
Conclusion

A brief summary of the explicit versions of the

GS4 algorithms and designs has been shown

via the implicit counterparts. All explicit time

integration schemes are second-order time

accurate, and various common schemes are

also included within the present frameworks.

An i Integration Framework (Isochronous

Integration Framework) is also described

which employs the same framework for inte-

grating both second- and first-order transient

systems.
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Overview

Fractures greatly affect the integrity and reliabil-

ity of structures, and crack analysis is one of the

main tasks in fracture mechanics. The singularity

of stresses near a crack tip and the geometric

identity of the two surfaces of a crack have chal-

lenged all theoretical and numerical methods.

In 1976, Crouch proposed the displacement dis-

continuity method (DDM) [1], which is also called

the displacement discontinuity boundary integral

equation method (DDBIEM). In the DDM, the

basic characteristic of a crack, namely, the displace-

ment discontinuity, is automatically contained. In the

last 35 years, this method has been studied inten-

sively and extensively in dealing with fracture prob-

lems in two- and three-dimensional elastic media.

Along with the increasing usage of smart mate-

rials, e.g., the piezoelectric materials and the

magnetoelectroelastic (MEE) materials, in various

branches of the engineering field, fracture

mechanics of these new materials is attracting

more and more attention. As one of the key

advances, the DDM has been extended to the

study of cracks in piezoelectric and MEE media

[2–4]. In the extended DDM for the piezoelectric

material, the extended displacement discontinuity

(DD) includes the elastic displacement discontinu-

ities and the electric potential discontinuity; and

for the MEE material, the extended DD includes

further the magnetic potential discontinuity.
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Extended Displacement Discontinuities

In the absence of body force, electric charge, and

electric current, the coupled constitutive equa-

tions for a three-dimensional (3D) MEE medium

can be expressed in terms of the elastic displace-

ment components ui (u1 ¼ u; u2 ¼ v and

u3 ¼ w), the electric potential ’ and the magnetic

potential c

sij ¼ cijklðuk;l þ ul;kÞ=2þ ekij’;k þ fkijc;k ð1aÞ

Di ¼ eiklðuk;l þ ul;kÞ=2� eik’;k � gikc;k ð1bÞ

Bi ¼ fiklðuk;l þ ul;kÞ=2� gik’;k � mikc;k ð1cÞ

where sij; Di, and Bi denote the stress, electric

displacement, and magnetic induction compo-

nents, respectively, cijkl; eijk; fijk; eij; gij and mij
are, respectively, the elastic, piezoelectric,

piezomagnetic, dielectric permittivity, electro-

magnetic, and magnetic permeability coeffi-

cients. A subscript comma denotes the partial

differentiation with respect to the coordinate. It

is noted that by letting fijk ¼ 0; gij ¼ 0 and

mij ¼ 0, the constitutive equation in (1) is reduced

to that for a piezoelectric material, and by further

setting eijk ¼ 0 and eij ¼ 0, (1) is reduced to the

constitutive equation for a purely elastic material.

In the following analyses, we assume that the

smart material with cracks is transversely

isotropic. As an example, let us consider an arbi-

trarily shaped planar crack S on the oxy plane,

which coincides with the plane of isotropy of an

infinite smart medium as shown in Fig. 1. The

poling direction is along the z-axis. The front and

back faces of the crack S are denoted by Sþ and

S�, respectively. Across the crack faces, the dis-

placement discontinuities uik k ði ¼ 1; 2; 3Þ, the
electric potential discontinuity ’k k, and the mag-

netic potential discontinuity ck k are denoted by

uik k ¼ uiðSþÞ � uiðS�Þ
’k k ¼ ’ðSþÞ � ’ðS�Þ
ck k ¼ cðSþÞ � cðS�Þ

ð2Þ

which are called the extended displacement

discontinuities.

