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The meshless Petrov–Galerkin method (MLPG) is applied to plate bending analysis in 1D orthorhombic
quasicrystals (QCs) under static and transient dynamic loads. The Bak and elasto-hydrodynamic models
are applied for phason governing equation in the elastodynamic case. The phason displacement for the
orthorhombic QC in the first-order shear deformation plate theory depends only on the in-plane coordi-
nates on the mean plate surface. Nodal points are randomly distributed over the mean surface of the con-
sidered plate. Each node is the center of a circle surrounding this node. The coupled governing partial
differential equations are satisfied in a weak-form on small fictitious subdomains. The spatial variations
of the phonon and phason displacements are approximated by the moving least-squares (MLS) scheme.
After performing the spatial MLS approximation, a system of ordinary differential equations (ODEs) for
nodal unknowns is obtained. The system of the ODEs of the second order is solved by the Houbolt
finite-difference scheme. Our numerical examples demonstrate clearly the effect of the coupling param-
eter on both static and dynamic phonon/phason deflections.
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1. Introduction

Quasicrystals (QCs) have a solid structure with a long-range
quasiperiodic translational order and a long-range orientational or-
der. The icosahedral QC was first discovered in 1984 by Shechtman
et al. (1984). Depending upon their crystallography, the ortho-
rhombic QCs may belong to the class of one-dimensional (1D)
QCs (Fan, 2011). A 1D QC is defined as a three-dimensional (3D)
body which is periodic, for example, in the x–y plane and quasipe-
riodic in the third direction. These materials have potential engi-
neering applications. The electronic structure and the optic,
magnetic, thermal and mechanical properties of QCs were inten-
sively investigated both experimentally and theoretically (Woll-
garten et al., 1993; Park et al., 2005; Wang and Pan, 2008; Altay
and Dokmeci, 2012). Elasticity is one of the important properties
of QCs. The elastic behavior of QCs is different from that of usual
crystals. The Landau density wave theory (Bak, 1985; Levine
et al., 1985; Lubensky, 1988) can be considered as a base of the
elastic theory of QCs. In terms of the elastic theory of crystals
the displacement field (phonon displacement field) represents
the phenomenological field corresponding to the translational
motion of atoms in crystals. Due to quasi-periodic lattice structure
in QCs, additional degrees of freedom corresponding to atomic
rearrangements are introduced in the phenomenological theory
via phason displacements. The generalized theory of elasticity of
QCs was developed by Ding et al. (1993, 1994). Chen et al. (2004)
developed a general theory of 3D elastic problems of 1D hexagonal
QCs. Some solutions for qusicrystal problems with possible practi-
cal applications can be found in the book by Fan (2011). Fan (2013)
reviewed the most recent progress on the mathematical theory and
methods of mechanics of quasicrystals, including elasticity, plastic-
ity, defects, dynamics, and fracture among many other topics.

Elastodynamics of QCs brings some additional challenges. A
consistent opinion on governing equations for phason fields is
missing. According to Bak (1985) the phason describes particular
structure disorders in QCs, and it can be formulated in a six-
dimensional space. Since there are six continuous symmetries,
there exit six hydrodynamic vibration modes. Then, phonons and
phasons play similar roles in the dynamics and both fields should
be described by similar governing equations, namely the balance
of momentum. Lubensky et al. (1985) thought that the phason field
should be described by a diffusion equation with a very large
diffusion time. According to them, phasons are insensitive to
spatial translations and phason modes represent the relative
motion of the constituent density waves.

Incorporating QC materials into plate or beam structures seems
to be very interesting. Recently, Gao (2010) has developed an exact
theory for 1D QC beams. The reciprocal theorem is applied for plate
bending of 1D hexagonal QCs to obtain the appropriate stress and
mixed boundary conditions for plates of general edge geometry
and loading (Gao et al., 2007). Furthermore, for 1D QC a refined
theory of thick plates was established by Gao and Ricoeur (2011)
from the general solution of QCs and the Lure method without
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Fig. 1. Sign convention of bending moments and forces for a plate.

3976 J. Sladek et al. / International Journal of Solids and Structures 50 (2013) 3975–3983
employing ad hoc stress or deformation assumptions. The purpose
of this paper is to develop a reliable computational method for
general bending problems of QC plates. In recent years, meshless
formulations are becoming popular due to their high adaptability
and low costs in preparing input and output data in numerical
analysis. The term ‘‘meshless’’ or ‘‘meshfree’’ stems from the ability
of an approximation or interpolation scheme to be constructed en-
tirely from a set of nodes without connecting them to elements.
Meshless methods for solving partial differential equations (PDEs)
in physics and engineering sciences are a powerful new alternative
to the traditional mesh-based techniques. The elimination of shear
locking in thin walled structures by FEM is difficult and the associ-
ated techniques are less accurate. However, the moving least-
square (MLS) approximation ensures C1 continuity which satisfies
the Kirchhoff hypotheses. The continuity of the MLS approximation
is given by the minimum between the continuity of the basis func-
tions and that of the weight function. As such, continuity can be
tuned to a desired degree. Previous results showed excellent con-
vergence for linear problems (Krysl and Belytschko 1996; Liew
et al., 2004; Atluri et al. 2000); however, up to now the formulation
has not been applied to the deflection analysis of QC plates. One of
the most rapidly developed meshfree methods is the meshless lo-
cal Petrov–Galerkin (MLPG) method (Atluri, 2004). The MLPG
method has attracted much attention in the past decade and it
has been successfully applied also to plate problems (Long and
Atluri, 2002; Sladek et al., 2006, 2007; Soric et al., 2004).

