dipoles
remain inside the material. Thus, the electric/magnetic
polarization could play an important role in the mate-
rial properties and fracture mechanics features. The

influence of crack orientation on fractures in two-
dimensional (2D) MEE solids was analyzed by Sih and
Song (2003), Sih et al. (2003), and Spyropoulos et al.
(2003). These results showed that both the crack orien-
tation and electric/magnetic poling direction could sig-
nificantly affect the field intensity factors and then the
crack growth. As for the corresponding three-
dimensional (3D) case, most previous studies were for
the simple situation where the cracks are located in the
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plane of isotropy (Sladek et al., 2008; Zhao et al.,
2007a, 2007b). In general, however, a crack could be
oriented arbitrarily in the 3D space. Therefore, as the
first extension, we consider, in this article, the more
complicated case where the crack is located in a vertical
plane of the 3D transversely isotropic MEE media or
with its normal parallel to the plane of isotropy.

Various numerical methods can be applied to fracture
analysis, including the displacement discontinuity bound-
ary integral equation method (Crouch, 1976) proposed
for elastic solids. It can be extended to MEE media (Pan
and Yuan, 2000; Rangelov et al., 2011; Rojas-Dı́az et al.,
2012; Wünsche et al., 2012; Zhao et al., 1994, 2007a,
2007b). This method is very convenient in handling stress
concentration and singularity, although it requires the
corresponding Green’s functions due to the concentrated
extended displacement discontinuity.

Thus, in this article, using the extended displace-
ment discontinuity fundamental solution for a vertical
crack in a 3D MEE space, we establish the corre-
sponding displacement discontinuity boundary inte-
gral equations under different electric–magnetic
boundary conditions. We then apply our novel
boundary integral equations to a vertical square crack
in a 3D transversely isotropic MEE medium to calcu-
late the extended field intensity factors along the
crack fronts. This article is organized as follows. In
section ‘‘Basic equations,’’ we present the basic equa-
tions for a 3D transversely isotropic MEE medium
and also present the different boundary conditions. In
section ‘‘Boundary integral equations for vertical pla-
nar cracks in 3D MEE media,’’ we derive the extended
displacement discontinuity boundary integral equa-
tions using the point-discontinuity Green’s functions
and analyze the singularity behavior and the field
intensity factors along the crack fronts. The corre-
sponding boundary element method based on the
extended displacement discontinuity is presented in
section ‘‘Extended displacement discontinuity bound-
ary element method’’ using the exact closed-form dis-
placement discontinuity Green’s function over a
rectangular element. Numerical results for a vertical
square crack are given in section ‘‘Numerical results
and discussion,’’ and conclusions are drawn in section
‘‘Conclusion.’’

Basic equations

Constitutive equations

For a 3D transversely isotropic MEE medium in the
Cartesian coordinates (x, y, z) [ (x1, x2, x3) with its
poling direction along the z-axis, the extended equili-
brium equations in the absence of the mechanical, elec-
tric, and magnetic sources as well as the constitutive
equations can be expressed as (Soh and Liu, 2005)

sij, i = 0, Di, i = 0, Bi, i = 0 ð1aÞ

sij =Cijkl ukl + eliju, l + qlijc, l

Di = eikl ukl � eilu, l � ailc, l

Bi = qikl ukl � ailu, l � milc, l

ð1bÞ

where sij, Di, and Bi denote the stresses, electric displa-
cements, and magnetic inductions, respectively; uk, f,
and c denote the elastic displacements, electric poten-
tial, and magnetic potential, respectively; Cijkl ([ cmn),
elij ([ elm), and eil denote the elastic, piezoelectric, and
electric permittivity coefficients, respectively; qlij ([ qlm),
ail, and mil denote the piezomagnetic, magnetoelectric,
and magnetic permeability coefficients, respectively.
Furthermore, in equation (1), the subscript ‘‘,i’’ denotes
the partial derivative with respect to the coordinate vari-
able xi, and a repeated index, for example, i, implies
summation from 1 to 3.

