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Based on the extended Stroh formalism, we first derive the extended Green’s functions for an extended
dislocation and displacement discontinuity located at the interface of a piezoelectric bi-material. These
include Green’s functions of the extended dislocation, displacement discontinuities within a finite inter-
val and the concentrated displacement discontinuities, all on the interface. The Green’s functions are then
applied to obtain the integro-differential equation governing the interfacial crack. To eliminate the oscil-
lating singularities associated with the delta function in the Green’s functions, we represent the delta
function in terms of the Gaussian distribution function. In so doing, the integro-differential equation is
reduced to a standard integral equation for the interfacial crack problem in piezoelectric bi-material with
the extended displacement discontinuities being the unknowns. A simple numerical approach is also pro-
posed to solve the integral equation for the displacement discontinuities, along with the asymptotic
expressions of the extended intensity factors and J-integral in terms of the discontinuities near the crack
tip. In numerical examples, the effect of the Gaussian parameter on the numerical results is discussed,
and the influence of different extended loadings on the interfacial crack behaviors is further investigated.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Because of their accumulative effects, multi-layered structures
are often preferred in the manufacture of composite materials
and are widely used in engineering to enhance the efficiency and
sensitivity of materials or structures. However, there is a high pos-
sibility of failure at the interface between layers in such composite
materials. Cracks leading to fracture often occur at the interface be-
tween two different constituents, e.g., the fiber and matrix in a
composite. Fracture behaviors of the interfacial crack have at-
tracted increasing attention because of the need in understanding
the real failure regime of such composites (e.g., Comninou,
1977a,b; Atkinson, 1977; Dundurs and Gautesen, 1988; Qu and
Li, 1991; Hutchinson and Suo, 1992). Due to its coupled mechanical
and electric properties, piezoelectric material has been widely used
in intelligent structures and systems. Research on interface cracks
has thus been extended to piezoelectric media (e.g., Suo et al.,
1992; Beom and Atluri, 1996; Chen et al., 1998; Qin and Mai,
1999; Zhang et al., 2002).
Early solutions to the interfacial crack problems in the context
of linear elastic fracture mechanics showed that there is an oscilla-
tory singularity near the crack tip (Williams, 1959; England, 1965;
Erdogan, 1965). This kind of singularity shows an unsatisfactory
behavior, namely rapid oscillations in the stress and displacement
fields, implying the physically impossible phenomenon of inter-
penetration (England, 1965; Comninou, 1990). To overcome this
feature, an alternative technique, which has been used frequently
in the numerical calculation of fracture parameters for interfacial
cracks, is to insert a thin, isotropic, homogeneous layer (interlayer)
at the interface with the crack being located within the interlayer.
The problem is thus effectively converted to that of a crack in a
homogeneous medium. On the other hand, Eshelby (1951) treated
the crack as the pile-up of interfacial dislocations and used a Dirac
delta function to model the stress oscillatory singularity in the fun-
damental solutions of interface dislocations. Thus, using the
Green’s function of dislocations in purely elastic bi-materials,
which contains a delta function on the interface (Comninou,
1977a,b), Zhang and Wang (2013) becomes an attractive model
for removing the physically unreasonable oscillation singularity
associated with the interfacial crack where the delta function in
the fundamental solution is represented by a locally-distributed
continuous function. Near an interfacial crack tip, besides the clas-
sical singularity r�1/2 and the well-known oscillatory singularity
r�1/2±ie, the extended stresses in piezoelectric bi-materials have a
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new type of singularity, namely r�1/2±j (Kuo and Barnett, 1991; Suo
et al., 1992; Ou and Wu, 2003). This new type of singularity also
exists in three-dimensional piezoelectric bi-materials (Zhao et al.,
2008). It is also found that in a transversely isotropic bi-material
with an impermeable interface crack, the e-type and j-type singu-
larities cannot coexist (Ou and Wu, 2003; Zhao et al., 2008).