Boundary Integral Equation Method for
Homogeneous Materials

We consider the general case where the applied

extended tractions on the crack faces satisfy

pijSþ ¼ �pijS� ; ojSþ ¼ �ojS� ; gjSþ ¼ �gjS� ;
i ¼ 1; 2; 3 or x; y; z

ð3Þ

Based on the Green’s functions of the unit

extended point force [5] and the Somigliana iden-

tity, the extended displacement discontinuity

boundary integral equations are derived

ð

Sþ
f½L11ð1� 3cos2yÞ þ L12ð1� 3sin2yÞ�jjujj

þ L13 cos y sin yjjvjjg
1

r3
dSðx; �Þ ¼ �pxðx; yÞ

ð4Þ
ð

Sþ
fL13 cos y sin yjjujj þ ½L12ð1� 3cos2yÞ

þ L11ð1� 3sin2yÞ�jjvjjg 1

r3
dSðx; �Þ ¼ �pyðx; yÞ

ð5Þ
ð

Sþ
½L31jjwjj þ L32jj’jj þ L33jjcjj�

1

r3
dSðx; �Þ

¼ �pzðx; yÞ
ð6Þ

z

x

y

S 

Poling direction

Extended Displacement Discontinuity Boundary

Integral Equation Method for Analysis of Cracks in

Smart Materials, Fig. 1 A crack of arbitrary shape in

the isotropic oxy plane of an infinite medium
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ð

Sþ
½L41jjwjj þ L42jj’jj þ L43jjcjj�

1

r3
dSðx; �Þ

¼ �oðx; yÞ
ð7Þ

ð

Sþ
½L51jjwjj þ L52jj’jj þ L53jjcjj�

1

r3
dSðx; �Þ ¼ �gðx; yÞ

ð8Þ

where

r2 ¼ ðx� xÞ2 þ ð� � yÞ2; cos y ¼ ðx� xÞ=r;
sin y ¼ ð� � yÞ=r

ð9Þ

and Lij are the material related constants given in

Zhao et al. [4] for MEE media, in Zhao et al. [2]

for piezoelectric media, and in Zhao et al. [6] for

elastic media.

In (4)–(8), the kernel functions have the sin-

gularity of Oð1 r3
!

Þ, and hence the integral equa-
tions are hyper-singular. The displacement

discontinuities uk k and vk k on the crack faces

are coupled through (4) and (5), while the

displacement discontinuity wk k, the electric

potential discontinuity ’k k, and the magnetic

potential discontinuity ck k are coupled through

(6)–(8).

Singular Index

The singular behavior of the fields near the crack

tip and the corresponding field intensity factors

are the keys in fracture mechanics. Based on the

extended displacement discontinuity boundary

integral equations (4)–(8), the field singularity

index and intensity factor in terms of the

extended displacement discontinuity can be

derived.

We choose an arbitrary but smooth point o on

the crack front G to analyze the singular behavior

(Fig. 2). We assume that the Cartesian coordinate

system oxyz is located such that the y -axis and x -

axis are tangential and normal to G, respectively,

while the z -axis is normal to the crack plane S.

The infinitesimal d denotes the radius of a circle

S centered at point o contained in S.

Now, we assume that the extended displace-

ment discontinuities at the neighborhood of point

o are given by

jjujj ¼ AxðoÞxax ; jjvjj ¼ AyðoÞxay ; jjwjj ¼ AzðoÞxaz ;
jj’jj ¼ A’ðoÞxa’ ; jjcjj ¼ AcðoÞxac

ð10Þ

where the coefficients Ax;Ay;Az;A’,and Ac

depend on the location of the point o, and

ax; ay; az; a’, and ac are the singular indices of

the extended displacements with their values

between (0,1).

Substituting (10) into (4)–(8), letting e be suf-

ficiently small and taking the limit x ! 0, and

further making use of the finite-part integral the-

ory, we obtain the conditions for the existence of

a nontrivial solution

cot pax ¼ cot pay ¼ cot paz ¼ cot pa’ ¼ cot pac ¼ 0

ð11Þ

Finally, one obtains the singular indexes

ax ¼ ay ¼ az ¼ a’ ¼ ac ¼ 1

2
ð12Þ

Σ

x

y

Γ

o

δ

S

z

Extended Displacement Discontinuity Boundary

Integral Equation Method for Analysis of Cracks in

Smart Materials, Fig. 2 The local coordinate system
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This result reveals that the extended displace-

ments near the crack tip have the classical singu-

larity r
1
2 as in the fracture mechanics of

conventional elastic materials.