For convenience, equation (1) can be equivalently
expressed in a compact form as

siJ , i = 0 ð2aÞ

siJ =CiJKluK, l ð2bÞ

where the capital subscripts J and K vary from 1 to 5,
and the lowercase indices i and l range from 1 to 3.
While the generalized stresses are defined as siJ|J= 1–5 =
(six, siy, siz, Di, Bi), the generalized displacements as
uK|K = 1–5 = (u1, u2, u3, u4, u5) [ (ux, uy, uz, f, c). The
extended elastic stiffness coefficients are defined as

CiJKl =

Cijkl J ,K = j, k = 1, 2, 3
elij=eikl J = j= 1, 2, 3,K = 4=J = 4,K = k = 1, 2, 3
qlij=qikl J = j= 1, 2, 3,K = 5=J = 5,K = k = 1, 2, 3
�eil J ,K = 4

�ail=� ali J = 4; K = 5=J = 5; K = 4

�mil J ,K = 5

8>>>>>><
>>>>>>:

ð3Þ

In the subscript notation, ij or kl is replaced by m or
n, where values of i, j, k, and l in equation (3) take 1, 2,
and 3 and m, n vary from 1 to 6, as shown in Table 1
(Nye, 1957; Soh and Liu, 2005).

Table 1. Correspondence between subscripts ij (1–3) and
subscript m (1–6).

ij m

11 1
22 2
33 3
23 or 32 4
13 or 31 5
12 or 21 6
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Electric and magnetic boundary conditions

Considering a crack with its normal along x-direction,
the possible electric displacement Dc

x and magnetic
induction Bc

x in the crack cavity can be expressed
as

Dx(0
þ, y, z)=Dx(0

�, y, z)=Dc
x(0, y, z)

Bx(0
þ, y, z)=Bx(0

�, y, z)=Bc
x(0, y, z)

ð4aÞ

The differences of the elastic displacement, electric
potential, and magnetic potential on the two crack
surfaces (S+ and S2), which are also called the
extended displacement discontinuities, are expressed as
follows

(Dux,Duy,Duz,Du,Dc)=DuI = uI (S
þ)� uI (S

�) ð4bÞ

Based on these quantities, five kinds of electric and
magnetic boundary conditions on the crack face can be
studied (Zhao et al., 2007b).

(1) Electrically and magnetically impermeable con-
dition

Dc
x(0, y, z)= 0, Bc

x(0, y, z)= 0 ð5Þ

(2) Electrically and magnetically permeable condi-
tion

Du(0, y, z)= 0, Dc(0, y, z)= 0 ð6Þ

(3) Electrically impermeable and magnetically
permeable condition

Dc
x(0, y, z)= 0, Dc(0, y, z)= 0 ð7Þ

(4) Electrically permeable and magnetically
impermeable condition

Du(0, y, z)= 0, Bc
x(0, y, z)= 0 ð8Þ

(5) Crack opening model (or the electrically and
magnetically semi-permeable boundary condi-
tion)

Dc
x(0, y, z)= � ec Du(0, y, z)

Dux(0, y, z)
,

Bc
x(0, y, z)= � mc Dc(0, y, z)

Dux(0, y, z)

ð9Þ

Boundary integral equations for vertical
planar cracks in 3D MEE media

Boundary integral equations

For a transversely isotropic MEE infinite medium, we
set up the Cartesian coordinate system oxyz (or x1x2x3)
with the oxy plane parallel to the plane of isotropy and
the poling direction along the z-axis. We assume that
there is an arbitrarily shaped vertical crack S located in
the oyz plane (Figure 1). The two surfaces of the crack S
are denoted by S+ and S2, respectively, with the out-
ward normal vectors of S+ and S2 being given by ni+ =
(21, 0, 0) and ni2 = (1, 0, 0), respectively (Figure 1).

The applied extended tractions on the crack faces are
assumed to satisfy

pI jSþ = � pI jS� ð10Þ

in which the extended tractions are defined as pI|I= 1–5 =
(p1, p2, p3, p4, p5) [ (px, py, pz, D, B), with px, py, and pz
being the elastic tractions on the crack face along x-, y-,
and z-directions, respectively, and D and B being, respec-
tively, the given electric and magnetic loads on the crack
face in x-direction.

