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Synonyms

Crack

Overview

Fracture mechanics is essential to the mechanical

safety of structures, in which cracks and the

corresponding stress intensity factors (SIFs) near

their tips (fronts) are important [1]. In 1957, Irwin

[2] introduced the SIFs to describe the stress and

displacement fields near a crack tip. As it is well

known, there are three basic crack modes: opening

(mode I), sliding (mode II), and tearing (mode III).

Determining the SIFs near the crack tip (or front) in

linear elasticity is interesting yet challenging.

While most previous studies in SIFs were focused

on one or two fracture modes, mixed three-

dimensional (3D) modes need to be considered as

materials could be mostly failed under combined

tensile/compressive, shearing, and tearing loads or

the material under consideration is anisotropic (as

for most composite materials). For 3D isotropic

elastic materials, Singh et al. [3] obtained the SIFs

using the concept of a universal crack closure inte-

gral. For transversely isotropic (TI), orthotropic,

and anisotropic solids, Pan and Yuan [4] presented
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the general relationship between the SIF and the

relative crack opening displacement (COD). Laza-

rus et al. [5] compared the calculated SIFs with

experimental results for brittle solids under mixed

mode I-III or I-II-III loadings. The 3D SIFs were

also calculated byZhou et al. [6] using the variable-

order singular boundary element. More recently,

Yue et al. [7] employed the boundary element

method (BEM) [8, 9] in their calculation of the

3D SIFs of an inclined square crack within a finite

but bimaterial domain. Other representative

works in this direction are those by Liu et al. [10],

Blackburn [11], dell’Erba and Aliabadi [12],

Partheym€uller [13], Hatzigeorgiou and Beskos

[14], Popov [15], Ariza and Dominguez [16],

Lo et al. [17], and Zhao et al. [18]. The weakly

singular and weak-form integral equation method

recently proposed by Rungamornrat [19] and

Rungamornrat and Mear [20] is also efficient in

crack analysis in anisotropic media. Besides the

analytical (integral equation) and BEM methods

[21], other common methods, such as the finite

difference (FD) [22–24] and finite element (FE)

[25, 26], were also applied to the 3D SIF analysis.

Since both the FD and FE methods require

discretization of the whole problem domain, they

could be time consuming and more expensive than

the BEM in fracture analyses.

While BEM is an excellent choice for fracture

mechanics analysis in a linear and homogeneous

solid, material heterogeneity or inhomogeneity

introduces complexity to this approach. Neverthe-

less, various progresses have been made in modify-

ing BEM for the inhomogeneity systems, including

composites, rock structures, porous and cracked

media. Bush [27] investigated the interaction

between a crack and a particle cluster in composites

using the BEM. Also applying the BEM, Knight

et al. [28] analyzed the effect of the constituent

material properties, fiber spatial distribution, and

microcrack damage on the local behavior of fiber-

reinforced composites. Dong et al. [29] presented

a general-purpose integral formulation in order to

study the interaction between the inhomogeneity

and cracks embedded in 3D isotropic matrices.

Based on a symmetric Galerkin BEM, Kitey et al.

[30] investigated the crack growth behavior in

materials embedded with a cluster of inhomogene-

ities. Lee and Tran [31] applied the Eshelby equiv-

alent inclusion method to carry out the stress

analysis when a penny-shaped crack interacts with

inhomogeneities and voids. Dong et al. [32] inves-

tigated the interaction between cracked TI inhomo-

geneous solids using a special BEM formulation.

Interface cracks in two or more isotropic materials

were also studied bySladek andSladek [33] andLiu

andXu [34]. Recent representative developments in

this direction include the three-step multi-domain

BEM solver [35], the subregion-by-subregion

approach based on the Krylov solver [36, 37], and

the well-known fast multipole BEM [38, 39].

In this entry, wewill give a brief account on 3D

linear fracture mechanics in TI inhomogeneous

materials, based on the BEM approach. The field

responses, the relative crack opening displace-

ment (COD), as well as the SIFs will be discussed.

Governing Equations

– Equations of equilibrium

sij;j þ bi ¼ 0; i; j ¼ 1; 2; 3 ð1Þ

where sij is the stress tensor; bi the body force;

and the subscript “j ” denotes the partial dif-

ferentiation with respect to the coordinates x,

y, and z.

– Strain and displacement relation

eij ¼ 0:5 ui; j þ uj;i
 !

; i; j ¼ 1; 2; 3 ð2Þ

where ui is the elastic displacement.