Motivated by the recent work of Zhang and Wang (2013), we
present a new approach to remove the oscillatory singularities at
the tip of the interfacial crack in piezoelectric bi-materials. It is
based on the powerful displacement discontinuity method (i.e.,
Zhao et al., 2008) combined with the representation of the delta
function by the Gaussian distribution function. This paper is ar-
ranged as follows. In Section 2, we introduce the extended Stroh
formalism. In Section 3, we derive the Green’s functions of ex-
tended dislocations, uniform extended displacement discontinu-
ities within a finite interval, and the concentrated extended
displacement discontinuities on the interface of the piezoelectric
bi-material. In Section 4, the obtained Green’s functions are first
applied to the interfacial crack problem, resulting in the integro-
differential equations. Then, the involved delta function in the
solution is represented by the Gaussian distribution function,
which helps reduce the integro-differential equations to the stan-
dard integral equations in terms of extended displacement discon-
tinuities for the interfacial crack in the piezoelectric bi-material.
The formulations for the extended stress intensity factors and local
J-integral of the interfacial crack are presented in Section 5. Sec-
tion 6 describes the numerical method for solving the unknown
displacement discontinuities along the interfacial crack. In Sec-
tion 7, various numerical results are presented along with a de-
tailed discussion on the effect of the e-parameter in the Gaussian
distribution function. We finally draw our conclusions in Section 8.

2. Extended Stroh formalism

In the Cartesian coordinate system, xi (i = 1,2,3), the governing
equations for a linear piezoelectric solid without body force and
free of electric charge can be given by equilibrium Equation (1),
kinematic Equation (2), and constitutive Equation (3) below

rij;j ¼ 0; Di;i ¼ 0; ð1Þ

eij ¼
1
2

ui;j þ uj;i
� �

; Ei ¼ �u;i; ð2Þ

rij ¼ cijklekl � ekijEk; ð3aÞ

Dk ¼ ekijeij þ jklEl: ð3bÞ

In Eqs. (1)–(3), rij and Di are, respectively, the components of
the stress and electric displacement; eij and Ei are, respectively,
the components of the strain and electric field; ui and u are the
elastic displacement and electric potential, respectively; cijkl, ekij

and jij are, respectively, the elastic constants, piezoelectric con-
stants and dielectric permittivities. A subscript comma denotes
the partial differentiation with respect to the coordinate followed.

For two-dimensional deformations in the x1–x2 plane, in which
the extended displacement vector u ¼ ðu1 u2 u3 u4ÞT � ðu1 u2 u3 uÞT

depends only on the x1 and x2 coordinates, the general solution takes
the form of (Barnett and Lothe, 1975; Ting, 1996)

u ¼ AfðzÞ þ A fðzÞ; ð4Þ

U ¼ BfðzÞ þ B fðzÞ; ð5Þ

where an overbar indicates a complex conjugate; matrices
A ¼ ða1; a2; a3; a4Þ and B ¼ ðb1; b2; b3; b4Þ, with aj and bj being
the eigenvectors (j = 1–4); fðzÞ ¼ ðf1ðz1Þ; f 2ðz2Þ; f 3ðz3Þ; f 4ðz4ÞÞT is
an analytic function vector with za = x1 + pax2 and pa a complex
eigenvalue having a positive imaginary part; U is the extended stress
function vector, from which the stress vectors can be obtained as

R2 ¼ ðr21 r22 r23 D2ÞT ¼ U;1; ð6aÞ

R1 ¼ ðr11 r12 r13 D1ÞT ¼ �U;2: ð6bÞ

The eigenvalue pa is obtained by solving the following standard
eigensystem of equations (Ting, 1996; Zhang et al., 2002)

N1 N2

N3 NT
1

� �
a
b

� �
¼ p

a
b

� �
; ð7Þ

where

N1 ¼ �T�1RT; N2 ¼ T�1 ¼ NT
2; N3 ¼ RT�1RT � Q ¼ NT

3; ð8Þ

Q ¼
ci1k1 e11i

eT
11i �j11

� �
; R ¼

ci1k2 e21i

eT
12i �j12

� �
;

T ¼
ci2k2 e22i

eT
22i �j22

� �
; i; k ¼ 1;2;3: ð9Þ

The eigenvectors are uniquely determined except for an arbitrary
multiple constant. Thus, they can be normalized to satisfy (Ting,
1996; Zhang et al., 2002)

AAT þ AAT ¼ BBT þ BBT ¼ 0; BAT þ BAT ¼ ABT þ ABT ¼ I; ð10Þ

where I is a 4 � 4 unit matrix. For convenient analysis below, we
also define a new matrix Y as