Intensity Factor

Substituting (12) into (10), and using (4)–(8) and

the constitutive equation (1), the extended

stresses at points (� r, y,0) (r > 0) near point o

are expressed as

szx ¼ �L11AxðoÞp
ffiffiffi

r
p!

szy ¼ �L12AyðoÞp
ffiffiffi

r
p!

szz ¼ ½L31AzðoÞ þ L32A’ðoÞ þ L33AcðoÞ�p
ffiffiffi

r
p!

Dz ¼ ½L41AzðoÞ þ L42A’ðoÞ þ L43AcðoÞ�p
ffiffiffi

r
p!

Bz ¼ ½L51AzðoÞ þ L52A’ðoÞ þ L53AcðoÞ�p
ffiffiffi

r
p!

ð13Þ

Defining the intensity factors

KF
I ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

szzð�r; y; 0Þ

KD
I ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

Dzð�r; y; 0Þ

KB
I ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

Bzð�r; y; 0Þ

KF
II ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

szxð�r; y; 0Þ

KF
III ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

szyð�r; y; 0Þ

ð14Þ

and inserting (13) into (14), and considering (10),

the intensity factors can be expressed in terms of

the extended displacement discontinuities

KF
I ¼

ffiffiffiffiffiffi

2p
p

p lim
x!0

½L31jjwjj þ L32jj’jj þ L33jjcjj�
ffiffiffi

x
p!

KD
I ¼

ffiffiffiffiffiffi

2p
p

p lim
x!0

½L41jjwjj þ L42jj’jj þ L43jjcjj�
ffiffiffi

x
p!

KB
I ¼

ffiffiffiffiffiffi

2p
p

p lim
x!0

½L51jjwjj þ L52jj’jj þ L53jjcjj�
ffiffiffi

x
p!

KF
II ¼ �

ffiffiffiffiffiffi

2p
p

p lim
x!0

L11jjujj
ffiffiffi

x
p!

KF
III ¼ �

ffiffiffiffiffiffi

2p
p

p lim
x!0

L12jjvjj
ffiffiffi

x
p!

ð15Þ

Equation (15) demonstrates that once the

extended displacement discontinuities are

calculated, the intensity factor can be obtained

by (15). This conclusion is held for any shape

and dimension of the planar crack and for

general distribution of the mechanical-electric-

magnetic loading. The cracks may be multiple

coplanar cracks, and the loading may be point

loading.

The singularity of stresses near a crack tip and

the intensity factor of a crack in piezoelectric

media were given in Zhao et al. [2].

Boundary Integral Equation Method for
Two-Phase Materials

Using the same method as given in the

previous section, the boundary integral-

differential equations of an interface crack

in a two-phase MEE material can be further

derived [7]

ð

sþ

$

½K11cos
2yþ K12sin

2y� uk k

þ ðK11 � K12Þ sin y cos y vk k
% 1

r3
dS

þ 2pK41

@ wk k
@x

þ 2pK42

@ ’k k
@x

þ 2pK43

@ ck k
@x

¼ �px ð16aÞ

ð

sþ
ðK11 � K12Þ sin y cos y uk k

þ ½K11sin
2yþ K12cos

2y� vk kg 1

r3
dS

þ 2pK41

@ wk k
@y

þ 2pK42

@ ’k k
@y

þ 2pK43

@ ck k
@y

¼ �py ð16bÞ

ð

sþ

&

Kz1 wk k þ Kz2 ’k k þ Kz3 ck k
' 1

r3
dS

þ 2pK1

(

@ uk k
@x

þ @ vk k
@y

)

¼ �pz

ð16cÞ
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ð

sþ

&

Kz12 wk k þ Kz22 ’k k þ Kz32 ck k
' 1

r3
dS

þ 2pK2

(

@ uk k
@x

þ @ vk k
@y

)

¼ �o

ð16dÞ

ð

sþ

&

Kz13 wk k þ Kz23 ’k k þ Kz33 ck k
' 1

r3
dS

þ 2pK3

(

@ uk k
@x

þ @ vk k
@y

)

¼ �g

ð16eÞ

where the coefficients Ks with different subscript

“s” are material constants given in Zhao et al. [7]

for MEE media and in Zhao et al. [8, 9] for

piezoelectric media. Note that the kernels in

(16) have the singularity order O(r�3), and

hence the integral-differential equations are

hyper-singular. It should be pointed out that the

boundary integral-differential equations are

applicable to multiple coplanar interface cracks.