Following the boundary integral equation approach
(Zhao et al., 2007b, 2012) and making use of the
Somigliana identity and the Green’s functions for the
extended point-displacement discontinuity given in
Appendix 1, we obtain the following boundary integral
equations for the extended displacement discontinuity
on a planar vertical crack of arbitrary shape under the
described crack surface conditions (5) to (10) for the
3D MEE medium
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Figure 1. A transversely isotropic magnetoelectroelastic
medium with an arbitrarily shaped crack in the oyz plane.
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The material-related coefficients Li
kl in equation (11)

are given as follows

Li
11 = T5c66c66, Li

12 = Tic66c11, Li
13 = Tic66c12

Li
14 = Tijic11, Li

15 = Tijic12, L5
6i = T5e15v5is5

Li
16 =(Aic13 � Nie31 � Ciq31)c66si

Li
17 =(Aic13 � Nie31 � Ciq31)jisi

Li
2j = Tivijc66, L5

31 = T5c66c44s5

Li
34 = c66 c44Tisi + c44Ai � e15Ni � q15Cið Þ

L5
4i = T5c44v5is5, L5

32 = T5c66e15s5

Li
5j =vij c44Tisi + c44Ai � e15Ni � q15Cið Þ

Li
35 = c66 e15Tisi + e15Ai + e11Ni +a11Cið Þ

Li
7j =vij e15Tisi + e15Ai + e11Ni +a11Cið Þ

L5
33 = T5c66q15s5, L5

8i = T5q15v5is5

Li
36 = c66 q15Tisi + q15Ai +a11Ni +m11Cið Þ

Li
9j =vij q15Tisi + q15Ai +a11Ni +m11Cið Þ

ð12aÞ

and

ri =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(h� y)2 +(§i � zi)

2

q
~ri =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(h� y)2 +(§i � zi)

2

q
+(§i � zi)

ð12bÞ

with vij, ji, Ai, Ni, Ci, and Ti being related to the extended
elastic coefficients CiJKl (Soh and Liu, 2005; Zhao et al.,
2007a, 2007b). Because Di and Bi are used to denote the
electric displacement and magnetic induction in this arti-
cle, the material constants Di and Bi in Zhao et al.
(2007a, 2007b) are replaced by Ti andNi, respectively.

Equation (11) is a set of boundary integral equations
of hyper-singularity and possesses the following impor-
tant feature. Equation (11a) contains only the elastic
displacement discontinuity Dux and the elastic traction
px, while the other four extended displacement disconti-
nuities Duy, Duz, Du, and Dc are coupled together in
equations (11b) to (11e). In other words, the loading
and displacement discontinuities in the x-direction are
purely elastic and are decoupled from other elastic and
magnetic/electric components.

This interesting feature is completely different from
the feature when a crack is located in the isotropic plane
(Zhao et al., 2007b), where the displacement discontinu-
ities Dux and Duy on the crack faces are coupled and the
displacement discontinuity Duz, electric potential dis-
continuity Du, and magnetic potential discontinuity Dc

are also coupled.

Singularity behavior at the crack front and field
intensity factors

Following the same approach as in Zhao et al. (2007b,
2012), one can easily approve that the extended displa-
cements near the crack tip have the same asymptotic
order of r21/2 as in the classical fracture mechanics of
conventional elastic materials. Therefore, we can define
the intensity factors as (e.g. for the crack tip on the z-
axis)

KI = lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr

p
sxx(0, 0, � r)

KII = lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr

p
sxz(0, 0, � r)

KIII = lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr

p
sxy(0, 0, � r)

KD = lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr

p
Dx(0, 0, � r)

KB = lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr

p
Bx(0, 0, � r)

ð13Þ

in which r denotes the distance from the crack tip.
According to equations (11) and (13), at the

crack tips (i.e. at the lowest and highest points) of the
vertical crack front, the extended field intensity factor
can be expressed in terms of the extended displace-
ment discontinuities as (with local z = 0 at the crack
tip)
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where

k11 =
X4
i= 1

1

s2
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2Li
12 � Li

14 � 2Li
16 + Li

17

� �
, k12 =

L5
11

s2
5

ð14bÞ

Similarly, the extended field intensity factors at the
crack tips (i.e. at the farthest left and farthest right of
the crack front, with local y = 0 at the crack tip) can
be expressed in terms of the extended displacement
discontinuities as

Zhao et al. 1973
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where the material-related constants are given as follows
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Equations (14) and (15) state that for the vertical
crack case, the mode I stress intensity factor KI depends
on the normal elastic displacement discontinuity Dux
only, while the mode II stress intensity factor KII, the
electric displacement intensity factor KD, and the mag-
netic displacement intensity factor KB are all coupled
together with the elastic displacement discontinuities
Duy and Duz and with the electric (Du) and magnetic
(Dc) potential discontinuities. As such, the relations
between the extended field intensity factors and the
extended displacement discontinuities for a vertical
crack are remarkably different from those when the
crack face is parallel to the isotropic plane of the MEE
media (Zhao et al., 2007b).