Y ¼ iAB�1
; i ¼

ffiffiffiffiffiffiffi
�1
p

: ð11Þ
3. Green’s functions of extended displacement discontinuities
on the interface of a piezoelectric bi-material

3.1. Green’s functions of extended dislocations along the interface in
the piezoelectric bi-material

For a piezoelectric bi-material, the coordinate system is ori-
ented with the x1-axis being along the interface and x2-axis per-
pendicular to the interface. The superscripts ‘‘ + ’’ and ‘‘�’’ denote,
respectively, the quantities in the upper half-plane where x2 > 0
and those in the lower half-plane where x2 < 0. We now assume
that an extended dislocation b = (b1, b2,b3, b4)T is applied on the
interface along the whole negative x1-axis. We point out that in
the extended dislocation expression, bi (i = 1,2,3) denotes the
xi-component of the Burgers vector and b4 � Du denotes the elec-
tric dislocation. Thus, the corresponding boundary conditions on
the interface can be expressed as

kuðx1Þk � uþðx1;0
þÞ � u�ðx1;0

�Þ ¼ bHð�x1Þ; ð12Þ

Rþ2 ðx1;0
þÞ � R�2 ðx1;0

�Þ ¼ 0; ð13Þ

where kuðx1Þk ¼ ðku1k ku2k ku3k kukÞT denotes the corresponding
displacement discontinuity (or opening displacement) and the elec-
tric potential discontinuity (or electric potential jump), and H(x) is
the Heaviside function defined as

HðxÞ ¼
1; x > 0;
0; x < 0:

�
ð14Þ

Following Nakahara and Willis (1973) and Zhang et al. (1998),
we assume the analytic function vector f(z) in Eqs. (4) and (5) for
an extended line dislocation located at (x1,x2) = (0,0) as

fðzÞ ¼ hln zaid; ð15Þ
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where hln zai ¼ diagðln z1 ln z2 ln z3 ln z4Þ, and d ¼ ðd1 d2 d3 d4ÞT is
an unknown vector to be determined by the boundary conditions.

Following Ting (1996), the general solutions in both half planes,
including the extended displacements, the extended stress func-
tions, the extended tractions and the extended in-plane stresses,
can be expressed as

u� ¼ A�hln z�a id
� þ A�hln z�a id

�
;

U� ¼ B�hln z�a id
� þ B�hln z�a id

�
; ð16aÞ

R�2 ¼ B�h1=z�a id
� þ B�h1=z�a id

�
;

R�1 ¼ �B�hp�a =z�a id
� � B�hp�a =z�a id

�
: ð16bÞ

where

h1=z�a i ¼ diagð1=z�1 1=z�2 1=z�3 1=z�4 Þ;

hp�a =z�a i ¼ diagðp�1 =z�1 p�2 =z�2 p�3 =z�3 p�4 =z�4 Þ: ð17Þ

It is noted that when x2 in Eqs. (16) and (17) approaches zero
from either side of the interface, we obtain the corresponding solu-
tions on the interface. Following Nakahara and Willis (1973) and
Wang and Kuang (2000), we define

ln za ¼ ln jx1j � ipHð�x1Þ; as x2 ¼ 0�: ð18Þ

Thus, the extended displacements at the upper and lower inter-
faces have the form

uþ ¼ Aþdþðln jx1j þ ipHð�x1ÞÞ þ Aþdþ ln jx1j � ipHð�x1Þð Þ; ð19aÞ

u� ¼ A�d�ðln jx1j � ipHð�x1ÞÞ þ A�d� ln jx1j þ ipHð�x1Þð Þ: ð19bÞ

From Eq. (16b), the extended stresses at the upper and lower inter-
faces can be expressed as

Rþ2 ðx1;0
þÞ ¼ Bþdþ

1
x1 þ 0þi

þ Bþdþ
1

x1 � 0þi
; ð20aÞ

R�2 ðx1;0
�Þ ¼ B�d�

1
x1 � 0�i

þ B�d�
1

x1 þ 0�i
: ð20bÞ

Using the well-known identity in the theory of generalized
functions (Gelfand and Shilov, 1964; Nakahara and Willis, 1973),
we can express Eq. (20) alternatively as

