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By extending the pseudo-Stroh formalism to two-dimensional decagonal quasicrystals, an exact closed-
form solution for a simply supported and multilayered two-dimensional decagonal quasicrystal plate is
derived in this paper. Based on the different relations between the periodic direction and the coordinate
system of the plate, three internal structure cases for the two-dimensional quasicrystal layer are consid-
ered. The propagator matrix method is also introduced in order to treat efficiently and accurately the
multilayered cases. The obtained exact closed-form solution has a concise and elegant expression. Two
homogeneous quasicrystal plates and a sandwich plate made of a two-dimensional quasicrystal and a
Homogeneous crystal with two stacking sequences are investigated using the derived solution. Numerical results show
Multilayered that the differences of the periodic direction have strong influences on the stress and displacement com-
Plate ponents in the phonon and phason fields; different coupling constants between the phonon and phason
fields will also cause differences in physical quantities; the stacking sequences of the multilayer plates
can substantially influence all physical quantities. The exact closed-form solution should be of interest
to the design of the two-dimensional quasicrystal homogeneous and laminated plates. The numerical
results can also be employed to verify the accuracy of the solution by numerical methods, such as the
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finite element and difference methods, when analyzing laminated composites made of quasicrystals.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Quasicrystals (QCs) emerged as a new structure of solid matter
based from a diffraction image of rapidly cooled Al-Mn alloys
around 1982 (Shechtman et al., 1984; Levine and Stcinhardt,
1984). The discovery was revolutionary because QCs are contrary
to conventional crystals in that they lack translation symmetry.
Among approximately 200 individual QCs observed to date, two-
dimensional (2D) QCs with fine thermal stability play an important
role in this kind of matter (Fan, 2011). A 2D QC is defined as a
three-dimensional (3D) body where its atomic arrangement is qua-
si-periodic in a plane and periodic along the direction normal to
the plane. To describe the linear elastic mechanical behaviors of
the material at room temperature (Fan, 2011), the generalized lin-
ear elastic theory of QCs based on the notion of continuum
mechanics was established by Ding et al. (1993). Based on the sym-
metry breaking principle of Landau, the physical basis of elasticity
of QCs is formulated by Bak (1985a, 1985b) and Levine and
Stcinhardt (1984). In this theory, the phonon displacement field
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is analogous to the displacement field of traditional continuum
mechanics which describes shape and volume changes of unit cells.
Additional degrees of freedom are introduced as the phason dis-
placement field attributing to the quasi-periodic lattice structure
in QCs. The phason displacement field corresponds to atomic rear-
rangement of unit cells. Due to elementary excitation, the phonon
mode is propagating whereas the phason mode is diffusive. Recent
reviews on the linear elastic theory of QCs can be found in Hu et al.
(2000) and Fan (2011, 2013).

Due to their low friction coefficient, high hardness, low adhe-
sion, high wear resistance and low level of porosity, QCs are pre-
dominantly used in industry as coatings or thin films of metals
(Balbyshev et al., 2004). Studies in QC multilayered plates offer
guidance in understanding the stresses and deformations of QC
coatings or films. For crystal composites, analytical solutions for
simply supported plates have been obtained (Noor and Burton,
1990; Pan, 2001). Although three point bending solution for QC
plate under static and transient dynamic loads has been obtained
(Sladek et al., 2013), it was for one-dimensional QCs. The complex-
ity of the QC basic equations of elasticity increases considerably
from 1D QC to 2D QC which limits most of studies on 2D QCs to
the defect problems in infinite spaces (Zhou and Fan, 2001;
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Fan et al., 2004). Up to now, no exact closed-form solution for
mechanical problems of plates in finite space has been reported
in literature for 3D problems of 2D QC composites.

In this paper, we derive an exact closed-form solution for a mul-
tilayered 2D decagonal QC plate under surface loadings with sim-
ply supported lateral boundaries. The powerful pseudo-Stroh
formalism (Pan, 2001) is first extended to 2D QCs to obtain the
general solution for each homogeneous QC layer. Based on the dif-
ferent relations between the periodic direction and the coordinate
system of the plate, different internal structure cases for the 2D QC
layer are considered. Furthermore, a multilayered plate containing
both QC layers and crystal layers as a special case is investigated in
details with the propagator matrix method (Pan, 1997a) being
introduced to treat the corresponding multilayered cases. As
numerical illustrations, three examples are discussed.

2. Basic equations

Consider a 2D QC with x; and x, as the quasi-periodic directions
and x3 as the periodic direction referring to a rectangular Cartesian
coordinate system (xq,X,x3). The phason displacements wy,, (m = 1,2)
exist in addition to phonon displacements u; (i=1,2,3). Phonon
displacements correspond to the translation of atoms, whereas
phason displacements correspond to the rearrangement of atoms.
According to the linear elastic theory of QCs (Ding et al., 1993),
the strain-displacement relations for 2D QCs are given by

&j = (8ju,» + 0,‘Uj)/2, Wpj = 8ij, (1)

where j=1, 2, 3, §; = 9/9x;, &¢; and wy,; denote the phonon and pha-
son strains, respectively.