Extended displacement discontinuity
boundary element method

If a uniformly distributed extended displacement dis-
continuities DuI are applied on the rectangular element
Se in the oyz plane, as shown in Figure 2, the induced
extended traction field can be expressed as

pJ =
X5

I = 1

TIJ DuI , I , J = 1� 5 ð16Þ

where TIJ are the special traction Green’s functions or
the extended fundamental traction solutions induced
by the extended displacement discontinuities over a rec-
tangular element. We have derived their exact closed
expressions, and the results are given in Appendix 2.

For a given crack, we now divide its entire face into
N square elements and denote the geometric centroid of
the eth element by (ye, ze) and the qth element by (yq,
zq). Based on the extended fundamental solution and
by superposing the contributions from all elements, we
can obtain the following extended displacement discon-
tinuity boundary element equations

XN

e= 1

X5

I = 1

TIJ (xq � xe, yq � ye, zq � ze)

DuI = pJ (q), q= 1, 2, . . . ,N

ð17Þ

where pJ (q) are the given boundary values on the crack
face.

Thus, for given extended tractions on the crack face,
equation (17) can be solved for the extended displace-
ment discontinuities on the crack face. Then, the
extended field intensity factors can be calculated using
equations (14) and (15).

Figure 2. A rectangular crack element in the oyz plane with its
centroid located at the origin of the coordinate system.
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Numerical results and discussion

As a numerical example, we consider a square crack of
side length 2a located in the oyz plane of an infinite
MEE space (2b = 2a in Figure 2). The MEE space is
made of the composite BaTiO3–CoFe2O4, with
CoFe2O4 as matrix and BaTiO3 as inhomogeneity. The
volume fraction of the inhomogeneity is denoted as Vi,
and the material coefficients of the individuals are
given as follows.

BaTiO3

c11 = 166 GPa, c33 = 162 GPa, c44 = 43 GPa,

c12 = 77 GPa, c13 = 78 GPa e31 = � 4:4 C=m2,

e33 = 18:6 C=m2, e15 = 11:6 C=m2

e11 = 11:2310�9 C2=(Nm2),

e33 = 12:6310�9 C2=(Nm2)

m11 = 5:0310�6 Ns2=C2, m33 = 10:0310�6 Ns2=C2

ð18Þ

CoFe2O4

c11 = 286 GPa, c33 = 269:5 GPa, c44 = 45:3 GPa,

c12 = 173:0 GPa c13 = 170:5 GPa

f31 = 580:3 N=(Am), f33 = 699:7 N=(Am),

f15 = 550 N=(Am)

e11 = 0:08310�9 C2=(Nm2),

e33 = 0:093310�9 C2=(Nm2)

m11 = 590310�6 Ns2=C2, m33 = 157310�6 Ns2=C2

ð19Þ

In this article, we assume that Vi = 0.5, with the
composite material coefficients being determined by the
following simple relation

Lc =LiVi +Lm(1� Vi) ð20Þ

where the superscripts c, i, and m represent composite
material, inhomogeneity, and matrix, respectively.

Following our previous comparison study using the
finite element software ANSYS (Zhao et al., 2012), we
divide the square crack into 25 3 25 constant elements
to ensure that the numerical results presented in this
article have a relative error less than 6%.

A square crack under electrically and magnetically
impermeable condition

Figure 3 shows the normalized mode I stress intensity
factor FI along the crack front under the electrically
and magnetically impermeable condition (equation (5))

with an applied mechanical load px on the crack sur-
face (other loads are zero)

FI =
KI

px

ffiffiffiffiffiffi
pa
p ð21Þ

In Figure 3, the subscripts ‘‘z’’ and ‘‘y’’ denote the
crack fronts parallel to the z- and y-axes, respectively.
It is observed that a mechanical load in x-direction
induces only the mode I stress intensity factor along
the crack fronts and that this stress intensity factor is
symmetric with respect to the midpoint of the crack
front with a maximum value at the midpoint. However,
due to the fact that the poling direction is along the
z-axis, the stress intensity factor along the crack front
parallel to the z-axis (FIz) is slightly larger than that
parallel to the y-axis (FIy).