– Constitutive relation

Again, we assume that the material is TI

and we let the global z-axis be along the

symmetry axis of the material. Then, the con-

stitutive relation for this case can be written as

sxx ¼ c11exx þ c12eyy þ c13ezz

syy ¼ c12exx þ c11eyy þ c13ezz

szz ¼ c13exx þ c13eyy þ c33ezz

syz ¼ 2c44eyz; sxz ¼ 2c44exz; sxy ¼ 2c66exy

ð3Þ
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where cij are the stiffness coefficients with

c66 ¼ (c11-c12)/2. Thus, in a TI, there are only

five independent material coefficients. In terms of

the compliance coefficients (the inverse of the

stiffness), the physical meanings of the five inde-

pendent coefficients are: the Young’s modulus

and Poisson’s ratio in the isotropic plane (i.e.,

the xoy plane), the Young’s modulus and

Poisson’s ratio in the plane normal to the isotro-

pic plane, and the shear modulus in the plane

normal to the isotropic plane.

It is noted that since a crack may be oriented in

any direction with respect to the TI material sys-

tem, one usually needs to introduce two orienta-

tion angles, for instance, c and b [4, 40], to

describe the relation between the material system

and the crack orientation. Furthermore, one may

need extra coordinate transforms between the

material systems and the global space-fixed coor-

dinate system if multiple material domains (inho-

mogeneous materials) are involved and/or the

boundary conditions are described in terms of

the global system.

The BEM for a Cracked Matrix with
a Single Inhomogeneity

We start with a cracked matrix containing only

one inhomogeneity. The single crack is located in

the matrix. We now present the solution process

based on the BEM. First, we discretize the

cracked matrix in terms of the single-domain

BEM [4]. In other words, we apply the following

displacement and traction boundary integral

equations [4]

bijujðySÞ ¼

ð

S

UijðyS; xSÞ tjðxSÞdSðxSÞ

�

ð

S

TijðyS; xSÞ ujðxSÞdSðxSÞ

�

ð

Gþ

TijðyS; xGþÞ ½ujðxGþÞ

� ujðxG�Þ�dGðxGþÞ þ u0i ðySÞ

ð4Þ

½tlðyGþÞ � tlðyG�Þ�=2þ nmðyGþÞ
ð

S

clmikTij;kðyGþ; xSÞujðxSÞdSðxSÞ

þ nmðyGþÞ

ð

Gþ

clmikTij;kðyGþ; xGþÞ

½ujðxGþÞ � ujðxG�Þ�dGðxGþÞ

¼ nmðyGþÞ

ð

S

clmikU
�
ij;kðyGþ; xSÞtjðxSÞdSðxSÞ

þ ½t0l ðyGþÞ � t0l ðyG�Þ�=2

ð5Þ

to the cracked matrix. In (4) and (5), bij are the

coefficients that depend only on the local geom-

etries of the inhomogeneity–matrix interface S

at ys. A point on the positive (negative) side of

the cracks is denoted by xG+ (xG-), and on the

inhomogeneity–matrix interface S by both xs

and ys; nm is the unit outward normal of the

positive side of the crack surface at yG+; clmik

is the fourth-order stiffness tensor of the TI

material; u0i ðysÞ is the i-th displacement compo-

nent at point ys corresponding to the given

remote loading, and t0l ðyGþÞ and t0l ðyG�Þ the

corresponding traction components along the

l-direction at points yG+ and yG-; ui and ti are

the displacements and tractions on the inhomo-

geneity–matrix interface S (or the crack surface

G); Uij and Tij are the Green’s functions of the

displacements and tractions; Uij,k and Tij,k are,

respectively, the derivatives of the Green’s dis-

placements and tractions with respect to the

source point. The displacement and traction

Green’s functions are taken from Pan and

Chou [41] while their derivatives are taken

from Pan and Yuan [4]. It is noted that the

single-domain boundary integral equations

similar to (4) and (5) were applied to

a cracked homogeneous solid before and it has

been demonstrated that this single-domain

BEM approach is very efficient. However, if

there is also an inhomogeneity in the cracked

domain, one needs another BEM equation. In

other words, the displacement integral equation
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needs to be applied to the surface of the inho-

mogeneity as follows [32]:

bijujðySÞ ¼

ð

S

UijðyS; xSÞ tjðxSÞdSðxSÞ

�

ð

S

TijðyS; xSÞ ujðxSÞdSðxSÞ

ð6Þ

Equations (4), (5), and (6) then can be uti-

lized to investigate the effect of the inhomoge-

neity on the SIFs of the crack in a TI matrix as

well as the internal field behaviors both within

the inhomogeneity and the matrix. In

discretization of these equations, the nine-node

quadrilateral curved elements can be applied to

the inhomogeneity–matrix interface and the

crack surface with the crack front being treated

by special elements [4].

