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Overview

Piezoelectric and magnetoelectroelastic mate-

rials have been widely used in smart devices and

structures. Fracture mechanics of these materials

have attracted extensive studies [1–3]. Remark-

able discrepancies between theory and experi-

ment were observed. Early theoretical studies on

fracture of piezoceramics showed that the applied

electric field inhibits crack propagation

irrespective of its sign [4], while the experiments

by Park and Sun [5] demonstrated that the failure

stresses decrease with increasing applied positive

electric field but increase with increasing magni-

tude of the applied negative electric field.

Based on Dugdale model [6], Gao et al. [7]

proposed the strip polarization saturation (PS)

model for explaining the observed experimental

results and studying the nonlinear fracture behav-

ior of piezoelectric media. In the PS model, the

electric displacement reaches the saturation value

in the electric yielding zone. From the energy

point of view, McMeeking [8] pointed out that

the electric displacement would behave like the

strain, and the electric field strength like the

mechanical strength. Later, Zhang et al. [9] pro-

posed the dielectric breakdown (DB) model for

the nonlinear fracture in piezoelectric media, in

which the electric field reaches the critical value

in the yielding strip.

Considering the electric and magnetic yield-

ing near the crack tip, Zhao and Fan [10] and Fan

and Zhao [11] proposed the strip electric-

magnetic breakdown (SEMB) and strip electric-

magnetic polarization saturation (SEMPS)

models to study the nonlinear effect of the elec-

tric and magnetic fields on the fracture of

magnetoelectroelastic (MEE) materials.

Although the PS or SEMPS model and DB

or SEMB model were established based on two

different physical points of view, they surpris-

ingly predict the same results on the fracture for

a crack in an infinite or a finite piezoelectric and

magnetoelectroelastic medium [11, 12].

Stroh Formalism

For the two-dimensional deformation in the x1-x2
plane, in which the extended displacement vector
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u¼ u1 u2 u3 ’ c
 !T

and the extended stress

function vector F¼ f1 f2 f3 f4 f5

 !T

depend only on x1 and x2, the general solution

takes the form

u ¼ AfðzÞ þ �AfðzÞ ð1Þ

F ¼ BfðzÞ þ BfðzÞ ð2Þ

where A¼ða1 a2 a3 a4 a5Þ and

B¼ðb1 b2 b3 b4 b5 Þ are the eigenvectors,

fðzÞ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ f5ðz5Þ
 !T

is

an analytic function vector, za ¼ x1þpax2, and pa
is a complex eigenvalue with a positive imagi-

nary part. While the extended stress function

vector F is related to the extended stresses by

S2 ¼ ðs21 s22 s23 D2 B2 ÞT ¼ F;1 ð3aÞ

S1 ¼ ðs11 s12 s13 D1 B1 ÞT ¼ �F;2 ð3bÞ

the eigenvalue pa is determined by the following

standard eigenequations [2]:

N1 N2

N3 NT
1

 !

a

b

 !

¼ p
a

b

 !

ð4Þ

where N1 ¼ �T�1RT , N2 ¼ T�1 ¼ NT
2 ,

N3 ¼ RT�1RT �Q ¼ NT
3 , and

Q¼
ci1k1 e11i f11i

eT11i �k11 �g11

f T11i �g11 �m11

0

B

@

1

C

A
, R¼

ci1k2 e21i f21i

eT12i �k12 �g12

f T12i �g12 �ˆ12

0

B

@

1

C

A
,

T¼
ci2k2 e22i f22i

eT22i �k22 �g22

f T22i �g22 �m22

0

B

@

1

C

A
, where i;k¼ 1;2;3. It is

noted that matrices A and B have the following

relationship:

AAT þ AAT ¼ BBT þ BBT ¼ 0

BAT þ BA ¼ ABT þ ABT ¼ I
ð5Þ

where I is a 5� 5 unit matrix. In addition, the

following important matrix H is introduced [10]:

H¼ 2Re½iAB�1
; H�1 ¼
F1 FT

2 FT
3

F2 F44 F45

F3 F54 F55

0

B

B

@

1

C

C

A

ð6Þ

The following quantities, which will be used

later, are defined as:

F1 ¼
F11 F12 F13

F21 F22 F23

F31 F32 F33

0

B

B

@

1

C

C

A

F2 ¼
 

F41 F42 F43

!

F2 ¼ F51 F52 F53ð Þ

ð7aÞ

and

G11ð Þl ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

4l

G12ð Þl ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

5l

G21 ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

44

G22 ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

54

G31 ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

45

G32 ¼ � 1

2i
A pah iBT � �A �pah i�BT
* +

55

ð7bÞ

and Fij and Gij are material related constants.