Figure 4(a) and (b) shows the normalized extended
field intensity factors FII, FIII, FD, and FB along the
crack fronts parallel to the y- and z-axes, respectively.
The mechanical shear load on the crack surface is pz =
10 MPa while other loads are assumed to be zero.
Figure 5(a) and (b) shows the plots of the correspond-
ing results when a uniform shear load py = 10 MPa is
applied on the crack face. The normalized field inten-
sity factors are defined as follows

FII =
KII

p
ffiffiffiffiffiffi
pa
p , FIII =

KIII

p
ffiffiffiffiffiffi
pa
p ,

FD =
KD

x1p
ffiffiffiffiffiffi
pa
p , FB =

KB

x2p
ffiffiffiffiffiffi
pa
p

ð22Þ

with p equal to pz in Figure 4 and py in Figure 5. Also,
in equation (22), x1 = e33/e33 and x2 = m33/q33.

It is pointed out that due to the special orientation
of the crack and the mechanical load applied, there is
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Figure 3. Variation of the normalized mode I stress intensity
factors along the crack front parallel to y-axis (FIy) and z-axis
(FIz) under mechanical load px = 10 MPa on the crack surface
(other loads on the crack surface are zero).
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no induced mode I stress intensity factor. It is observed
from Figures 4 and 5 that when the crack front is paral-
lel to the y-axis, the extended normalized field intensity
factors FII, FIII, FD, and FB are either symmetric or
antisymmetric with respect to the midpoint of the crack
front. Furthermore, for a fixed field intensity factor,
the symmetric property changes between Figures 4(a)
and 5(a). For instance, the symmetric FII in Figure 4(a)
becomes antisymmetric in Figure 5(a). However, along
the crack front parallel to the z-axis (which is along the
poling direction), no symmetric feature exists (Figures
4(b) and 5(b)). It is also noted that under the mechani-
cal loading, the magnitudes of the normalized electric
displacement intensity factor FD and magnetic induc-
tion intensity factor FB are much smaller than the

mechanical factors FII and FIII, due to the weakly cou-
pling coefficients in the material. Moreover, under the
mechanical shear load pz, the largest intensity factor is
FII along the y-axis (Figure 4(a)) and FIII along the
z-axis (Figure 4(b)), with FII (Figure 4(a)) being larger
than FIII (Figure 4(b)); however, under the shear load
py, the largest intensity factor is FIII along the y-axis
(Figure 5(a)) and FII along the z-axis (Figure 5(b)),
with also FII (Figure 5(b)) being larger than FIII

(Figure 5(a)).
Figure 6(a) and (b) shows the normalized extended

field intensity factors FII, FIII, FD, and FB along the
crack fronts under the electric loading D=0:1C=m2,
while the other loads are zero. These normalized inten-
sity factors are defined as follows
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Figure 5. Variation of the normalized extended field intensity factors along the crack front parallel to (a) y-axis and (b) z-axis under
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FII =
x1KII

D
ffiffiffiffiffiffi
pa
p , FIII =

x1KIII

D
ffiffiffiffiffiffi
pa
p ,

FD =
KD

D
ffiffiffiffiffiffi
pa
p , FB =

KB

x3D
ffiffiffiffiffiffi
pa
p

ð23Þ

where x3 = x2/x1. Figure 7(a) and (b) shows the corre-
sponding factors under the magnetic loading
B=10N=Am, which are normalized as follows

FII =
x2KII

B
ffiffiffiffiffiffi
pa
p , FIII =

x2KIII

B
ffiffiffiffiffiffi
pa
p ,

FD =
x3KD

B
ffiffiffiffiffiffi
pa
p , FB =

KB

B
ffiffiffiffiffiffi
pa
p

ð24Þ

First, we also observed that these intensity factors
are either symmetric or antisymmetric along the crack
front parallel to the y-axis (Figures 6(a) and 7(a)) and
that this symmetry feature disappears along the crack
front parallel to the z-axis due to the poling direction
selected (Figures 6(b) and 7(b)). Figure 6 also demon-
strates that the electric displacement intensity factor FD