Rþ2 ðx1;0
þÞ ¼ Bþdþ

1
x1
� ipdðx1Þ

� �
þ Bþdþ

1
x1
þ ipdðx1Þ

� �
; ð21aÞ

R�2 ðx1;0
�Þ ¼ B�d�

1
x1
þ ipdðx1Þ

� �
þ B�d�

1
x1
� ipdðx1Þ

� �
; ð21bÞ

where d(x1) is the Dirac delta function.
It is noted now that by substituting Eq. (19) into the discontin-

uous displacement boundary conditions on the interface (i.e., Eq.
(12)), we obtain

Aþdþ þ Aþdþ � A�d� � A�d�
� 	

ln jx1j

þ ip Aþdþ � Aþdþ þ A�d� � A�d�
� 	

Hð�x1Þ

¼ bHð�x1Þ: ð22Þ

Similarly, substituting Eq. (21) into the continuous traction
boundary conditions on the interface, (i.e., Eq. (13)), we have

Bþdþ þ Bþdþ � B�d� � B�d�
� 	 1

x1

� ip Bþdþ � Bþdþ þ B�d� � B�d�
� 	

dðx1Þ ¼ 0: ð23Þ
Thus, by comparing the coefficients of the same terms on both
sides of Eqs. (22) and (23), we obtain

Aþdþ þ Aþdþ � A�d� � A�d� ¼ 0; ð24Þ

Aþdþ � Aþdþ þ A�d� � A�d� ¼ 1
ip

I; ð25Þ

Bþdþ þ Bþdþ � B�d� � B�d� ¼ 0; ð26Þ

Bþdþ � Bþdþ þ B�d� � B�d� ¼ 0: ð27Þ

From Eqs. (24)–(27), we can solve the two unknown vectors d+

and d– as

d� ¼ 1
2p
ðB�Þ�1 Yþ þ Y�

� 	�1
b; ð28aÞ

dþ ¼ 1
2p
ðBþÞ�1 Yþ þ Y�

� ��1
b: ð28bÞ

By substituting Eq. (28) into Eq. (16), we can finally derive the
fundamental solutions of the extended dislocations on the inter-
face of a piezoelectric bi-material. For instance, for the extended
stresses on the interface, we have

Rþ2 ðx1;0
þÞ ¼ 1

p
Re Yþ þ Y�

� ��1
� 	

b
1
x1

þ Im Yþ þ Y�
� ��1
� 	

bdðx1Þ: ð29Þ

Eq. (29) is useful in the analysis below.

3.2. Green’s functions of uniform extended displacement
discontinuities over a finite length on the interface

Without loss of generality, we now assume that there is line ele-
ment of length 2a on the interface (x2 = 0) within, say, x1 2 (�a,a).
Along this element, uniform extended displacement discontinu-
ities are distributed. Namely,

kuðx1Þk � uþðx1;0
þÞ � u�ðx1;0

�Þ ¼ kuk; x1 2 ð�a; aÞ: ð30Þ

Making use of the fundamental solution (29) for the extended
dislocations along the interface, we find the extended stresses on
the interface due to uniform extended displacement discontinu-
ities over the finite length x1 2 (�a,a) along the interface, which are

Rþ2 ðx1;0
þÞ ¼ 1

p
Lkuk 1

x1 � a
� 1

x1 þ a

� �
þ Fkukðdðx1 � aÞ

� dðx1 þ aÞÞ; ð31Þ

where

L ¼ Re Yþ þ Y�
� ��1
� 	

; F ¼ Im Yþ þ Y�
� ��1
� 	

: ð32Þ

Eq. (31) indicates that the Green’s stresses due to uniform ex-
tended displacement discontinuities over a finite interface element
are composed of two parts: the first part corresponds to the con-
ventional one which is similar to that in an homogeneous material;
the second part is proportional to the delta function which is sim-
ilar to that associated with an elastic interfacial crack (Comninou,
1990). The second part is troublesome since it leads to the oscillat-
ing singularities.