Strip Electric-magnetic Polarization
Saturation (SEMPS) Model

To consider the saturation of electric displace-

ment and the magnetic induction, the strip
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electric-magnetic polarization saturation

(SEMPS) model is developed where the

nonlinear behavior of cracks under combined

mechanical-electric-magnetic loadings in MEE

media can be studied. In this model, the mate-

rial is assumed to be mechanically brittle, and

electrically and magnetically ductile. In this

section, a crack in an infinite body under uni-

formly applied mechanical-electric-magnetic

loadings at infinity is taken as an example to

present the basic features of the SEMPS model.

The electric and magnetic yielding zones are

the two strips in fronts of the crack, i.e., the

segments ð�ce;�aÞ and ða; ceÞ for the electric

yielding strips and ð�ch;�aÞ and ða; chÞ for the
magnetic yielding strips, as schematically

shown in Fig. 1. The real crack is ð�a; aÞ. It
is noted that in the electric yielding strip, the

electric displacement equals the electric dis-

placement saturation, and in the magnetic

yielding strip, the magnetic induction equals

the magnetic induction saturation. Thus, the

electric crack extends over the segment

ð�ce; ceÞ, and the magnetic crack over

ð�ch; chÞ. A crack can be simulated by contin-

uously distributed dislocations: elastic disloca-

tions from �a to a, electric dislocations from

� ce to ce [9], and magnetic dislocations from

� ch to ch [10].

The boundary conditions along the crack faces

and the electric and magnetic yielding strips for

an electrically and magnetically impermeable

crack are

S2 ¼ð s21 s22 s23 D2 B2 ÞT ¼ 0; x1j j � a

ð8aÞ

uiðx1;0þÞ¼ uiðx1;0�Þ; i¼ 1;2;3;

D2ðx1;0þÞ¼D2ðx1;0�Þ¼DS; a< x1j j< ce;

B2ðx1;0þÞ¼B2ðx1;0�Þ¼BS; a< x1j j< ch

ð8bÞ

where superscript “+” (“�”) denotes the

quantities on the upper (lower) crack faces, and

DS and BS are, respectively, the electric displace-

ment saturation and the magnetic induction

saturation.

Dual Boundary Integral Equations of the
SEMPS Model

We introduce five distribution functions, giðx1Þ,
that are corresponding to the Burgers vector com-

ponents, b� ¼ b1 b2 b2
 !T

, the electric

potential discontinuity, D’, and the magnetic

potential discontinuity, Dc, such that

giðx1Þ bi dx1 (where b4 � D’ and b5 � Dc)

represents the strength of the extended Burgers

vector located at x1 in the interval dx1. Thus,

using Green’s functions expressed by the

extended dislocation, as given in [10] and

the boundary conditions in (8), we have the

following extended dual integral equations of

the SEMPS model [11]:

x1

x2

o

−ch or  −ce
ch or  ce

ce or  ch−ce or  −ch

−a a

Nonlinear Fracture

Models of
Magnetoelectroelastic

Media, Fig. 1 Schematic

distribution of extended

dislocation arrays in

a magnetoelectroelastic

medium
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ð

a

�a

1

pðx1 � x01Þ
F1 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
FT
2g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
FT
3g5Dcdx

0
1 þ t� ¼ 0;

x1j j � a

ð9aÞ

ð

a

�a

1

pðx1 � x01Þ
F2 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
F44g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
F45g5Dcdx

0
1 þ D1

2 ¼ 0;

x1j j � a

ð9bÞ
ð

a

�a

1

pðx1 � x01Þ
F3 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
F54g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
F55g5Dcdx

0
1 þ B1

2 ¼ 0;

x1j j � a

ð9cÞ
ð

a

�a

1

pðx1 � x01Þ
F2 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
F44g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
F45g5Dcdx

0
1 þ D1

2 ¼ DS;

a � x1j j � ce

ð9dÞ

ð

a

�a

1

pðx1 � x01Þ
F3 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
F54g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
F55g5Dcdx

0
1 þ B1

2 ¼ BS;

a � x1j j � ch

ð9eÞ

where giðx1Þh i is a 3 � 3 diagonal matrix and

t ¼ ð s112 s122 s132 D1
2 B1

2 ÞT

¼ ð t�T D1
2 B1

2 ÞT

t� ¼ s112 s122 s132
 !T

ð10Þ

Equation (9) is an extension of the classical

Cauchy-type dual integral equations in elastic

fracture mechanics to the MEE material.

Analytical Solution of the SEMPS Model

From (9a)–(9c), the distribution functions giðx1Þ
can be solved

giðx1Þh ib� ¼F��1
1 T� x1

a2� x21
 !1=2

; x1j j � a

ð11Þ

where

F�
1 ¼F1þ½FT

2 ðF3F45�F2F55Þ
þFT

3 ðF2F54�F3F44Þ
=ðF55F44�F54F45Þ
T� ¼ t�þ½ðF54F

T
3 �F55F

T
2 ÞD1

2

þðF45F
T
2 �F44F

T
3 ÞB1

2 
=ðF55F44�F54F45Þ
ð12Þ

Solving Eq. (9) requires the relative size of the

electric yielding zone and the magnetic yielding

zone, namely, a � ce � ch or a � ch � ce. How-

ever, ce and ch are actually the two key
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parameters to be determined in the SEMPS

model. Therefore, we discuss the following two

different cases separately.