In the present paper, the MLPG is applied to plate bending anal-
ysis in orthorhombic QCs under both static and transient dynamic
loads. The quasiperiodicity of 1D QCs is considered along the plate
thickness. The MLPG formulation is developed based on the Bak
model (1985). The Reissner–Mindlin theory reduces the original
3D thick plate problem to a 2D problem. It is shown that the pha-
son displacement for the orthorhombic QC in the first-order shear
deformation plate theory depends only on the in-plane coordinates
over the mean plate surface. Then, nodal points are randomly dis-
tributed over the mean surface of the considered plate. Each node
is the center of a circle surrounding this node. The coupled govern-
ing PDEs are satisfied in a weak-form on the small fictitious subdo-
mains. The spatial variations of the phonon and phason
displacements are approximated by the MLS scheme (Zhu et al.,
1998). After performing the spatial MLS approximation, a system
of ODEs for the unknowns at nodes is obtained. Then, the system
of the second-order ODEs resulting from the equations of motion
is solved by the Houbolt finite-difference scheme (Houbolt, 1950)
as a time-stepping method.

Numerical results for simply-supported and clamped square
plates under a static and impact loads on the top surface of the
plate are presented to illustrate the efficiency of the proposed
method and to demonstrate the possible effect of the coupling
parameters on the induced phason/phonon deflections.

2. Local integral equations for orthorhombic QC plates

We consider a plate of total thickness h made of homogeneous
orthorhombic QC material properties with its mean surface occu-
pying the domain X in the plane x � ðx1; x2Þ. The axis x3 � z is per-
pendicular to the mid-plane (Fig. 1).

The rectangular Cartesian coordinate system is introduced such
that the bottom and top surfaces of plate is placed in the planes
x3 = h/2 and x3 = �h/2, respectively. In the Reissner–Mindlin theory
the transverse shear strains are assumed as constant throughout
the plate thickness and thus some correction coefficients are re-
quired for computation of transverse shear forces in that theory.
Then, the spatial phonon displacement field, due to transverse
loading and expressed in terms of displacement components u1,
u2, and u3, has the following form (Mindlin, 1951; Reddy, 1997)
u1ðx; x3; sÞ ¼ u10ðx; sÞ þ x3w1ðx; sÞ;
u2ðx; x3; sÞ ¼ u20ðx; sÞ þ x3w2ðx; sÞ;
u3ðx; sÞ ¼ u30ðx; sÞ

ð1Þ

where s is the time variable, and waðx1; x2; sÞ and u30ðx1; x2; sÞ repre-
sent the rotations around the in-plane axes and the out-of-plane
deflection, respectively (Fig. 1). It is assumed that u3 is independent
on x3. The in-plane displacements in x1- and x2-directions are de-
noted by u10 and u20.

The linear phonon strains are given by

e11ðx; x3; sÞ ¼ u10;1ðx; sÞ þ x3w1;1ðx; sÞ;
e22ðx; x3; sÞ ¼ u20;2ðx; sÞ þ x3w2;2ðx; sÞ;

e12ðx; x3; sÞ ¼
1
2
ðu10;2 þ u20;1Þ þ

1
2

x3½w1;2ðx; sÞ þ w2;1ðx; sÞ�;

e13ðx; sÞ ¼ ½w1ðx; sÞ þ u30;1ðx; sÞ�=2;
e23ðx; sÞ ¼ ½w2ðx; sÞ þ u30;2ðx; sÞ�=2
e33ðx; sÞ ¼ u30;3ðx; sÞ ¼ 0:

ð2Þ

The generalized Hooke’s law for plane elasticity of orthorhom-
bic QC is given as (Fan, 2011)

r11 ¼ c11e11 þ c12e22 þ c13e33 þ R1w33;

r22 ¼ c12e11 þ c22e22 þ c23e33 þ R2w33;

r31 ¼ 2c55e31 þ R6w31;

r32 ¼ 2c44e32 þ R5w32;

r12 ¼ r21 ¼ 2c66e12;

H31 ¼ 2R6e31 þ K1w31;

H32 ¼ 2R5e32 þ K2w32;

H33 ¼ R1e11 þ R2e22 þ R3e33 þ K3w33;

ð3Þ

where eijðx; x3; sÞ are the phonon strains, and the phason strains
wijðx; x3; sÞ are defined as

wijðx; x3; sÞ ¼ wi;jðx; x3; sÞ ð4Þ

It is noted that the phason strains wijðxÞ are not symmetric in con-
trast to the phonon strains eijðxÞ. The material coefficients cij, Ri and
Ki in Eq. (3) denote the classical phonon elastic coefficients, the
phonon-phason coupling parameters and the phason elastic coeffi-
cients, respectively.