3.3. Green’s functions of concentrated interfacial extended
displacement discontinuities

The concentrated extended displacement discontinuity located
at (x1,x2) = (0,0) is defined as
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kupk ¼ lim
a!0
ð2akukÞ: ð33Þ

Substituting this definition into Eq. (31), we obtain the Green’s
functions for the concentrated extended displacement discontinu-
ities on the interface of piezoelectric bi-materials as:

Rþ2 ðx1;0
þÞ ¼ 1

p
Lkupk 1

x2
1

� Fkupkdx1 ðx1Þ; ð34Þ

where dx1 ðx1Þ is the derivative of the delta function defined as:

dx1 ðx1Þ ¼
ddðx1Þ

dx1
: ð35Þ
4. Displacement discontinuity integral equations for an
interfacial crack in a piezoelectric bi-material

4.1. Extended displacement discontinuity integro-differential
equations

Using the Green’s function solutions for the concentrated ex-
tended displacement discontinuities given in Eq. (34) and also
making use of the Somigliana identity, we derive the following ex-
tended displacement discontinuity integro-differential equation
for an interfacial crack of length l (x1 2 (0, l), Fig. 1) in a piezoelec-
tric bi-materialZ l

0

1
p

Lkuðy1Þk
1

ðx1 � y1Þ
2 dy1 � F

dkuðx1Þk
dx1

¼ �tðx1Þ; ð36Þ

where t(x1) is the prescribed extended traction on the crack surface,
which satisfies

tðx1Þ ¼ tðx1;0
þÞ ¼ �tðx1;0

�Þ: ð37Þ

We remark that it is the differential term in the integro-differ-
ential Equation (36) which makes the singularity at the crack tip
more complex. Besides the classical singularity of order 1/2, the
other two singularity indices, namely the j-type and the oscillat-
ing e-type, appear in the piezoelectric bi-materials (Ou and Wu,
2003; Zhao et al., 2008).

4.2. Treatment of oscillating singularities at the tip of an interfacial
crack

The delta function is known to make the stress near the interfa-
cial crack tip oscillatory. However, the delta function can be
approximated by various spreading density functions. For example,
the Gaussian distribution is a popular one for representing the del-
Material 1 

Material 2 

x2

x1

Interfacial crack 

2a

l

Fig. 1. A piezoelectric bi-material with an interfacial crack of length l under a
uniform traction applied to its surface. A representative crack element of length 2a
is also shown.
ta function in physical and engineering analyses. Thus, in the pres-
ent study, we approximate the delta function by the Gaussian
distribution:

dðx1Þ ¼
1ffiffiffiffiffiffiffi
2p
p

e
exp � x2

1

2e2


 �
: ð38Þ

It is noted that in Eq. (38) parameter e is a small value and its
optimal value could be greatly different for different problems.
For instance, in the study of the Euler–Bernoulli and Timoshenko
beams with multiple cracks by Palmeri and Cicirello (2011), a large
value for e (say e = 0.1) in the Gaussian distribution function is pre-
ferred since a small e would introduce a negative bending stiffness.
On the other hand, for the interfacial crack in elastic bi-materials,
the optimal values of e would be in the range of (0.002,0.012)
(Zhang and Wang, 2013). The selection of and its effect of the e va-
lue for the present problem will be further discussed in the numer-
ical analysis section.

If the delta function is replaced by Eq. (38), its derivative can be
expressed correspondingly by

dx1 ðx1Þ ¼ �
x1ffiffiffiffiffiffiffi
2p
p

e3
exp � x2

1

2e2


 �
: ð39Þ

Thus, the integro-differential Equation (36) can be rewritten asZ l

0

1
p

Lkuðy1Þk
1

ðx1 � y1Þ
2 dy1 þ

Z l

0
Fkuðy1Þk

x1 � y1ffiffiffiffiffiffiffi
2p
p

e3

� exp �ðx1 � y1Þ
2

2e2

" #
dy1 ¼ �tðx1Þ: ð40Þ

It is observed now that we have successfully converted the ori-
ginal integro-differential Equation (36) into a standard integral
equation.

5. Extended stress intensity factors and energy release rate for
an interfacial crack in a piezoelectric bi-material

The solution derived in Section 4 can now be applied to the anal-
ysis of the interfacial crack tip. In Eq. (40), the kernel function in the
first integral expression has the singularity of O(1/r2), whilst the sec-
ond one has no singularity. Thus, the singular index in this integral
equation is dominated by the classical singular index of 1/2.

For convenient analysis, we assume that the origin of the coor-
dinate axis is at the left crack tip (Fig. 1). Then the extended dis-
placement discontinuity near the left crack tip and in front of it
can be asymptotically expressed by

kuðx1Þk ¼ Cðx1Þ1=2
; ð41Þ

where C is a proportional constant vector. Thus, the stress vector at
distance |x1| = r (r� l) near the left crack tip and behind it can be
calculated as shown in Eq. (42) below.