In the absence of body forces, the static equilibrium equations
are

905 =0, 9Hp =0, 2)

where o;; and H,,j respectively denote the phonon and phason stres-
ses, and repeated indices imply the summation from 1 to 3. Ding
et al. (1993) derived the equilibrium equation from the law of
momentum conservation. It should be noted that it is possible to
write equilibrium equations for a generalized degree of freedom
in the form of the second Newton'’s law only if there exists a corre-
sponding conservation law. As such, although the phason mode in
QCs corresponds to atomic jumps or diffusion, there is no conserva-
tion law corresponding to the diffusion of atoms (Rochal and
Lorman, 2002).

We arrange the strain components in phonon and phason fields
respectively in two vectors as

{7} = {e11, €2, €33, Vo35 V31> Y12}
{W} = {wi1, Waz, Was, Wiz, Wi3, W21}t7 (3)

in which the superscript “t” represents the transpose,
Vs = 2&; (i #]J), and the stress components are ordered similarly as

{G} = {011, 02, 033, 023, 031, 012, }',
{H} = {H11, Hx2, Ha3, H12, His, H21}tA (4)

Making use of the displacement and stress vectors in Egs. (3)

and (4), the linear constitutive equations of 2D QCs can be ex-
pressed by the following form (Fan, 2011; Ding et al., 1993):
0 = Cu1 + Ruw, (5)
Hy = Ryt + KW,
where k, [=1, 2, ...6, Cy and Ky, are, respectively, the elastic con-
stants in phonon and phason fields, Ry, are the coupling constants
between the phonon and phason fields. For 2D decagonal QCs with
the point groups 10 mm, 1022, 10 m2, 10/mm, the three constant
tensors in Eq. (5) can be written as

[Ci1 Ciz Gz O 0 0 7
C12 C]] C13 0 0 0
c_|Cs G5 Cs 0 0 0
0 0 0 Cy4 O O}
0 0 O 0 Cua O
L0 0 O 0 0 Cel
Ry R 0 0 0 07
-Ry =Ry 0 0 0 O
0 0 0 0 0 O
R= ; (6)
0 0 0 0 0O
0 0 0 0 0O
L O 0 0 —Ry 0 Ry
Ky K, 0 0 0 0 7
K;y K, 0 0 O O
K= 0 0 Ksz 0 0 O
0 0 0 Ky 0 -K;
0 0 O 0 Ks O
L0 0 0 Ky 0 K; |

Although the fundamental equations have been presented in
differential form, they can also be expressed in variational form
by introducing an energy functional for quasicrystals (Fan, 2011;
Altay and Dékmeci, 2012; Shi, 2005).

3. Problem description and general solution

Consider a multilayered 2D decagonal QC plate as shown in
Fig. 1 with horizontal dimensions x x y =L, x L, and a total thick-
ness z = H in a rectangular Cartesian coordinate system (x,y,z) with
its four sides being simply supported. Let j denote the j-th layer of
the layered plate. For layer j, its lower and upper interfaces are de-
fined, respectively, as z; and z;,4. Thus, for an N-layered plate with
total thickness H, it is clear that z; = 0 and zy.; = H. Along the inter-
faces of the layers, the displacements and z-direction traction
stresses are assumed to be continuous, i.e.

Wi); = Ui, Wm);j = Wm)jas
(0i2); = (Oiz)j1: (Hmz); = (Hmz)ji1,
at the interface of layer jand j + 1. (7)

The coordinate system (x,y,z) in Fig. 1 is a global one and it is
independent of the materials of the plate. We also induce the local
material coordinate system (xi,X,x3) mentioned in Section 2
which characterizes the physical properties of the QC layer. Both
the origins of the global and local coordinate systems O and O’
are at one of the four corners on the bottom surface with the same
position. According to the relative orientation of the local material
coordinate system with respect to the global coordinates, three
cases of internal structures of the 2D QC plate are investigated.
As a special case, a multilayered plate containing both QC layers
and crystal layers will be considered.

]
L]
L]
) ZN+l : H
[]

p ’ ,:----./.ZJ.” ..... Tl
. Th; .=~ Layer] :
N %
o) X <z Ly
Lx

Fig. 1. A multilayered 2D QC plate.
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Fig. 2. A 2D QC homogenous plate of Case 1.

Case 1. We assume that the global and local coordinate systems
having the relation (x,y,z) = (x1,X2,X3) as shown in Fig. 2. Accord-
ingly, the periodic direction of the 2D QC is the z-direction or the
thickness direction of the plate.