When the bimaterial becomes homogeneous,

one has

K41 ¼ K42 ¼ K43 ¼ K1 ¼ K2 ¼ K3 ¼ 0 ð17Þ
and the differential terms in (16) disappear.

Therefore, the boundary integral-differential

equations are reduced to the hyper-singular

boundary integral equations in (4–8).

Solutions of the Boundary Integral
Equation for Two-Phase Materials

Making use of (16c–16e), one obtains

ðKz1 � C3Kz12Þ
ð

Sþ
wk k þ C1 ’k k þ C2 ck k½ � 1

r3
dS

¼ �pz þ C3o

ð18Þ
where Ci are constants related to the material

property given by Zhao et al. [7]. Equation (18)

is analogous to the boundary integral equation for

the displacement discontinuity in the normal

direction of the crack in an elastic medium [10].

Thus, the solution of the combined extended

displacement discontinuity wk k þ C1 ’k kþ
C2 ck k can be directly obtained from the

corresponding elastic solution.

The extended stress near the crack tip in the

crack plane can be expressed in the following form:

szz � C3Dz ¼ðKz1 � C3Kz12Þ

�
ð

Sþ

&

wk k þ C1 ’k k þ C2 ck k
' 1

r3
dS

ð19Þ
Therefore, the Mode I extended intensity fac-

tor in a MEE bimaterial can be defined as

KI1 ¼ lim
r!0

ffiffiffiffiffiffiffiffi

2pr
p

szz � C3Dzð Þ

¼ p
ffiffiffiffiffiffi

2p
p

ðKz1 � C3Kz12Þ

lim
r!0

wk k þ C1 ’k k þ C2 ck k
ffiffiffi

r
p

ð20Þ

Similarly, the other extended stress and the

corresponding intensity factor near the crack tip

in the crack plane can be written as

szz � C6Bz ¼ðKz1 � C6Kz13Þ
ð

Sþ

&

wk k þ C4 ’k k

þ C5 ck k
' 1

r3
dS

ð21Þ
KI2 ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

szz � C6Bzð Þ

¼ p
ffiffiffiffiffiffi

2p
p

ðKz1 � C6Kz13Þ

lim
r!0

wk k þ C4 ’k k þ C5 ck k
ffiffiffi

r
p

ð22Þ

Solutions of the Boundary Integral-
Differential Equations for Two-Phase
Materials

Combining (16c)–(16e) with (16a) and (16b)

gives

ð

sþ

*+

LK12

K41

1

r3
þ LðK11 � K12Þ

K41

ðx� xÞ2
r5

,

uk k

þ LðK11 � K12Þ
K41

ðx� xÞðy� �Þ
r5

vk k
-

dS

þ 2p
@ w�k k
@x

¼ � Lpx

K41

ð23aÞ
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ð

sþ

*

LðK11 � K12Þ
K41

ðx� xÞðy� �Þ
r5

uk k

þ
+

LK12

K41

þ LðK11 � K12Þ
K41

ðy� �Þ2
r5

,

vk k
-

dS

þ 2p
@ w�k k
@y

¼ � Lpy

K41

ð23bÞ

ðKz1 þ C7Kz12 þ C8Kz13Þ
LðK1 þ C7K2 þ C8K3Þ

ð

sþ
w�k k 1

r3
dS

þ 2p

(

@ uk k
@x

þ @ vk k
@y

)

¼ � pz þ C7oþ C8g

K1 þ C7K2 þ C8K3

ð23cÞ

where L and w�k k are given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3K41ðKz1 þ C7Kz12 þ C8Kz13Þ
ð2K11 þ K12ÞðK1 þ C7K2 þ C8K3Þ

s

;

w�k k ¼ L wk k þ C9 ’k k þ C10 ck kð Þ
ð23dÞ

Equation (23) is similar to the boundary

integral-differential equations for interface

crack problem in a 3D isotropic elastic bimaterial

system given by Tang et al. [11].