Rþ2 ðr;0
þÞ ¼

Z l

0

1
p

Lkuðy1Þk
1

ðr þ y1Þ
2 dy1 �

Z l

0
Fkuðy1Þk

r þ y1ffiffiffiffiffiffiffi
2p
p

e3

� exp �ðr þ y1Þ
2

2e2

" #
dy1

� 1ffiffiffi
r
p

Z 1

0

1
p LC

n1=2

ð1þ nÞ2
dn ð42Þ

¼ 1
2
ffiffiffi
r
p LC:

It should be pointed out that the scale of n = y1/r is naturally intro-
duced in Eq. (42). Now the extended stress intensity factors are de-
fined as



Table 1
Material properties of PZT4, PZT5H, PZT6B and PZT7A in their local material
coordinate system (m1, m2,m3) with m3 being their poling direction (only the nonzero
components are listed).

PZT4 PZT5H PZT6B PZT7A

c11 (�109 N/m2) 139 126 168 148
c33 (�109 N/m2) 113 117 163 131
c12 (�109 N/m2) 77.8 55 60 76.2
c13 (�109 N/m2) 74.3 53 60 74.2
c44 (�109 N/m2) 25.6 35.3 27.1 25.4
e31 (C/m2) �6.98 �6.5 �0.9 �2.1
e33 (C/m2) 13.84 23.3 7.1 9.5
e15 (C/m2) 13.44 17 4.6 9.7
j11 (�10�9 C/Vm) 6 15.1 3.6 8.11
j33 (�10�9 C/Vm) 5.47 13 3.4 7.35
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K ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

Rþ2 ðr;0
þÞ; ð43Þ

where K ¼ ðK II K I 0 KDÞT: Substituting Eq. (42) into Eq. (43) leads to

K ¼
ffiffiffiffi
p
2

r
LC: ð44Þ

By considering the definition in Eq. (41), Eq. (44) becomes

K ¼ lim
x1!0

ffiffiffiffi
p
2

r
L
kuðx1Þkffiffiffiffiffi

x1
p : ð45Þ

In other words, the extended displacement discontinuity near
the crack tip can also be expressed by the stress intensity factors
K as

kuk ¼
ffiffiffiffiffiffiffiffi
2x1

p

r
L�1K: ð46Þ

With the stress intensity factors K, the J-integral can be calcu-
lated by (Beom and Atluri, 1996; Zhang et al., 2002)

J ¼ 1
4

KT HK; ð47Þ

where

H ¼ ReðYþ þ Y�Þ
� 

ðIþM2
bÞ

¼ ðIþ iMbÞT ReðYþ þ Y�Þ
� 

ðIþ iMbÞ; ð48Þ

Mb ¼ � ReðYþ þ Y�Þ
� �1 ImðYþ � Y�Þ

� 
: ð49Þ

Thus, once the extended displacement discontinuities along the
interfacial crack are obtained, the asymptotic expressions pre-
sented in this section can be used to find the extended stress inten-
sity factors and the local J-integral. This is presented in the
following section.

6. Numerical formulation for the unknown displacement
discontinuities along the interfacial crack

It is well-known that a crack can be represented by continu-
ously distributed displacement discontinuities. A displacement
discontinuity boundary element method (Crouch, 1976) is used
in this section to derive the formulation. The interfacial crack is
discretized using the constant displacement discontinuity element
with the unknown magnitudes of the extended displacement dis-
continuities being uniformly distributed on each element. The un-
known extended displacement discontinuities along the whole
interfacial crack can be solved using the Green’s functions we de-
rived in this paper. This is discussed below.