The solution of the displacement vector of the homogenous 2D
QC plate is assumed to take the following form:

Uy Uy a; cos px sinqy
uy U, a, sin px cos qy
u=1< u, » =1 uz ,=e%<{ azsinpxsinqgy ;, (8)
Wy wy a4 COS px sin qy
wy wy as sin px cos qy
where
p=nn/Ly, q=mn/L, 9)

with n and m being two positive integers, and the coefficients to be
determined are s, a;, ay, as, a4 and as. It can be seen that the dis-
placement vector satisfies the simply supported displacement
boundary conditions:

x=0and L,:uy =u, =w, =0;

10
y=0andL,:u=u,=w,=0. (10)

It is noted that the solution in Eq. (8) represents only one of the
terms in a double Fourier series expansion when solving a general
boundary value problem. Therefore, in general, summations for n
and m over suitable ranges are implied whenever the sinusoidal
term appears.

Substituting Eq. (8) into the constitutive Eq. (5), the z-direction
traction vector can be written as

in which
0 0 Cup
0 0 Ciq
P=|-Cup —Cuqg O
0 0 0
0 0 0

o O © © o

Cy O
0 Cu
0 0 CGs3
0 O
0 O

1739
0 0
0 0
0 0
Ks 0
0 K,

(14)

Similarly, the other stress components in Eq. (4) are obtained as

Oxx o1 ¢y sinpx sin qy
Oxy 012 Co COS pX COS qY
Oyy 02 c3 sinpxsinqy
Hy 3 ={ Hyp p =€%{ cysinpxsingy o, (15)
Hy, Hy, Cs sin px sin qy
H, Hiy Cg COS pX COS qy
Hyy Hoy, C7 COS PX COS qY
where
C1 [—Ciip —Ci2q Ciss —Rip —Riq]
2 Cesq GCesp O —Rig Rip a
C3 —Ci2p —Cnqg Ci3s Rip  Rig a,
¢4 p= | —Rip Riq 0 —-Kip —-Kyxq as (16)
Cs -Rip  Rig 0 —Kyp -Kiq||as
Cs -Rigq -Rip O Kig —Kyp| (as
c7 | Riq Rip 0 —-Kyq Kip |

By substituting all stress components in Egs. (11) and (15) into
the equilibrium Eq. (2), the following relations are obtained:

—(Cuup?* +Co6q*)a1 — (C12pq + CosPq)az +Ri(q* — p*)aa

—2R1pqas +5(C13p+ CayP)as +5*Caay =0,

— (Cospq + Cr2pq)a; — (Cosp® + C11G%) a2 + 2R1 pqa, + Ry (q* — p*)as
+5(C13q+ Caaq)az +5*Cyqa, =0,

— (Ca4p?® 4+ C44q?)a3 +5(—Caapa; — Ca4qa, — Ci3pa; — C13qay) +5*C33a3 =0,
Ri(q? — p*)a; + 2Ripqa, — (K1p? + K1q%)as +s* K40, =0,

—2Rpqa; + Ry (q? — p?)ay — (K1p? + K1G?)as +s*°K4as = 0.

Oz 013 by cos pxsin qy a7
Oy Ors by sin px cos qy In terms of vector a, Eq. (17) simplifies to
t={ 0, y =1 033 p =e%{ bysinpxsinqy (11) [Q+s(P+P)+5°Tla=0, (18)
H,, His b4 cos px sin qy where P' — —P', and
Hy, Has bs sin px cos qy
—(Cup* +Cesq®)  —Pq(Ci2 + Ces) 0 Ri(¢* - p?) —2Ripq
—pq(Ci2 +Ces)  —(CosP® + C11q?) 0 2Ripq Ri(¢* - p*)
Q= 0 0 —Caa(P* +¢°) 0 : (19)
Ri(¢* - p?) 2Ripq 0 ~Ki(p* + ¢*) 0
—2Ripq Ri(¢* - p?) 0 ~Ki(p* + ¢*)

The two vectors

a:{(11,(12,(13,(14,(15}t7 If):{b],bz,b3,b4,b5}t7 (12)
are introduced to represent the coefficients in Eqs. (8) and (11),
respectively. By using the constitutive Eq. (5), the vectors b and a

have the following relation:

b= (-P' +sT)a, (13)

It should be noted that Eq. (18) is similar to the Stroh formalism
(Stroh, 1958). Thus, this formalism can be appropriately named as
the pseudo-Stroh formalism (Pan, 2001).