It is well-known that the quasi-periodicity leads to two differ-
ent elementary excitations in the material: phonons ui and pha-
sons wi. The phonon modes may be understood as vibrations of
the QC lattice which lead to elastic wave propagation. A phason
field can be described by either wave propagation or diffusion.
Both models are equivalent in static case. According to Bak
(1985) the phason structure disorders are realized by fluctuations
in QCs. The balance of momentum is valid for phonon deformation
and similarly for phason oscillations with the same mass of density



J. Sladek et al. / International Journal of Solids and Structures 50 (2013) 3975–3983 3977
in relaxation processes. Then, the model is described by the follow-
ing governing equations:

rij;jðx; x3; sÞ þ Xiðx; x3; sÞ ¼ q€uiðx; x3; sÞ; ð6Þ

Hij;jðx; x3; sÞ þ Giðx; x3; sÞ ¼ q €wiðx; x3; sÞ; ð7Þ

where €ui, €wi, q, Xi and Gi denote the acceleration of the phonon and
phason displacements, the mass density, and the body force vectors,
respectively. Both governing equations have mathematically similar
structures. The dots over a quantity indicate differentiations with
respect to time s.

Lubensky et al. (1985) pointed out that the phonon and phason
fields play different roles in the hydrodynamics of quasicrystals,
because phason displacements are insensitive to spatial transla-
tions. Furthermore, the relaxation of the phason strain is diffusive
and is much slower than rapid relaxation of conventional phonon
strains. The elasto-hydrodynamic model was introduced by Fan
et al. (2009). It is a combination of elastodynamics originating from
Bak’s arguments and the hydrodynamics of Lubensky et al. (1985).
The corresponding governing equations in this case have the fol-
lowing forms

rij;jðx; x3; sÞ þ Xiðx; x3; sÞ ¼ q€uiðx; x3; sÞ; ð8Þ

Hij;jðx; x3; sÞ þ Giðx; x3; sÞ ¼ D _wiðx; x3; sÞ; ð9Þ

where D ¼ 1=Cw with Cw being the kinematic coefficient of phason
field of the material defined by Lubensky et al. (1985).From the
kinematical equation (1) it follows directly that u3;3 � 0. Similarly,
one can assume w3;3 � 0. Then, the last constitutive relationship
in Eq. (3) becomes

H33 ¼ R1e11 þ R2e22 ð10Þ

One can define the integral quantities such as the bending moments
Mab, normal forces Tab and the shear forces Qa (Sladek et al., 2007) as

Mab ¼
Z h=2

�h=2
rabx3 dx3;

Tab ¼
Z h=2

�h=2
rab dx3;

Qa ¼ j
Z h=2

�h=2
ra3 dx3;

Pa ¼
Z h=2

�h=2
H3a dx3;

ð11Þ

where the Greek indices take values 1, 2 and j ¼ 5=6 according to
the Reissner plate theory. It should be noted that the phason forces
Pa are generalized forces induced by generalized stresses, which
have finite values due to coupling parameters at a pure phonon
load. However, since a physical interpretation on these phason
forces is still missing, we are unable, in this paper, to prescribe finite
values of them as boundary conditions.

Substituting constitutive equations (3) and kinematic equations
(2) and (4) into the moment and force resultants (11) allows the
expression of the bending moments Mab and shear forces Qa in
terms of the rotations, deflection and phason displacements as

M11ðx; sÞ ¼
Z h=2

�h=2
fc11½u10;1 þ x3w1;1� þ c12½u20;2 þ x3w2;2�gx3

dx3 ¼ c11
h3

12
w1;1 þ c12

h3

12
w2;2;

M22ðx; sÞ ¼
Z h=2

�h=2
fc12½u10;1 þ x3w1;1� þ c22½u20;2 þ x3w2;2�gx3

dx3 ¼ c12
h3

12
w1;1 þ c22

h3

12
w2;2;
M12ðx; sÞ ¼
Z h=2

�h=2
c66½u10;2 þ x3w1;2 þ u20;1 þ x3w2;1�x3

dx3 ¼ c66
h3

12
ðw1;2 þ w2;1Þ;

ð12Þ

T11ðx; sÞ ¼
Z h=2

�h=2
fc11½u10;1 þ x3w1;1� þ c12½u20;2 þ x3w2;2�g

dx3 ¼ c11hu10;1 þ c12hu20;2;

T22ðx; sÞ ¼
Z h=2

�h=2
fc12½u10;1 þ x3w1;1� þ c22½u20;2 þ x3w2;2�g

dx3 ¼ c12hu10;1 þ c22hu20;2;

T12ðx; sÞ ¼
Z h=2

�h=2
fc66½u10;2 þ u20;1 þ x3ðw1;2 þ w2;1Þ�g

dx3 ¼ c66hðu10;2 þ u20;1Þ;

ð13Þ

Q 1ðx; sÞ ¼ j
Z h=2

�h=2
½c55ðw1 þ u30;1Þ þ R6w3;1�

dx3 ¼ jh½c55ðw1 þ u30;1Þ þ R6w3;1�;

Q 2ðx; sÞ ¼ j
Z h=2

�h=2
½c44ðw2 þ u30;2Þ þ R5w3;2�

dx3 ¼ jh½c44ðw2 þ u30;2Þ þ R5w3;2�;