Taking each node in turn as the collocation

point and performing the involved integrals, we

finally obtain the compact forms of the

discretized equations from (4), (5), and (6) as

H11 H12

H21 H22

# $

Um

DUc

# $

þ
B1

B2

# $

¼
G11 G12

G21 G22

# $

Tm

Tc

# $

ð7Þ

and

HiUi ¼ GiTi ð8Þ

where the subscripts i and m represent, respec-

tively, the inhomogeneity and matrix; H and G

are, respectively, the influence coefficient matri-

ces containing integrals of the fundamental

Green’s function solutions;B1 andB2 are, respec-

tively, the displacement and traction vectors

induced by the remote loading; Um (Ui) and Tm

(Ti) are, respectively, the nodal displacement and

traction vectors on the matrix side (inhomogene-

ity side) of the inhomogeneity–matrix interface;

DUc and Tc are, respectively, the discontinuous

displacement and traction vectors over the crack

surface. In this entry, we assume that the tractions

on both sides of the crack are equal and opposite,

and thus, Tc is equal to zero.

Using the continuity condition of the dis-

placement and traction vectors along the inter-

face, i.e., Um ¼ Ui and Tm ¼ �Ti, between the

inhomogeneity and matrix, we can combine (7)

and (8) into

H11 þG11G
�1
i Hi H12

H21 þG21G
�1
i Hi H22

# $

Um

DUc

% &

¼ �
B1

B2

% &

ð9Þ

which can be solved for the unknowns Um and

DUc. After that, a boundary integral equation

similar to (4) or (6) can be applied to find the

internal displacements and their gradients (by

taking the derivatives) inside the matrix or the

inhomogeneity. It is pointed out that in

discretizing the boundary and the crack face,

besides the regular shape functions, special

ones need to be applied. For instance, the dis-

continuous elements need to be introduced to

handle the common edge of the displacement

and traction boundary conditions, and the com-

mon edge of the displacement/traction boundary

and the crack surface. Furthermore, special

shape functions have to be utilized to the ele-

ments adjacent to the crack front to make sure

that the relative COD is proportional to √rwhere

r is the distance behind the crack front. These

discontinuous/special elements along with their

corresponding shape functions can be found in

Pan and Yuan [4].

Once the relative COD DUc is solved in the

global coordinates, it can be transformed to

the local coordinates (or the crack-tip coordi-

nates) to find the SIFs. Assuming that the

crack front is smooth and that the crack tip

is away from the possible corner of the prob-

lem geometry, then the singular term (in the

sense of stresses) in the asymptotic expansion

of the displacement field near the crack tip

(front) satisfies the generalized plane-strain

condition in the local coordinates. Actually,

if we let r be the distance behind the crack

front, then in terms of the relative CODs in
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the crack-tip coordinate, the three SIFs can be

expressed as follows:

KII

KI

KIII

8

<

:

9

=

;

¼ 2

ffiffiffiffiffi

2r

p

r

L�1
Du1
Du2
Du3

8

<

:

9

=

;

ð10Þ

where L is the Barnett-Lothe tensors [42] which

depends only on the anisotropic properties of the

solid in the crack-front coordinates, andDu1,Du2,

and Du3 are the relative CODs in the local crack-

front coordinates. We also point out that r in (10)

was selected to be a very small value as compared

to the crack size [4, 32, 40]. For a penny-shaped

crack lying in the isotropic plane of the TI mate-

rial, the SIF can be calculated analytically [43],

which can be used as the benchmark for BEM

modeling. The result was extended to the

bimaterial case where the crack was located on

the interface plane [44].

General Inhomogeneity Problems with
Multiple Cracks

It is obvious that the approach presented above

can be extended to the multi-inhomogeneity case

with multiple cracks. However, there are more

efficient approaches proposed recently to the

problems in inhomogeneous or heterogeneous

media, as discussed briefly below.

Three-step Multi-domain BEM

The three-step multi-domain BEM solution tech-

nique [35] can be used to effectively solve the

problems consisting of any number of arbitrarily

distributed sub-domains. In the multi-domain

BEM technique, nodes are arranged in the fol-

lowing order: The “self nodes” which are used

only by the considered sub-domain itself are col-

located first; the “common nodes” which are

shared by two adjacent sub-domains are collo-

cated next; and the “internal nodes” which are

located inside a sub-domain are arranged in the

last step. The three-step multi-domain BEM solu-

tion technique will produce condensations by

eliminating the internal unknowns (internal

nodal displacements) and boundary unknowns

(self-nodal quantities) so that the final multi-

domain BEM formula only contains the common

nodal displacements. Since the number of

degrees of freedom in the system is reduced by

this technique and the coefficient matrix is

blocked sparse, the computational efficiency of

large-scale problems can be improved.

Subregion-by-subregion with Krylov Solver

In general, this approach contains two main parts:

(1). A robust subregion-by-subregion (SBS) tech-

nique, which is necessary for coping with hetero-

geneous materials. (2). The efficient integration

procedures, which are needed for evaluating the

singular and nearly singular integrals involved in

the BEM. The SBS technique is based on the use

of the Krylov solver, which allows the treatment

of a large number of inhomogeneities. The diag-

onal-preconditioned bi-conjugate gradient solver

is employed to solve the resulting linear system

of equations. A detailed description on this

method can be found in the work by Araujo and

coworkers [36, 37].