Case 2. In this case, the local and global coordinate systems
have the relation (x3,x1,X2)=(x,y,z) as shown in Fig. 3. The
periodic direction of the 2D QC is in the in-plane x-direction of
the plate.
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The solution of the displacement vector for this case is assumed o [—Cisp —Ciq Cias —Riq Ris]
to take the form as Cy Caaq  Cup 0 0 0 a
Uy U3 a; cos px sinqy = ~Gp —Ci3q Ciss 0 0 a
u, U a Sinpx cos qy Cy = 0 *qu *R]S 7I<1q KzS as (24)
u=<{ U, p =< U, p=e%{ azsinpxsingy 7, (20) Cs 0 0 0 Kip 0 Oa
wy Wy a, sin px cos qy Cs 0 Ris  Rig —Kos Kiq| (a5
w, wy as sin px sin qy & L 0 0 0 0 Kip]

which satisfies the simply supported boundary conditions of the
plate. Substituting Eq. (20) into the constitutive Eq. (5), the follow-

ing traction vector can be obtained as:

Q is obtained as

Substituting all the stress components in Eqs. (21) and (23) into the
equilibrium Eq. (2), Eq. (18) remains valid in this case, and the new

—(C33p® + Caaq®)  —pq(Ci3 + Cas) 0 0 0
—pq(Ci3 +Caa)  —(Caap® + Cui@?) 0 —Ri¢? 0
Q- 0 0 —(Ce6G? + Caap?) 0 —Ri¢? (25)
0 —Ri¢? 0 —(K1q? + K4p?) 0
0 0 —Riq? 0 —(K1q* + Kap?)
Oxz 03 by cos px sin qy Case 3. We assume that the local and global coordinate systems to
o 012 b, sin px cos qy be related by (x,,x3,X1) = (X,¥,2z), as shown in Fig. 4. In this case, the
t= O'Z —{ 03 5 =e?{ bysinpxsinqy 1) periodic direction of the 2D QC is parallel to the y axis.
Hy, Hiy b4 sinpx cos qy The solution of the displacement vector is assumed to be
H, Hy bs sinpxsin qy uy u, a; cos pxsin qy
The relation between b and a in Eq. (13) can be shown to remain Uy us @ sin px cos qy
the same as the previous case, while P and T are changed into the u=1< u, p =< Uy p=e%{ assinpxsinqy (26)
following forms: Wy w, a4 COS px sin qy
[0 0 Cep O 0 w;, wq as sin px sin qy
0 0 Cg 0 Rig Accordingly, the corresponding traction vector is
P=|-Cup -Cesq O Rig O |, O On b, cos px sin qy
0 0 —R, q 0 qu b, si
0 R 0 K 0 Oyz 031 2 SIN PX COS qy
L 14 24 (22) t=< 0, »={ 011 » =e%{ bysinpxsinqy (27)
Cyqg O 0 0 0 .
H,, H> b4 cos px sin qy
0 Gs 0 —Ri 0 H H bs sin px sin qy
T=|0 0 Cy 0 -R # ! °
0 -R 0 K, 0 The same relation between b and a in Eq. (13) still holds in this
0 0 R 0 K case, while P and T are now rewritten as
L - ] 1 -
. 0 0 C]zp 0 —R1P
The other stress components are obtained as 0 0 Cisq 0 0
13
Oy o1 c1 sinpxsinqy P=|-Cep -Cuq O —Rp 0 |,
Oxy 013 C2 COS pXx Ccos qy 0 0 Rip 0 Kyp
O 033 cs sinpxsinqy | Rip 0 0 Kp 0 28)
Hy, » =< Hiy p =e%¢ cysinpxsingy », (23) [Ces O 0 R O
ny H13 Cs COSpx cosqy 0 C44 0 0 0
H,, Hyi Ce Sin px oS qy T=1| 0 0 Chn 0 R
H Hs C7 Cos pxsinqy RR 0 0 K4 O
where | 0 0 R 0 K,
z(x) : ____________________ z(x) : ____________________
\ - -
y\ﬂ\\,-’ y(}i"),-
00) 0©)

x (x3)

Fig. 3. A 2D QC homogeneous plate of Case 2.

x(x)