ð14Þ

P1ðx; sÞ ¼
Z h=2

�h=2
½R6ðw1 þ u30;1Þ þ K1w3;1�

dx3 ¼ hfR6½w1ðx; sÞ þ u30;1ðx; sÞ� þ K1w3;1ðx; sÞg;

P2ðx; sÞ ¼
Z h=2

�h=2
½R5ðw2 þ u30;2Þ þ K2w3;2�

dx3 ¼ hfR5½w2ðx; sÞ þ u30;2ðx; sÞ� þ K2w3;2ðx; sÞg:

ð15Þ

If the Mindlin plate bending theory is considered to describe the
quasicrystal plates, the following governing equations have to be
satisfied for both Bak‘s and elasto-hydrodynamic models (Reddy,
1997):

Mab;bðx; sÞ � Qaðx; sÞ ¼ IM
€waðx; sÞ; ð16Þ

Qa;aðx; sÞ þ qðx; sÞ ¼ IQ €u30ðx; sÞ; ð17Þ

Tab;bðx; sÞ þ qaðx; sÞ ¼ IQ €ua0ðx; sÞ; ð18Þ

and the integral form of Eq. (7) in terms of the Bak model is given as

Pa;aðx; sÞ þ gðx; sÞ ¼ IQ €w3ðx; sÞ; ð19Þ

Or in the elasto-hydrodynamic model (9) the last governing equa-
tion has the following form

Pa;aðx; sÞ þ gðx; sÞ ¼ ID _w3ðx; sÞ; x 2 X: ð20Þ

In Eqs. (16)–(20),

IM ¼
qh3

12
; IQ ¼ qh; gðx; sÞ

¼ h½R1w1;1ðx; sÞ þ R2w2;2ðx; sÞ� þ
Z h=2

�h=2
G3ðx; x3; sÞdx3;

ID ¼ Dh:

A transversal load is denoted by qðx; sÞ, and qaðx; sÞ represents the
in-plane loads.

Time-harmonic load is a special case of the general dynamic
analysis. Time variation of physical fields is given by the frequency
of excitation x. Then the governing equations for the amplitudes
are given by, in terms of the Bak model,
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Mab;bðx;xÞ � Qaðx;xÞ ¼ �IMx2waðx;xÞ; ð21Þ

Qa;aðx;xÞ þ qðx;xÞ ¼ �IQx2u30ðx;xÞ; ð22Þ

Tab;bðx;xÞ þ qaðx;xÞ ¼ �IQx2ua0ðx;xÞ; ð23Þ

Pa;aðx;xÞ þ gðx;xÞ ¼ �IQx2w3ðx;xÞ; x 2 X; ð24Þ

To solve the corresponding initial-boundary value problem, we ap-
ply the local boundary-domain integral equation method with
meshless approximations. The MLPG method constructs the weak-
form over local subdomains such as Xs, which is a small region ta-
ken for each node inside the global domain (Atluri, 2004). The local
subdomains could be of any geometrical shape and size. In the cur-
rent paper, the local subdomains are taken to be of a circular shape.
The local weak-form of the governing equations (16)–(20) for
xi 2 Xi

s can be written asZ
Xi

s

½Mab;bðx; sÞ � Qaðx; sÞ � IM
€waðx; sÞ�v�acðxÞdX ¼ 0; ð25Þ

Z
Xi

s

½Qa;aðx; sÞ þ qðx; sÞ � IQ €u30ðx; sÞ�v�ðxÞdX ¼ 0; ð26Þ

Z
Xi

s

½Tab;bðx; sÞ þ qaðx; sÞ � IQ €ua0ðx; sÞ�v�acðxÞdX ¼ 0; ð27Þ

Z
Xi

s

½Pa;aðx; sÞ þ gðx; sÞ � IQ €w3ðx; sÞ�v�ðxÞdX ¼ 0; ð28Þ

orZ
Xi

s

½Pa;aðx; sÞ þ gðx; sÞ � ID _w3ðx; sÞ�v�ðxÞdX ¼ 0; ð29Þ

where v�abðxÞ and v�ðxÞ are the weight or test functions.
Applying the Gauss divergence theorem to Eqs. (25)–(29), one