is relatively larger than factors FII, FIII, and FB under
the electric load D. Under the magnetic load B and
along the crack front parallel to the y-axis, the intensity
factors FII, FIII, and FD are all very small, as compared
to FB (Figure 7(a)). However, under magnetic load B

and along the z-axis, the intensity factors FIII and FD

y/2a
0.0 .2 .4 .6 .8 1.0

-.2

.1

.4

.7

1.0

FD

FB/10-2

=0.1C/m2D

O

y

z

2a

2a

z/2a
0.0 .2 .4 .6 .8 1.0

-.2

0.0

.2

.4

.6

.8

FD

FB/10-2

=0.1C/m2D

O

y

z

2a

2a

(a) (b)

N
or

m
al

iz
ed

 in
te

ns
ity

 fa
ct

or
 F

ΙΙ
,F

ΙΙ
Ι,F

D
,F

B

N
or

m
al

iz
ed

 in
te

ns
ity

 fa
ct

or
 F

ΙΙ
,F

ΙΙ
Ι,F

D
,F

B

FΙΙ
FΙΙΙ

FΙΙ
FΙΙΙ

Figure 6. Variation of the normalized extended field intensity factors along the crack front parallel to (a) y-axis and (b) z-axis under
electric load D= 0:1 C=m2 on the crack surface (other loads on the crack surface are zero).
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are larger than the magnetic induction intensity factor
FB, an interesting feature possibly caused by the piezo-
magnetic and electromagnetic coupling effects.

A square crack under other electrical and magnetic
conditions

We now study the effect of other electrical and mag-
netic boundary conditions on the field intensity factor.
Besides the electrically and magnetically impermeable
case (equation (5)), the electrically and magnetically
permeable case (equation (6)) and the opening crack
case (equation (9)) are also considered for comparison.
Furthermore, on the crack face, the combined loadings
px = 10 MPa, pz = 10 MPa, py = 10 MPa,
D= 0:1C=m2, and B= 10N=A are applied. Under
these conditions, the normalized extended field inten-
sity factors are calculated and presented in Figures 8 to
11 where the normalization is defined as

FII =
KII

py

ffiffiffiffiffiffi
pa
p , FIII =

KIII

pz

ffiffiffiffiffiffi
pa
p ,

FD =
KD

D
ffiffiffiffiffiffi
pa
p , FB =

KB

B
ffiffiffiffiffiffi
pa
p

ð25Þ

Figure 8(a) and (b) shows the normalized field inten-
sity factor FII along the crack fronts that are parallel to
the y- and z-axes, respectively, under different crack face
conditions. It is obvious that the intensity factor under
the electrically and magnetically impermeable crack face
condition is much larger than the ones under the perme-
able or opening crack face conditions. This feature does
not exist in the corresponding intensity factor FIII shown
in Figure 9(a) and (b), where this intensity factor showed
an approximate antisymmetric variation along the y-axis
and a much large magnitude (negative) along the z-axis.

It is interesting to observe from Figures 10(a), 10(b),
11(a), and 11(b) that both the field intensity factors FD
and FB show similar behavior along both the y-axis and
z-axis even though the z-axis is the poling axis of the
material. We also note that in Figures 8 to 11, the inten-
sity factors associated with an impermeable crack have a
much larger magnitude than those with either an perme-
able or opening crack, a feature could be useful in con-
trolling fracture behaviors in MEE solids.

Conclusion

The extended displacement discontinuity method is
proposed to study the fracture problem in a 3D trans-
versely isotropic MEE medium weakened by vertical
planar cracks. By using the Somigliana identity along
with the point-displacement discontinuity Green’s func-
tions, the hyper-singular boundary integral equations
for the unknown displacement discontinuities along the
crack face has been derived, in which the effect of dif-
ferent electric and magnetic boundary conditions can
be considered. The singularity features along the crack
fronts are analyzed, and the extended field intensity
factors are expressed in terms of the extended displace-
ment discontinuities on the crack face. Based on the
point-displacement discontinuity Green’s functions, we
then derive the exact closed-form fundamental solu-
tions due to a constant displacement discontinuity over
a rectangle and form the boundary element formula-
tion. Numerical examples are finally carried out for a
vertical square crack. From the solutions we derived
and the numerical examples presented, we find the fol-
lowing interesting features.