Fig. 4. A 2D homogeneous QC plate of Case 3.
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The other stress components are expressed as C1 [—Ciip —Ci3q Cias  Rip  —Ris]
. . c C C 0 0 0 a
Oxx 02 1 sinpxsinqy 2 444 P !
C3 —Cisp —C33q  Ciss 0 0 a;
Oy 023 C; COS PX COS qy
. . Cy = R]p 0 R]S *Klp K25 as (30)
Oy 033 c3 sinpxsinqy
sz . . Cs 0 0 0 K4q 0 Ay
Hyy 3 =< Hyp p =e%< cysinpxsinqgy (29)
Cs —Ris 0 —Rlp —-K5s Klp as
H,y Hys C5 COS pX COS qY
. c7 0 0 0 0 Kaq
Hx Hp, Cs COS pX sin qy ]
H, Hys ¢; sin px cos qy Substituting all the stress components in Egs. (27) and (29) into
the equilibrium Eq. (2), we have the same relation expressed in Eq.
where (18), but with the Q for this case being
—(Cup® +Caaq®)  —pq(Ciz + Cag) 0 Rip? 0
—pq(Ci3 + Cas)  —(Casp® + C33¢?) 0 0 0
Q= 0 0 —(Ce6P® + C44G°) 0 Rip? (31)
Rip? 0 0 —(Kip? + K4q?) 0
0 0 R]pz 0 —(I(1p2 +K4q2)
03 T T T T 0-3 T T T T
——Case 1 —o—Case 1
—— Case 2 —— Case 2
0.2 4 0.2 e
E g
0.1 4 0.1 e
0.0 1 0.0 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
2 2
o (N/m’) o, (N/m’)
(@) o, b) o,
0.3 0.3 T T T
——Case | —o—Case 1
0.2 4 0.2+ e
R ——Case 2 4 —— Case 2
:E: (33 ——Case3 g ;i ——Case 3
YO0t vl X |
0.0 0.0 L L L
-0.4 -0.3 -0.2 -0.1 0.0 -0.4 -0.3 -0.2 -0.1 0.0
g, (N/mz) g, (N/mz)
(c) o, ) o,
0.3 T T T 0.3 b ’ T T
—o—L(Lase
—o—Case 1 e Case?
—— Case 2 o Case3
02F ——Case 3 A 02+ e
g g
Y00t 4 Y00+ e
0.0 L L 0.0 L I L L
-0.8 -0.4 0.0 0.4 0.8 0.0 0.1 0.2 0.3 0.4 0.5
a, (N/mz) g, (N/mz)
() o, ® o,

Fig. 5. Variation of the stress components in phonon field along z-direction of the homogeneous plate.
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Fig. 6. Variation of the stress components in phason field along z-direction of the homogeneous plate.
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Fig. 7. Variation of the displacement components along z-direction of the homogeneous plate.

From the above analyses, it can be seen that Eqs. (13) and (18)
are valid for all the three cases, although the components in the
matrices Q, P and T take different forms. The method to deduce
the general solution for 2D QC plates is independent of the form
of the components taken in the matrices.

Making use of Egs. (13) and (18), another relation between vec-
tors a and b is obtained as
b= f%(Q+sP)a. (32)

Then, by employing Eqs. (13), (32), and (18) can be recast into a
10 x 10 linear eigensystem

Ny =sy, n={aby}, (33)
where
—1py —1

- 7Q+17r—1p/ 717r—1

A nontrivial solution for # exists if the determinant of the char-
acteristic matrix in Eq. (33) vanishes. If repeated roots occur, a
slight change in the material constants would result in distinct
roots with negligible error (Pan, 1997b). Thus, all eigenvalues can
be assumed to be distinct. We assume that the first five eigen-
values have positive real parts (if the root is purely imaginary,
we then pick up the one with positive imaginary part) and the
other five have opposite signs to the first five. The associated eigen-
vectors a and b corresponding to the eigenvalues s follow the same
ordering. The first five eigenvectors a and b are defined as 5 x 5
matrices A; and By, respectively, and the following five eigenvec-
tors are defined as A, and B,. Then the general solution for the dis-
placement vector u and traction vector t is derived as

(-1 wlealic)

where

(35)
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Fig. 8. Variation of the stress components along z-direction of the plate for Case 1 under different coupling constant R;.

A =[a1, 8, a3, a4, 5], Ay = [ag, a7, A3, A9, A10),

B; = [by, by, b3, by, bs], B, = [bg, by, bs, by, a1¢],

<es*z> _ diag[eslz., eszz7 €53Z, es‘,z7 €55Z, 6—5127 e—szz7 6—5327 6—3427 e*S:sZL
(36)

and K; and K, are two 5 x 1 constant column matrices to be deter-
mined by the boundary conditions of the problem. In Egs. (33) and
(35), the eigenvectors are only related to the material properties of
the plates.

The general solution obtained from Eq. (35) is for a homoge-
neous and simply supported plate consisting of 2D QCs. It should
be noted that results of the corresponding thin plate case can be
deduced from this solution by expanding the exponential term in
terms of a Taylor series (Kausel and Roesset, 1981).

We should point out that crystals can be seen as special QCs
with all the phason field physical quantities are zero. In the follow-
ing, the feasibility of the general solution in Eq. (35) for multilay-
ered plates containing both QC layers and crystal layers is
discussed as Case 4. The study is very important in that QCs are al-
ways used as films or coatings of crystals in industry.