obtainsZ
@Xi

s

Maðx; sÞv�acðxÞdC�
Z

Xi
s

Mabðx; sÞv�ac;bðxÞdX

�
Z

Xi
s

Qaðx; sÞv�acðxÞdX�
Z

Xi
s

IM
€waðx; sÞv�acðxÞdX ¼ 0; ð30Þ

Z
@Xi

s

Qaðx; sÞnaðxÞv�ðxÞdC�
Z

Xi
s

Qaðx; sÞv�;aðxÞdX

�
Z

Xi
s

IQ €u30ðx; sÞv�ðxÞdXþ
Z

Xi
s

qðx; sÞv�ðxÞdX ¼ 0; ð31Þ

Z
@Xi

s

Taðx; sÞv�acðxÞdC�
Z

Xi
s

Tabðx; sÞv�ac;bðxÞdX

þ
Z

Xi
s

qaðx; sÞv�acðxÞdX�
Z

Xi
s

IQ €ua0ðx; sÞv�acðxÞdX ¼ 0; ð32Þ

Z
@Xi

s

Paðx; sÞnaðxÞv�ðxÞdC�
Z

Xi
s

Paðx; sÞv�;aðxÞdX

�
Z

Xi
s

IQ €w3ðx; sÞv�ðxÞdXþ
Z

Xi
s

gðx; sÞv�ðxÞdX ¼ 0: ð33Þ

An alternative to Eq. (33) isZ
@Xi

s

Paðx; sÞnaðxÞv�ðxÞdC�
Z

Xi
s

Paðx; sÞv�;aðxÞdX

�
Z

Xi
s

ID _w3ðx; sÞv�ðxÞdXþ
Z

Xi
s

gðx; sÞv�ðxÞdX ¼ 0; ð34Þ

where @Xi
s is the boundary of the local subdomain and
Maðx; sÞ ¼ Mabðx; sÞnbðxÞ; Taðx; sÞ ¼ Tabðx; sÞnbðxÞ

are the normal bending moment and the traction vector, respec-
tively, and na is the unit outward normal vector to boundary @Xi

s.
The local weak-forms (30)–(34) are the starting point for deriving
local integral equations on the basis of appropriate test functions.
Unit step functions are chosen for the test functions w�abðxÞ and
w�ðxÞ in each subdomain

v�acðxÞ ¼
dac at x 2 ðXs [ @XsÞ
0 at x R ðXs [ @XsÞ

�
; v�ðxÞ ¼

1 at x 2 ðXs [ @XsÞ
0 at x R ðXs [ @XsÞ

�
: ð35Þ

Then, the local weak-forms (30)–(34) are transformed into the fol-
lowing local integral equations (LIEs)Z
@Xi

s

Maðx; sÞdC�
Z

Xi
s

Qaðx; sÞdX�
Z

Xi
s

IM
€waðx; sÞdX ¼ 0; ð36Þ

Z
@Xi

s

Qaðx; sÞnaðxÞdC�
Z

Xi
s

IQ €u30ðx; sÞdXþ
Z

Xi
s

qðx; sÞdX ¼ 0; ð37Þ

Z
@Xi

s

Taðx; sÞdCþ
Z

Xi
s

qaðx; sÞdX�
Z

Xi
s

IQ €ua0ðx; sÞdX ¼ 0; ð38Þ

Z
@Xi

s

Paðx; sÞnaðxÞdCþ
Z

Xi
s

gðx; sÞdX�
Z

Xi
s

IQ €w3ðx; sÞdX ¼ 0: ð39Þ

Similarly, an alternative to Eq. (39) isZ
@Xi

s

Paðx; sÞnaðxÞdCþ
Z

Xi
s

gðx; sÞdX�
Z

Xi
s

ID _w3ðx; sÞdX ¼ 0: ð40Þ

In the above local integral equations, the trial functions for
rotations waðx; sÞ, transversal displacements u30ðx; sÞ, in-plane dis-
placements ua0ðx; sÞ and phason displacement w3ðx; sÞ, are chosen
as the MLS approximations over a number of nodes randomly
spreading within the domain of influence. The above six equations
can be then solved for the six unknown quantities.

3. Numerical solution

In general, a meshless method uses a local interpolation to rep-
resent the trial function with the values (or the fictitious values) of
the unknown variable at some randomly located nodes. The MLS
approximation (Lancaster and Salkauskas, 1981; Nayroles et al.,
1992) used in the present analysis may be considered as one of
such schemes. According to the MLS method (Atluri, 2004), the
approximation of the field variable u 2 fu10; u20;w1;w2;u30;w3g
can be given as

uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð41Þ

where pTðxÞ ¼ fp1ðxÞ;p2ðxÞ; . . . ;pmðxÞg is a vector of complete basis
functions of order m and aðxÞ ¼ fa1ðxÞ; a2ðxÞ; . . . ; amðxÞg is a vector
of unknown parameters that depends on x. For example, in 2D
problems

pTðxÞ ¼ f1; x1; x2g for m ¼ 3

and

pTðxÞ ¼ f1; x1; x2; x2
1; x1x2; x2

2g for m ¼ 6

are linear and quadratic basis functions, respectively.
The approximation functions for the generalized variables can

be written as (Atluri, 2004)

uhðx; sÞ ¼ NTðxÞ � û ¼
Xn

a¼1

NaðxÞûaðsÞ; ð42Þ
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where the nodal values ûaðsÞ are fictitious parameters for the
approximated field variable and NaðxÞ is the shape function associ-
ated with node a. The number of nodes n used in the approximation
is determined by the weight function. A 4th order spline-type
weight function is applied in the present work.