According to the solutions in Section 3.2, the Green’s function at
i-th field point due to j-th influence element is

Gðxi1; xj1Þ ¼
1
p

L
1

xi1 � xj1 � a
� 1

xi1 � xj1 þ a

� �

þ F
1ffiffiffiffiffiffiffi
2p
p

e
exp �ðxi1 � xj1 � aÞ2

2e2

" #
� exp �ðxi1 � xj1 þ aÞ2

2e2

" # !
:

ð50Þ

where xi1 and xj1 denote the x1-coordinate of the i-th field point and
the center of the j-th element, respectively, and a is the half length
of an element (Fig. 1). If the field points are chosen to be the centers
of the elements, we obtain, by superposing the results from all the
elements, a system of linear equations expressed as

X4n

j¼1

Gijkujk ¼ ti; i ¼ 1;4n ð51aÞ
or

Gkuk ¼ t; ð51bÞ

where G is the 4n � 4n coefficient matrix whose components are
presented in Eq. (50) with n being the total element number; kuk
is the vector of the unknown extended displacement discontinuities
within the constant elements; and t is the prescribed traction vec-
tor. By solving Eq. (51), the unknown displacement discontinuities
along the interfacial crack can be obtained. Then the displacement
discontinuity at the left crack tip x1 = 0 can be calculated by the
extrapolation method with the corresponding fitting equation being

kuktip ¼ b1x1=2
1 þ b2x3=2

1 ; ð52Þ

where bi are the fitting coefficient vectors.
With the calculated displacement discontinuities near the crack

tip, the extended stress intensity factors K and then J-integral can
be also calculated using the corresponding equations presented in
the previous section.

7. Numerical analysis

The popular piezoelectric ceramics PZT4, PZT5H, PZT6B, and
PZT7A are considered in our numerical analysis. Material proper-
ties in their local coordinate system are listed in Table 1. In all
numerical examples, the poling directions of the upper and lower
half material planes are assumed to be along the global x2-axis. A
crack of length l at the interface of the piezoelectric bi-material
is considered. Before we present our numerical results, we first
study the possible influence of the parameter e in the Gaussian
functions on our numerical solution.

7.1. On the choice of parameter e

As mentioned in Section 4.2, the value of e can be different for
different problems. Here we propose a numerical method on the
suitable selection of the e value. We mainly focus on the effect of
parameter e on J-integral since the latter one is a comprehensive
parameter for crack studies. Fig. 2(a)–(c) are the curves of normal-
ized J-integral as functions of the ratio e/(2a) for three material
pairs PZT4/PZT5H, PZT4/PZT6B, and PZT4/PZT7A. In this figure,
while the J-integral is normalized by r2

22=c33 with c33 being the
elastic constant of PZT4, 2a is the element length in our numerical
calculation which is usually very small (2a = l/180 in this study
after various numerical validations). Shown in Fig. 2 are also the re-
sults of the corresponding solutions without delta functions in Eq.
(31). It can be seen from Fig. 2 that when e/(2a) approaches zero,
the J-integral including the delta function effect approaches the va-
lue based on the formulation without the delta function which is
shown by the horizontal straight line. This indicates that the solu-
tion without the delta function provides an upper bound for J-inte-
gral. However, the J-integral based on our new solution including
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Fig. 2. Effect of the ratio e/(2a) on the normalized J-integral in the bi-material of (a)
PZT4/PZT5H, (b) PZT4/PZT6B and (c) PZT4/PZT7A under loadings of r21 = r22 =
20 MPa, D2 = 0.002 C/m2. The constant solution without containing the delta
function is also shown for comparison.
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the delta function of Gaussian distribution reaches a minimum va-
lue near e/(2a) = 0.66, which could serve as a lower bound. The va-
lue of J-integral with the delta function effect will always fall
between the upper and lower bounds. The difference between its
upper and lower bounds is only 4% for PZT4/PZT6B and is less than
1% for the other two material pairs. Actually, it is further noticed
that when e/(2a) is within (0.66, 1.8), the J-integral containing
the delta function is nearly constant. Thus, in the following numer-
ical analysis, the ratio is fixed at e/(2a) = 1.35 (again with the ele-
ment length 2a being fixed 2a ¼ l=180).
x1/l

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Fig. 3. Variation of the normalized displacement discontinuity ku2k along the
interfacial crack in the piezoelectric bi-material induced by the mixed uniform
loading of r22 = 20 MPa and D2 = 0.002 C/m2 applied to the crack surface.
7.2. Displacement discontinuities along the interface crack