Case 4. From Eq. (5), it can be seen if we set

Ri — 0, Ki=K;,=K4—0, (37)
then
H,— 0. (38)

It can be inferred that, for this limiting case, the phonon stresses
and strains of the QC are infinitely close to those in the correspond-
ing purely elastic crystal. Therefore, the general solution in Eq. (35)
can be used for the purely elastic crystal simply supported plates
by regarding a crystal layer as “a special QC” layer with the pha-
son-field elastic constants satisfying Eq. (37). In other words, the
values of the phason elastic constants of crystal layers should not
be exactly set to zero, but relatively very small (compared to those
in QC layers as discussed further below) to ensure that the system
matrices are not singular.

For a multilayered plate containing not only QC layers but also
crystal layers, at the interface between QC and crystal, in phason
field, only the following boundary condition should be satisfied
(Fan et al., 2011):
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Fig. 9. Variation of the z-direction displacement components along z-direction of the plate for Case 1 under different coupling constant R;.

H,=0. (39)

By using Eq. (37) to process crystal layers as the “special QC”
layers, the interface boundary condition in Eq. (39) can be very
closely approximated. That is, the continuity conditions for
z-direction phason traction forces along the interfaces in Eq. (7)
can be satisfied. Therefore, for a multilayered plate containing both
QC and crystal layers, using the solution in Eq. (35), the continuity
conditions along the interfaces in Eq. (7) and the boundary condi-
tions on its top or bottom surface, the phonon physical quantities
and phason stresses can be accurately obtained. We should further
point out that, for crystal layers, since the phason elastic constants
are very close to zero (relative to those in QC layers), the phason
stress field in the crystal layer is also close to zero. As for the dis-
placements in phason field, they should be zero or very close to
zero in crystal layers. Since phason displacement represents the
local rearrangement of the atoms in the unit cell, there is no
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physical meaning at all for it in the crystal layer and one can simply
set it to zero.

In conclusion, the general solution in Eq. (35) and the interface
continuity conditions in Eq. (7) can be used to solve the problems
of multilayered QC and crystal plates. In Section 5, a multilayered
plate containing both QC and crystal will be particularly
investigated.

4. Propagator method and solution for layered plates

By virtue of the general solution in Eq. (35), the interface conti-
nuity conditions in Eq. (7) and the boundary conditions on the top
and bottom surfaces, the exact closed-form solution can be ob-
tained for the multilayered QC plate shown in Fig. 1. To easily deal
with a plate with relatively large numbers of layers, the propagator
matrix method will be employed (Pan, 1997a).

0.3 T T T T
——QC/C/QC
—-—C/QC/C
0.2
E
Y 0.1
00 L L L L
0.0 0.1 0.2 0.3 0.4 0.5
o (Nm)
) o,
0.3 T T T T T
——QC/C/QC
——C/QC/C
0.2
E
Y 0.1
o
0.0 1 1 1 1 1 1
-06 -04 -02 00 02 04 06
g, (N/mz)
(d) O-xy

Fig. 10. Variation of the stress components in phonon field along z-direction of the sandwich plate of Case 2 with R;/Css = 0.01 in the QC layer.
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Fig. 11. Variation of the stress components in phason field along z-direction of the sandwich plate of Case 2 with R;/Cgs = 0.01 in the QC layer.

From Eq. (35), it can be seen that the constant column matrices
K; and K, for layer j can be solved as follows:

(K]) :<85‘(Z*Zj)>71 {A] Az}*1<u>
K, i B; B, t z7

where the subscript j indicates layer j and s* are the eigenvalues of
layer j, and z; < z < z;;1. Letting z be equal to z; and z;, 4, the column
matrices, in the respective cases, are written as

5] (1)

Bz t Z=Zjq

(o)~ &1 ()3
(41)

where h; is the thickness of layer j. From Eq. (41), the displacement
u and traction t on the upper surface z = z;,; can be expressed in
terms of those on the lower surface z = z; of layer j as

() -l slems 5] (3)

J

(40)

= (42)

2=Zj11

Assuming that both the displacement u and traction t are con-
tinuous across the interfaces, Eq. (42) can be applied repeatedly so
that one can propagate the physical quantities from the bottom

surface z=0 to the top surface z=H of the multilayered 2D QC
plate. Therefore, we have

(:)Z:H:PN(hN)'"Pj(hj)"'Pl(hl)<ltl)Z:07 (43)
where
P,(h,-):{;: ‘;jw‘hf)[; :jr, (i=12,...,N), (44)

is defined as the propagating matrix or propagator matrix of layer j.
To calculate the inverse matrix in Eq. (44), the following
simple relation in the pseudo-Stroh formalism can be used (Pan,

2001):

Al A" [-B, A

[ 1 2i| _ t2 Zt , (45)
B, B B, -A
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where the matrices A, By, A, and B, are normalized according to

-B{A; +AB; =1, (46)
with I being a 5 x 5 unit matrix.