The directional derivatives of the approximated field uðx; sÞ are
expressed in terms of the same nodal values as

u;aðx; sÞ ¼
Xn

a¼1

ûaðsÞNa
;aðxÞ: ð43Þ

According to (43), one obtains the approximation for the bending
moments (12) as well as for Maðx; sÞ ¼ Mabðx; sÞnbðxÞ or Mðx; sÞ ¼
½M1ðx; sÞM2ðx; sÞ�T :

Mðx; sÞ ¼ N1

Xn

a¼1

Ba
1ðxÞw

aðsÞ; ð44Þ

where the vector waðsÞ is defined as a column vector
waðsÞ ¼ ½ŵa

1ðsÞ; ŵa
2ðsÞ�

T
, the matrices N1ðxÞ are related to the normal

vector n(x) on @Xs by

N1ðxÞ ¼
n1 0 n2

0 n2 n1

� �
:

Other matrices and vectors in Eq. (44) are represented in terms of
the shape functions and their gradients as

Ba
1ðxÞ ¼

h3

12

c11Na
;1 c12Na

;2

c12Na
;1 c22Na

;2

c66Na
;2 c66Na

;1

2
64

3
75: ð45Þ

Similarly, one can obtain the approximation for the shear forces

Q ðx; sÞ ¼ j
Xn

a¼1

½CNaðxÞwaðsÞ þ CLaðxÞûa
30ðsÞ þ RLaðxÞŵa

3ðsÞ�; ð46Þ

where Q ðx; sÞ ¼ ½Q1ðx; sÞ;Q2ðx; sÞ�T and

C ¼ h
c55 0
0 c44

� �
; LaðxÞ ¼

Na
;1

Na
;2

" #
; R ¼ h

R6 0
0 R5

� �
:

The traction vector Tðx; sÞ ¼ ½T1ðx; sÞ; T2ðx; sÞ�T is approximated
by

Tðx; sÞ ¼ N1

Xn

a¼1

BaðxÞua
0ðsÞ; ð47Þ

where

BaðxÞ ¼ h

c11Na
;1 c12Na

;2

c12Na
;1 c22Na

;2

c66Na
;2 c66Na

;1

2
64

3
75;

and the vector ua
0ðsÞ is defined as a column vector ua

0ðsÞ ¼
½ûa

10ðsÞ; ûa
20ðsÞ�

T .
Finally, for the approximation of Pðx; sÞ ¼ ½P1ðx; sÞ; P2ðx; sÞ�T , we

have

Pðx; sÞ ¼
Xn

a¼1

½RwaðsÞ þ RLaðxÞûa
30ðsÞ þ KLaðxÞŵa

3ðsÞ�; ð48Þ

with K ¼ h
K1 0
0 K2

� �
.

Then, insertion of the MLS-discretized moment, traction and
shear force fields (44)–(47), and (48) into the local integral equa-
tions (36)–(40) yields the discretized local integral equations
Xn

a¼1

Z
@ ~Xi

s

N1ðxÞBa
1ðxÞdC� j

Z
Xi

s

CNaðxÞdX

" #
waðsÞ

�
Xn

a¼1

EIM

Z
Xi

s

NaðxÞdX

 !
€waðsÞ

�
Xn

a¼1

ûa
30ðsÞ j

Z
Xi

s

CLaðxÞdX

 !

�
Xn

a¼1

ŵa
3ðsÞ j

Z
Xi

s

RLaðxÞdX

 !

¼ �
Z

~Ci
sM

~Mðx; sÞdC; ð49Þ

Xn

a¼1

j
Z
@ ~Xi

s

CnðxÞNaðxÞdC

 !
ŵaðsÞ

þ
Xn

a¼1

j
Z
@ ~Xi

s

CnðxÞLaðxÞdC

 !
ûa

30ðsÞ

þ
Xn

a¼1

j
Z
@ ~Xi

s

RnðxÞLaðxÞdC

 !
ŵa

3ðsÞ

�
Xn

a¼1

IQ

Z
Xi

s

NaðxÞdX

 !

€̂ua
30ðsÞ ¼ �

Z
Xi

s

qðx; sÞdX; ð50Þ

Xn

a¼1

Z
@ ~Xi

s

N1ðxÞBaðxÞdC

" #
ua

0ðsÞ �
Xn

a¼1

EIQ

Z
Xi

s

NaðxÞdX

" #
€ua

0ðsÞ

¼ �
Z

~Ci
sT

~Tðx; sÞdC�
Z

Xi
s

qðx; sÞdX; ð51Þ

Xn

a¼1

Z
@ ~Xi

s

RnðxÞNaðxÞdC

 !
ŵaðsÞ

þ
Xn

a¼1

Z
@ ~Xi

s

RnðxÞLaðxÞdC

 !
ûa

30ðsÞ

þ
Xn

a¼1

Z
@ ~Xi

s

KnðxÞLaðxÞdC

 !
ŵa

3ðsÞ

�
Xn

a¼1

IQ

Z
Xi

s

NaðxÞdX

 !
€̂wa

3ðsÞ

¼ �
Z

Xi
s

gðx; sÞdX; ð52Þ

or alternative to Eq. (52), we have

Xn

a¼1

Z
@ ~Xi

s

RnðxÞNaðxÞdC

 !
ŵaðsÞ

þ
Xn

a¼1

Z
@ ~Xi

s

RnðxÞLaðxÞdC

 !
ûa

30ðsÞ

þ
Xn

a¼1

Z
@ ~Xi

s

KnðxÞLaðxÞdC

 !
ŵa

3ðsÞ

�
Xn

a¼1

ID

Z
Xi

s

NaðxÞdX

 !
_̂wa

3ðsÞ

¼ �
Z

Xi
s

gðx; sÞdX; ð53Þ
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Fig. 2. Variation of the phonon deflection along normalized coordinate x1=a for a
simply-supported square plate.
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in which