Fast Multipole BEM

With the development of the fast multipole

methods (FMMs) [39, 45] for solving boundary

integral equations, large models with several mil-

lion degrees of freedom can be solved readily on

a desktop computer. Rokhlin and Greengard [46],

who pioneered the FMM, and coworkers [47]

have done extensive research on the FMM in

the context of potential fields. Fu et al. [48] for-

mulated the boundary integral equations for the

3D elastic inclusion problem using the FMM.

Solutions for up to 343 spherical voids in an

elastic domain were computed using the parallel

FMM BEM code with total degrees of freedom

around 400 K. Some other developments of the

fast multipole BEM can be found in Pierce and

Napier [49] and Popov and Power [50] for gen-

eral elasticity problems, and in Nishimura et al.

[51], Yoshida et al. [52], and Lai and Rodin [53]

for crack problems. To develop an FMM for

BEM, one needs simple and appropriate expres-

sions of the two-point Green’s functions of

the associated problem domain, and their suit-

able expansion, i.e., the multipole expansion.
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For most linear systems, the two-point Green’s

functions can be successfully expanded and

therefore, the three key translations in FMM can

be achieved (M2M, L2L, and M2L) [38, 39].

Future Directions for Research

Solution to the penny-shaped crack problem in

pure elasticity is a benchmark, and it has been

extended to the multiphase material couplings

[54–57]. For instance, Zhao et al. [54] derived

the solution for an ellipsoidal cavity in an infinite

TI magneto-electro-elastic medium, and obtained

the exact closed-form solution for a penny-

shaped crack by letting the minor axis of the

ellipsoidal cavity approach zero. Zhao et al. [55]

analyzed the planar crack of arbitrary shape in

the isotropic plane of a 3D TI magneto-electro-

elastic medium by using the hyper-singular

integral equation method. Niraula and Wang

[56] derived an exact closed-form solution

for a penny-shaped crack in an infinite magneto-

electro-thermo-elastic medium under a tempera-

ture field, where the problem was transformed

into the dual integral equations which were

solved directly. Wang and Niraula [57] further

considered the transient thermal fracture problem

of TI magneto-electro-elastic materials, where

the problem is reduced to an integral equation

which was treated exactly using the Abel’s

integral equation. The fracture properties of

a penny-shaped crack embedded in a magneto-

electro-elastic layer of finite height under both

thermal flow and radial shear loads were investi-

gated by Feng et al. [58]. Thermally insulated

crack surface assumption is adopted. By means

of the Hankel transform technique, the problem

was reduced to a Fredholm integral equation,

which is different to that addressed previously

[54–57].
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Overview

This entry introduces the asymptotic tempera-

ture, thermal flux, stress, and displacement fields

near the tip of a crack in a functionally graded

material (FGM) with continuous and piecewise

differentiable material properties. This entry

begins with the introduction of basic equations

of heat conduction, thermoelasticity, and

thermoplasticity for FGMs. The eigenfunction

expansion method is then employed to prove

that the governing equations of the crack-tip

dominant solutions of temperature and stress

functions remain the same as the corresponding

equations for homogeneous materials in every

differentiable piece near the crack tip. Hence,

the inverse square-root singular thermal flux and

stress fields still prevail at the crack tip in

a thermoelastic FGM, and the near-tip HRR

field exists for a power-law hardening FGM.

The effects of material property gradients on the

dominance of the crack-tip singular fields are also

discussed.

Introduction

Functionally graded materials (FGMs) represent

a new concept of tailoring materials with micro-

structural and property gradients to achieve opti-

mized performance. FGMs were originally

conceived as high-temperature-resistant mate-

rials for aircraft and aerospace applications. The

FGM concept has since spread to other areas, for

example, tribological coatings, diesel engines,

energy conversion systems, biomedical engineer-

ing, and so on. An FGM is a multiphase material

with volume fractions of the constituents varying

gradually in a predetermined (designed) profile,

thus yielding a nonuniform microstructure in the

material with continuously graded properties. In

applications involving severe thermal gradients,

FGMs exploit the heat, oxidation, and corrosion

resistance typical of ceramics and the strength,

ductility, and toughness typical of metals. Dam-

age tolerance and defect assessments for struc-

tural integrity of FGM components require

knowledge of the fracture behavior of FGMs.

From the fracture mechanics point of view,

materials fail by the initiation and unstable

growth of macroscopic cracks. Fracture parame-

ters often arise from analyses of the asymptotic

stress and deformation fields near the crack tip.

The validity of continuum fracture mechanics to

predict material failure lies in the fact that the

fracture process zone around the crack tip is

contained in a singular field of continuum
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