The coupling behavior for the vertical crack case is
different from most previous studies where the crack
was assumed to be parallel to the isotropic plane. For
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the vertical crack case, the displacement discontinuity
Dux is decoupled from the other displacement disconti-
nuities and depends only on the normal traction px on
the crack face, while the extended displacement discon-
tinuities Duy, Duz, Du, and Dc are all coupled together.
As such, the mode I stress intensity factor depends only
on the normal displacement discontinuity Dux, while
the other field intensity factors are related to the displa-
cement discontinuities Duy, Duz, Du, and Dc due to the
poling direction and crack orientation selected.

For the extended field intensity factors along the
crack fronts of a vertical square crack in 3D transver-
sely isotropic MEE space, our numerical examples
showed the typical features on the variation in the
intensity factors along the crack fronts (symmetric or
antisymmetric along the crack front parallel to the
y-axis and no symmetry variation along the crack front
parallel to the z-axis). It is interesting that under a
given load on the crack surface, the normalized field
intensity factors along the crack front can have differ-
ent magnitudes and that the maximum factor may not
always be the one associated with the loading type. In
particular, a magnetic load applied to the crack face
could induce the mechanical and electric field intensity
factors, which are larger than the induced magnetic
field intensity factor. Our numerical results further
demonstrate that the boundary conditions could
greatly influence the extended intensity factors.
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Appendix 1

Unit point-displacement discontinuity
Green’s functions

Using the versatile method for extended displacement
discontinuity Green’s functions (Zhao et al., 2007a),
based on the Somigliana identity and the point-force
Green’s functions, we derive the point-displacement
discontinuity Green’s functions for a discontinuity sur-
face element vertical to the plane of isotropy in a three-
dimensional (3D) transversely isotropic MEE medium.

(1) Green’s functions due to a unit point-
displacement discontinuity Dux

ux = � 2c66T5x
1

R5
~R2

5

� 2y2

R2
5
~R3

5

� y2

R3
5
~R2

5

 !
� x

X4

i= 1

Ti

ji

R3
i

� 2c66

3

Ri
~R2

i

� 2x2

R2
i
~R3

i

� x2

R3
i
~R2

i

 ! !
ð26Þ

uy = � 2c66T5y
2x2

R2
5
~R3

5

+
x2

R3
5
~R2

5

� 1

R5
~R2

5

 !
� y

X4

i= 1

Ti

ji

R3
i

+ 2c66

2x2

R2
i
~R3

i

+
x2

R3
i
~R2

i

� 1

Ri
~R2

i

 ! !
ð27Þ

uz = 2c66

X4

i= 1

Ai

1

Ri
~Ri

� x2

R3
i
~Ri

� x2

R2
i
~R2

i

 !
�
X4

i= 1

jiAi

zi

R3
i

ð28Þ

u= � 2c66

X4

i= 1

Ni

1

Ri
~Ri

� x2

R3
i
~Ri

� x2

R2
i
~R2

i

 !
+
X4

i= 1

jiNi

zi

R3
i

ð29Þ

c= � 2c66

X4

i= 1

Ci

1

Ri
~Ri

� x2

R3
i
~Ri

� x2

R2
i
~R2

i

 !
+
X4

i= 1

jiCi

zi

R3
i

ð30Þ

where

Ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + zi

2
p

~Ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + zi

2
p

+ zi, (i= 1, 2, 3, 4, 5)
ð31Þ

Zhao et al. 1981



(2) Green’s functions due to a unit point-
displacement discontinuity Duy
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(3) Green’s functions due to a unit point-
displacement discontinuity Duz
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The Green’s functions due to a unit electric potential
discontinuity Du and a unit magnetic potential discon-
tinuity Dc can be obtained simply by replacing vi1 with
vi2 and vi3, respectively.

Making use of the constitutive equations (1), the
stress, electric displacement, and magnetic induction
can be calculated.

Appendix 2

Extended fundamental solutions over a rectangle

When the uniformly distributed extended displacement
discontinuities DuI are applied to a rectangular element
Se of length 2a3 2b in the oyz plane as shown in
Figure 2, the extended fundamental solution (of the
extended stresses) over the rectangle can be expressed
as (only the nonzero components are listed)
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where the functions are given as follows
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kl being the fundamental functions, given as
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