Eq. (43) is a very simple, yet powerful, matrix propagation rela-
tion. For given boundary conditions, the unknowns involved can be
directly solved. As an example, we assume that a z-direction trac-
tion component is applied on the top surface of the plate such as

0, = Ggsinpxsingy, (47)

which may be one of the terms in the double Fourier series solution
for a general loading case (uniform or point loading). All other trac-
tion components on the top and bottom surfaces of the plate are as-
sumed to be zero. Thus, Eq. (43) is simplified to

()~ lo c)(%)
tH)) |G C 0o )
where C;, C;, C3 and C, are the components of the product of the

propagator matrices in Eq. (43), and t(H) is the given traction
boundary condition on the top surface, i.e.

(48)

(49)

Substitution Eq. (49) into Eq. (48) yields the unknown displace-
ments at the bottom and top surfaces as

t(H) = {0, 0, gy sin pxsingy, 0, 0}'.

u(0) = G;'t(H), u(H)=C,C;'t(H).

Thus, the solution for the displacement and traction vectors at
any depth z; < z < 7,1 is

<u> =Pj(z -2z 1)Pj1(hj1) ... Pa(h2)Pi(h) <u> :
t z t z=0

With the solved displacement and traction vectors at any given
depth, the other stress components can be evaluated.

Similar exact closed-form solutions for various other boundary
conditions can also be simply obtained. The exact closed-form
solution for a multilayered rectangular 2D decagonal QC plate de-
rived in this section is suitable for the four cases mentioned in Sec-
tion 3. In the next section, we apply our solution to investigate the
response of 2D QC plates under surface loadings.

(50)

(51)

5. Numerical examples

The first example is a homogeneous plate composed of a 2D
decagonal QC with the three orientation cases as described in Sec-
tion 3 (Case 1-3); the second example also considers a homoge-
neous plate with material orientation in Case 1 under different
values of the coupling constant Ry; the third example is a sandwich
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plate made of a 2D QC and a crystal with two stacking sequences
based on the orientation Case 2. For the three examples, the same
traction boundary condition is applied on the top of the plates by
Eq. (49) with n=m=1 and amplitude ¢, =1 N/m?, while on the
top and bottom surfaces all other traction components are zero.
To show the response of the plate in the thickness direction under
the top surface loading, the horizontal coordinates are fixed at
(%) = (0.75L,,0.75L,).

Example 1. Consider a square homogeneous plate made of a 2D
decagonal QC with Ly=L,=1m and H=0.3 m. According to Fan
(2013), the material property constants for this 2D hexagonal QC
are given as

Cy1=23.433 x 10'°N/m?, Cy2=5.741 x 10'°N/m?, C;3=6.663 x

10 N/m?, C33=23.222 x 10'° N/m?,

C44 =7.019 x ]010 N/mz, CGG = (C]] — Clz)/z =8.846 x 1010

N/m?, R; = 8.846 x 108 N/m?, K; =12.2 x 10'° N/m?,

Ky =2.4 x 10'"°N/m?, K4 =1.2 x 10!° N/m?.

Figs. 5 and 6 show respectively the variations of the stress com-
ponents in the phonon and phason fields along z-direction in the
homogeneous plate for the three orientation Cases of the struc-
tures. From the plots of the z-direction stresses, as shown in
Fig. 5(c), (d), (f), and Fig. 6(e), (f) and (i), it can be seen that the val-
ues on the top and bottom surfaces satisfy the traction boundary
conditions expressed in Eq. (49). This also partially verifies the cor-
rectness of the derived solution. From these figures, we observed
clearly that the magnitude of the stress components in phonon
field is much larger than that in phason field and that different ori-
entations (different Cases) can substantially influence the distribu-
tion of the stress components in the phason field. The stresses
shown in Figs. 5 and 6 further display the following characteristics:

(1) In Case 1, the equivalent relations include: oy = gy,
Ox; = Oy;, Hw = —H,y, Hy = —H,x and Hy, = —H,,.

(2) In Cases 2 and 3, the equivalent relations are: (Ox)cge 3 =
(Oyy) case 22 (Oxz)cases = (Oy2)case 2 (Oxv)case 3 = (Oyx) case 20
(HXX)Case 3= 7(Hyy)Ca5e 2 (HXY)Case 3= 7(HyX)Case 20 (H.XZ)Case 3 .:
—(Hx)case 2» ANAd (Hzz) e 3 = —(Hzz)case »- The relations still
remain valid even if the subscripts “Case 2” and “Case 3”
are interchanged.

Fig. 7 shows the variation of the displacement components in
the phonon and phason fields along z-direction in the plate. Simi-
larly, that the magnitude of the displacement components in pho-
non field is much larger than that in phason field and that different
orientations (different Cases) can substantially influence the distri-
bution of the displacement components in phason field. The dis-
placements have the following characteristics:
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Fig. 12. Variation of u, and w, along z-direction of the sandwich plate of Case 2 with R;/Cge = 0.01 in the QC layer.
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(1) In Case 1, equivalent relations include: u, = u,, and wy = —w,.