We assume that the displacement discontinu-

ities near the crack tip are

uk k ¼ AxðoÞxax
vk k ¼ AyðoÞxay

w�k k ¼ AzðoÞxaz
ð24Þ

where AyðoÞ is an arbitrary real constant, AxðoÞ
and AzðoÞ are complex constants, and ai are the

singularity indexes [11]. Inserting (24) into (23),

and using the integrals given in Zhao et al. [7], we

can obtain

ay ¼
1

2
; ax ¼ az ¼

1

2
 ie ð25Þ

where e is a constant related to the bimaterial

property. Equation (25) shows that the displace-

ment discontinuity vk k has the classical

singularity index 1=2, while uk k or w�ðx; �Þk k
has the oscillating singularity index 1=2 ie as

in the purely elastic bimaterial system case.

The stresses, electric displacement, and mag-

netic induction at point ð�r; 0; 0Þ near the crack
tip outside of the crack are obtained based on the

fundamental solution of the extended displace-

ment discontinuities

ð1

�1

ð1

0

L K11�K12ð Þ
K41

�ðxþrÞ2
R5

þLK12

K41

1

R3

,

uk kdxd�
"

¼ L

K41

szy

ð26aÞ
ð1

�1

ð1

0

L K11 � K12ð Þ
K41

y2

R5
þ LK12

K41

1

R3

,

vk kdxd�
+

¼ L

K41

szy

ð26bÞ
ðKz1 þ C7Kz12 þ C8Kz13Þ
LðK1 þ C7K2 þ C8K3Þ

ð1

�1

ð1

0

w�k k
R3

dxd�

� L

K41

C12 szz þ C7Dz þ C8Bzð Þ

ð26cÞ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ rÞ2 þ y2
q

The new intensity factors for an interface

crack in a MEE bimaterial are defined as

KI3 ¼ lim
r!0

ffiffiffiffiffiffiffiffi

2pr
p

r�ieC12 szzð�r; 0; 0Þð

þ C7Dzð�r; 0; 0Þ þ C8Bzð�r; 0; 0ÞÞ
KII ¼ lim

r!0

ffiffiffiffiffiffiffiffi

2pr
p

r�ieszxð�r; 0; 0Þ

KIII ¼ lim
r!0

ffiffiffiffiffiffiffiffi

2pr
p

szyð�r; 0; 0Þ

ð27Þ

Finally, the corresponding intensity factors

can be expressed in terms of the extended dis-

placement discontinuities

KI3þ iKII ¼
ffiffiffiffiffiffi

2p
p 2pK41ð1þ 2ieÞepe

ð�2� 1Þ

� lim
r!0

wk kþC9 ’k kþC10 ck kð Þ� i uk k=L
r1=2þie

+ ,

KIII ¼
ffiffiffi

p

2

r

2p�1K41

ð�2� 1ÞL lim
r!0

vk k
ffiffi

r
p

ð28Þ
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Concluding Remarks

The displacement discontinuity method for frac-

ture mechanics in elastic media has been

extended to the piezoelectric and MEE media.

By using the analogy between the hyper-singular

boundary integral/integral-differential equations

of elastic media and those of MEE media, the

singularity of stresses near a crack tip is studied,

and the extended intensity factors are expressed by

the extended displacement discontinuities. This

result holds for the arbitrarily shaped planar crack

and interface crack of any geometric size under the

general distribution of the mechanical-electric-

magnetic loading. Furthermore, themultiple copla-

nar cracks and point loading cases can be analyzed.

Fracture of piezoelectric or MEE materials is

complex, and thus, various nonlinear models,

such as the strip polarization saturation model

[12], the strip dielectric breakdown model [13,

14] for piezoelectric media, strip electric-

magnetic breakdown model [15], strip electric-

magnetic polarization saturation model [16] for

MEE media, were proposed to understand the

fracture behaviors. However, the extended inten-

sity factors are still the fundamental parameters

in these nonlinear models and are important in the

corresponding fracture criteria.
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Overview

Heat transfer from a system can be increased by

extending the surface area through the addition of

E 1536 Extended Surfaces (Fins and Pins)