Fig. 3 shows the normalized extended displacement discontinu-
ity ku2k (normalized by l � 10�3) along the interface crack of
length l under the applied traction r22 = 20 MPa and electric dis-
placement D2 = 0.002 C/m2 for the three pairs of bi-material. The
maximum normalized opening displacement is at the center of
the crack, being 0.395, 0.372, and 0.377, respectively, for PZT4/
PZT4, PZT4/PZT5H, and PZT4/PZT6B. Fig. 4 shows the normalized
electric potential jump kuk (normalized by lD2/j33) along the
interface crack under the loadings of r22 = 20 MPa and
D2 = 0.002 C/m2, where j33 is the dielectric constant of PZT4. For
the material pairs PZT4/PZT4, PZT4/PZT5H, and PZT4/PZT6B, the
normalized electric potential jump has, respectively, a maximum
of 0.74, 0.59, and 0.18 in the center of the crack. It is concluded that
the relative opening displacement and electric potential jump of
the interfacial crack in a homogeneous material are larger than
those in a true bi-material system.
7.3. Effect of different loadings on stress intensity factors and J-integral

For the same material pairs, Figs. 5–8 show, respectively, the
variation of the normalized normal stress intensity factor KI (nor-

malized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
plðr2

21 þ r2
22Þ=2

q
), shear stress intensity factor KII (nor-

malized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
plðr2

21 þ r2
22Þ=2

q
), electric displacement intensity

factor KD (normalized by
ffiffiffiffiffiffiffiffiffiffi
pl=2

p
D2) and J-integral (normalized by

lr2
22=c33) with varying r21/r22 under electric displacement

D2 = 0.002 C/m2. Actually, in the calculation, we fixe r22 � 20 MPa
and change the value of r21. Figs. 5 and 6 show that, with increas-
ing r21/r22, while the normalized KI decreases, the normalized KII

increases. It can be further observed from both figures that these
two mechanical (stress) intensity factors are insensitive to the dif-
ferent material pairs or the material mismatch. On the other hand,
the electric (displacement) intensity factor KD is very sensitive to
the material pairs, as shown in Fig. 7. We point out first that, for
the material pairs PZT4/PZT4 which is actually a homogeneous
material, the normalized KD has a constant value of 1.01286 under
the given loadings as expected. However, for the true bi-material
cases, due to the material mismatch on the interface, the normal-
ized KD decreases linearly with increasing r21/r22. It is further no-
ticed that when the ratio of r21/r22 is larger than 1.9, the value of
KD for the material pairs PZT4/PZT5H becomes negative.

Fig. 8 shows that the normalized J-integral increases with
increasing r21/r22. Similar to the mechanical (stress) intensity
factors in Figs. 5 and 6, the J-integral is insensitive to different
material pairs or mismatches. Fig. 9 shows the variation of the
normalized J-integral (normalized by lr2

22=c33) with applied
electric displacement D2 (C/m2) (with fixed mechanical load at
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r22 = 20 MPa). It is interesting to observe that from this figure that,
for a given bi-material, the J-integral will first increase to a maxi-
mum value and then will decrease with increasing applied electric
displacement D2. In other words, there is a special applied electric
displacement to make the J-integral maximum, and on either sides
of this applied electric displacement, the local J-integral of the
interfacial crack will decrease. This special electric displacement
value is roughly 0.005, 0.0055, and 0.0025 C/m2 for the material
pairs PZT4/PZT4, PZT4/PZT5H, and PZT4/PZT6B.
8. Conclusions

In this paper, we have derived various extended Green’s func-
tions for extended dislocations or extended displacement disconti-
nuities located at the interface of a piezoelectric bi-material. The
Green’s functions are expressed simply in terms of the Stroh for-
malism and are applied to obtain the integro-differential equation
of the interfacial crack employing the Somigliana identity. The
well-known oscillating singularities associated with the interfacial
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crack are removed by representing the delta function in terms of
the Gaussian distribution function. This important operation fur-
ther reduces the integro-differential equation to a standard inte-
gral equation for the interfacial crack problem in piezoelectric bi-
material. A simple numerical approach is also proposed to solve
the integral equation for the involved unknown displacement dis-
continuities. Based on the displacement discontinuities, asymptot-
ical expressions of the extended intensity factors and J-integral are
further derived. As numerical examples, the effect of the Gaussian
parameter on the numerical results is first discussed. It is found
that the J-integral without the delta function effect can be used
as the upper bound in conservative analysis. Furthermore, for the
selected Gaussian parameter, the influence of different extended
loadings on the interfacial crack behaviors is discussed.
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