E ¼
1 0
0 1

� �
;

~Mðx; sÞ represents the prescribed bending moments on Ci
sM , ~Tðx;xÞ

is the prescribed traction vector on Ci
sT , and

CnðxÞ ¼ hðn1;n2Þ
c55 0
0 c44

� �
¼ hðc55n1; c44n2Þ;

RnðxÞ ¼ hðn1;n2Þ
R6 0
0 R5

� �
¼ hðR6n1;R5n2Þ;

KnðxÞ ¼ hðn1;n2Þ
K1 0
0 K2

� �
¼ hðK1n1;K2n2Þ:

Eqs. (49)–(53) are considered on the subdomains adjacent to
the interior nodes xi as well as for the source point xi located on
the global boundary C. We point out that

@ ~Xi
s ¼ @X

i
s and ~Ci

sM ¼ f£g; ~Ci
sT ¼ f£g; if xi 2 X;

whilst for the boundary point xi 2 C we define

@ ~Xi
s ¼ Li

s ¼ @X
i
s \X; ~Ci

sM ¼ Ci
sM ¼ @X

i
s \ CM; ~Ci

sT ¼ Ci
sT

¼ @Xi
s \ CT

with @Xi
s ¼ Li

s [ Ci
sM [ Ci

sT and CM or CT being the part of the global
boundary with prescribed bending moment or in-plane tractions,
respectively.

It should be noted that there are neither Lagrange multipliers
nor penalty parameters introduced into the local weak-forms
(25)–(29) because the essential boundary conditions on Ci

sw and
Ci

su3
(part of the global boundary with prescribed rotations and

deflection) and Ci
su0

(part of the global boundary with prescribed
in-plane displacements) can be imposed directly, using the inter-
polation approximation (41)

Xn

a¼1

NaðxiÞûaðsÞ ¼ ~uðxi; sÞ for xi 2 Ci
sw or Ci

su or Ci
sw; ð54Þ

where ~uðxi; sÞ is the prescribed phonon and phason values on the
boundary Ci

sw, Ci
su and Ci

sw. For a clamped plate, the rotations, deflec-
tion and phason displacement are vanishing on the fixed edge, and
Eq. (54) is used at all the boundary nodes in such a case. However,
for a simply-supported plate, the deflection ~u30ðxi; sÞ, bending mo-
ments and phason displacement ~w3ðxi; sÞ are prescribed, while
the rotations are unknowns. Then, the discretized LIE (49) is em-
ployed at xi 2 Ci

sM .
The local boundary-domain integral equations (49)–(53) to-

gether with the collocation equations (54) on the global boundary
for essential conditions are recast into a complete system of ODEs
in terms of the Bak model

A€xþ Fx ¼ Y; ð55Þ

where the column-vector x is formed by the nodal unknowns
fua

10;u
a
20;w

a
1;w

a
2;u

a
30;w

a
3g. The Houbolt method (Houbolt, 1950) is ap-

plied for the second order ODE (55).
The discretized equations for the elasto hydrodynamic model

can be written in the following form

A€xþ B _xþ Cx ¼ Y: ð56Þ

The Houbolt finite-difference scheme is applied to approximate the
acceleration

€xsþDs ¼
2xsþDs � 5xs þ 4xs�Ds � xs�2Ds

Ds2 ; ð57Þ
and the backward difference method to approximate the diffusion
term

_xsþDs ¼
xsþDs � xs

Ds
: ð58Þ
4. Numerical examples

A square plate with a side-length a ¼ 0:254 m is analyzed to
verify the proposed computational method. The total thickness of
the plate is h ¼ 0:012 m In the review paper by Fan (2013) some
relevant measured data were collected for certain important quasi-
crystal systems, which are necessary for understanding the physics
of the materials. The measurement of elastic constants and results
were also given in Fan (2013). The material properties of the plate
corresponding to Al–Ni–Co QC are

c11 ¼ c22 ¼ 23:43 � 1010 Nm�2; c12 ¼ 5:74 � 1010 Nm�2;

c44 ¼ c55 ¼ 7:19 � 1010 Nm�2;

K1 ¼ 12:2 � 1010 Nm�2; K2 ¼ 2:4 � 1010 Nm�2;

c66 ¼ ðc11 � c12Þ=2;

q ¼ 4180 kg=m3; Cw ¼ 4:8 � 10�19 m3 s=kg:

On the top surface a uniform mechanical load is applied with an
intensity q ¼ 1 � 107 N=m2. Simply-supported boundary conditions
are considered here. In our numerical calculations, 441 nodes with
a regular distribution were used for the approximation of the rota-
tions, deflection, in-plane displacements and phason displacement
in the neutral plane. The origin of the coordinate system is located
at the center of the plate. The variation of the deflection in the plate
along normalized coordinate x1=a with fixed x2 ¼ 0 is presented in
Fig. 2. We assumed the same values for both coupling parameters
R ¼ R5 ¼ R6, which were further normalized by the stiffness param-
eter M ¼ c66. Numerical results for the phonon displacement u30 are
given for various coupling parameters, R/M. For the case of vanish-
ing coupling parameter, R/M = 0, the phonon displacements reduce
to the ones in conventional elasticity (i.e., the deflection). We point
out that a good agreement between the FEM and present MLPG re-
sults was obtained for this special case of R/M = 0, which partially
validated our computer code based on MLPG. For R/M different from
zero, our results reveal that the phonon displacement increases
with increasing value of the coupling parameter. The variation of
the phason displacements along normalized coordinate x1=a is pre-
sented in Fig. 3. It shows that the phason displacements are strongly
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dependent on the coupling parameter. For vanishing value of the
coupling parameter, the phason displacement should be identically
zero (i.e., the horizontal axis). We should also remark that the bend-
ing moments are independent of the coupling parameter, as can be
observed directly from Eq. (12), and that the interaction between
phonon and phason activities could be complicated (see, e.g., Ricker
and Trebin, 2002; Mariano, 2006).

We have analyzed also the same plate with doubled thickness,
h ¼ 0:024 m to show the influence of the plate thickness on the
phonon and phason deflections. Phonon deflections are presented
in Fig. 4. One can observe that the influence of the coupling param-
eter R is stronger for the plate with doubled thickness. However,
the absolute value of the plate deflection is smaller for this plate
due to the larger flexural rigidity. A similar behavior can be ob-
served also for the phason deflection presented in Fig. 5.

A clamped square plate under a uniform static load is analyzed
in the next numerical example. The geometrical and material
parameters are the same as for the previous simply-supported
plate. Numerical results for the phonon displacement u30 are given
for various coupling parameters, R/M as shown in Fig. 6. For the
case of vanishing coupling parameter, R/M = 0, the phonon dis-
placements are reduced to the conventional elasticity results. The
results in Fig. 6 reveal that the phonon displacement increases
with increasing value of the coupling parameter. The influence of
the coupling parameter is more significant for the clamped plate
than for the simply-supported plate, as can be directly observed
by comparing Fig. 6 to Fig. 2.
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The variation of the bending moment M11 is shown in Fig. 7. The
bending moment at the center of the plate Mstat

11 ða=2Þ ¼
0:1426 � 105 Nm is used as a normalized parameter. The bending
moment value is independent of the coupling parameters
R ¼ R5 ¼ R6. This follows directly from the bending moment
expressions (10).
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We have analyzed also the same plate with the doubled thick-
ness, h ¼ 0:024 m to show the influence of the plate thickness on
the phonon deflections. Phonon deflections are presented in
Fig. 8. Similar to the simply-supported case, for the clamped plate
the influence of the coupling parameter R is stronger for the plate
with doubled thickness.

In the next example, we analyze the same clamped square plate
under an impact load with Heaviside time variation qHðt � 0Þ. The
normalized phonon and phason deflections at the plate center are
presented in Figs. 9 and 10 for two different coupling parameters.
The central plate deflections are normalized by the corresponding
static quantity valid for the crystal, ustat

30 ¼ 0:1646 � 10�2 m. One can
observe that the phonon deflection for a finite value of the coupling
parameter is only slightly larger than the corresponding deflection
in conventional elasticity. The phason deflection is nonzero only
for a finite value of the couple parameter. We point out that we
have selected the time-step Ds ¼ 0:125 � 10�4 s in our numerical
analyses with the numerical results being presented based on the
Bak model.

The normalized bending moments at the plate center,
MðAÞ ¼ M11ð0;0Þ=Mstat

11 and at the center of the clamped side,
MðBÞ ¼ M11ða=2; a=2Þ=Mstat

11 , are presented in Figs. 11. The corre-
sponding numerical results are normalized by the static value of
the bending moment at the central point valid for the crystal,
Mstat

11 ð0;0Þ ¼ 0:1426 � 105 Nm. The peak values of the bending mo-
ments are approximately twice the corresponding static quantities.
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Numerical results are given for the crystal (vanishing couple
parameters) case only since the bending moment is the same for
the crystal and QC.

5. Conclusions

The following conclusions can be drawn from the present
study:

1. The meshless local Petrov–Galerkin method is applied to ana-
lyze plate bending problems in orthorhombic QC plate under
static and transient dynamic loads. The phason displacement
for the orthorhombic QC in the first-order shear deformation
plate theory depends only on the in-plane coordinates over
the mean plate surface. The Reissner–Mindlin theory reduces
the original 3D thick plate problem to a 2D plate problem.

2. Nodal points are randomly distributed over the mean plane of
the considered plate. Each node is the center of a circle sur-
rounding it. The weak form on small subdomains with the
Heaviside step function as the test function is applied to derive
the local integral equations. After performing the spatial MLS
approximation, a system of ODEs for certain nodal unknowns
is obtained. The system of ODEs of the second order is solved
by the Houbolt finite-difference scheme.

3. The present numerical results are believed to be new since the
commercial computer codes based on the FEM or BEM cannot
be applied to analyze the boundary value problems in QCs.
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4. Numerical results showed that coupling material parameters
have a small influence on the phonon deflection for real values
of material parameters in QCs. A stronger influence of the cou-
pling parameters on the phonon deflection is observed for
plates with larger plate thickness.

5. The coupling parameter R has a vanishing influence on the pho-
non deflection in terms of the Bak model.
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