(2) In Cases 2 and 3, there are equivalent relations: (uy)case 3 =
(uy)Case 2y (uz)Case 3 =(uz)Case 2 (Wx)Case 3= _(Wy)Case 2y and
(W)case 3= —(Wz)case 2. By exchanging the subscripts “Case
2” and “Case 3” in the relations, they still hold.

Example 2. To analyze the coupling effect between the phonon
and phason fields, we consider Case 1 under different values of
the coupling constant Ry, which are R{/Css =0, 0.01 and 0.1. The
geometry and the stress boundary conditions of the plate are the
same as those in Example 1.

Figs. 8 and 9 show respectively the variations of the stress and
displacement components in the phonon and phason fields along
z-direction in the plate. It can be seen that the values of the cou-
pling constant R; have significant influence on the displacement
and stress components in phason field, while very weak influence
on those components in phonon field.

Example 3. We now consider a sandwich plate made of the 2D QC
of orientation Case 2 with the coupling constant R;/Css = 0.01 and a
crystal also in orientation Case 2. The geometry and the stress
boundary conditions of the plate are also the same with those
listed in Example 1. The three layers have equal thickness of 0.1 m.
Two stacking sequences, QC/crystal/QC (called QC/C/QC) and
crystal/QC/crystal (called C/QC/C), of the sandwich plate are
investigated.

The material coefficients for the crystal are obtained by Lee and
Jiang (1996) as

C11=16.6 x 10'"°N/m?, Ci5=7.7 x 10'°N/m?, Ci3=7.8 x 10'°

N/m?, C33=16.2 x 10'° N/m?, C44 =4.3 x 10'° N/m?,

CGG = (C]] — Clz)/z =445 x 10]0 N/m2

The phason elastic constants of the crystal are assumed using
Eq. (37). In other words, in our calculation, we let, in the crystal
layer, Ry = 0 and a very small value for K; (I = 1,2,4) which is about
10719 of the corresponding K; value in QC layer.

Figs. 10 and 11 show respectively the variation of the stress
components in the phonon and phason fields along z-direction in
the sandwich plate. From Figs. 10(b), (c¢), and 11(a), (b), it can be
seen that the values of the traction components in Eq. (21) on
the top and bottom surfaces satisfy the boundary conditions in
Eq. (49). It is clear that the top surface loading produces quite dif-
ferent responses in these two structures, demonstrating the signif-
icant role played by the material stacking sequences. That the
phason stresses in Fig. 11 are zero in crystal layers manifests the
correctness of our processing method for the crystal layers. The
two figures also show that the (in-plane) stress components in
Eq. (23) are discontinuous across the interfaces and are nonzero
on the bottom and top surfaces, while the traction components
in Eq. (21) are continuous across the interfaces. These stress com-
ponents are approximately either symmetric or antisymmetric
about the middle plane.

Fig. 12 shows the variation of displacement components u, and
w;, along z-direction. It is clear that, across the interfaces, while the
displacement in the phonon field is continuous, the displacement
in the phason field is not. This feature on the phason displacement
is consistent with and closely related to the fact that the phason
displacement field corresponds to the local atomic rearrangement
of unit cells.

6. Conclusions

Utilizing the powerful pseudo-Stroh formalism, we have de-
rived an exact closed-form solution for a simply supported and

multilayered 2D decagonal QC plate under surface loadings. Based
on the different relations between the periodic direction and the
coordinate system of the plate, three internal structure cases for
the QC layer are considered. The propagator matrix method is also
introduced to efficiently and accurately treat the multilayered
structures. A multilayered plate containing both QC layers and
crystal layers is investigated in detail. The final exact closed-form
solution has a concise and elegant expression.

A homogeneous plate with different internal structures under a
surface loading on the top of the plate is numerical investigated. It
can be seen that the internal structures have distinguishable influ-
ence on all physical quantities, especially on the physical quanti-
ties in phason field. Under different coupling constants, a
homogeneous plate with the internal structure in Case 1 is also
studied numerically under the same boundary conditions. The re-
sults show that the coupling constant strongly influences the stress
and displacement components in phason field but only weakly
influences those in phonon field. These results are closely related
to the loading condition of the problems. From the numerical
example of a sandwich plate made of a 2D QC and a crystal with
two stacking sequences, it is observed that the stacking sequences
can substantially influence all physical quantities especially at the
interface. The exact closed-form solution of this paper should be of
interest to the design of the 2D QC homogeneous and laminated
plates. The results can also be employed to verify the accuracy of
the solution by numerical methods, such as the finite element
and difference methods, when analyzing laminated composites
made of QCs.
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