If the magnetic yielding zone is longer

than the electric yielding zone (a � ce � ch), we

have

g5Dc¼

BS

F55p
ch�1 c2h� ax1

chða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2hþ ax1

chðaþ x1Þ

-

-

-

-

-

-

-

-

. /

� F54

F55

g4D’� F3

F55

gih ib�; x1j j � a;

BS

F55p
ch�1 c2h� ax1

chða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2hþ ax1

chðaþ x1Þ

-

-

-

-

-

-

-

-

. /

� F54

F55

g4D’; a� x1j j � ce;

BS

F55p
ch�1 c2h� ax1

chða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2hþ ax1

chðaþ x1Þ

-

-

-

-

-

-

-

-

. /

; ce � x1j j � ch

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð13aÞ

g4D’¼

D�
S

G2p
ch�1 c2e �ax1

ceða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2e þax1

ceðaþ x1Þ

-

-

-

-

-

-

-

-

. /

�G1

G2

F��1
1 T� x1

a2� x21
 !1=2

; x1j j � a;

D�
S

G2p
ch�1 c2e �ax1

ceða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2e þax1

ceðaþ x1Þ

-

-

-

-

-

-

-

-

. /

; a� x1j j � ce

8

>

>

>

>

<

>

>

>

>

:

ð13bÞ

where

G1 ¼F3F45�F2F55; G2¼ ðF45F54�F44F55Þ
D�

S ¼F45BS�F55DS

ð14Þ

If the electric yielding zone is longer

than the magnetic yielding zone (a � ch � ce),

we have

g4D’ ¼

DS

F44p
ch�1 c2e � ax1

ceða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2e þ ax1

ceðaþ x1Þ

-

-

-

-

-

-

-

-

. /

� F45

F44

g5Dc� F2

F44

gih ib�; x1j j � a;

DS

F44p
ch�1 c2e � ax1

ceða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2e þ ax1

ceðaþ x1Þ

-

-

-

-

-

-

-

-

. /

� F45

F44

g5Dc; a � x1j j � ch;

DS

F44p
ch�1 c2e � ax1

ceða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2e þ ax1

ceðaþ x1Þ

-

-

-

-

-

-

-

-

. /

; ch � x1j j � ce

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð15aÞ

g5Dc¼

B�
S

G2p
ch�1 c2h�ax1

chða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2hþax1

chðaþ x1Þ

-

-

-

-

-

-

-

-

. /

�G3

G2

F��1
1 T� x1

a2� x21
 !1=2

; x1j j � a;

B�
S

G2p
ch�1 c2h�ax1

chða� x1Þ

-

-

-

-

-

-

-

-

� ch�1 c2hþax1

chðaþ x1Þ

-

-

-

-

-

-

-

-

. /

; a� x1j j � ch

8

>

>

>

>

<

>

>

>

>

:

ð15bÞ
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where

G3 ¼ F2F54 � F3F44; B�
S ¼ F54DS � F44BS

ð16Þ

To determine the sizes of the electric and

magnetic yielding zones, the following two con-

ditions should be supplemented: The electric

displacement intensity factor, KDs, is zero at the

end of the electric yielding zone and the

magnetic induction intensity factor, KBs, is zero

at the end of the magnetic yielding zone. With

these, the sizes of the electric and magnetic

yielding zones can be solved. When

a � ce � ch, they are

Re ¼
ce � a

a
¼ sec

pD�
2

2D�
S

4 5

� 1

Rh ¼
ch � a

a
¼ sec

pB1
2

2BS

4 5

� 1

ð17Þ

where

D�
2 ¼ F45B

1
2 � F55D

1
2 ð18Þ

and when a � ch � ce, they are

Re ¼
ce � a

a
¼ sec

pD1
2

2DS

4 5

� 1

Rh ¼
ch � a

a
¼ sec

pB�
2

2B�
S

4 5

� 1

ð19Þ

where

B�
2 ¼ F54D

1
2 � F44B

1
2 ð20Þ

It is observed from these expressions that, for

an impermeable crack, the sizes of the electric

and magnetic yielding zones are related to the

material properties, the applied loadings, the

crack length, and the electric displacement satu-

ration and the magnetic induction saturation.

Extended Intensity Factors and Local
J-integral

Based on the sizes of electric and magnetic yield-

ing zones, the extended stress ahead of the crack

tip on the x1-axis is expressed by the extended

dislocation

S2 �ð s12 s22 s32 D2 B2 ÞT

¼
ð

a

�a

1

pðx1� x01Þ

F1

F2

F3

0

B

B

@

1

C

C

A

giðx1Þh ib�dx01

þ
ð

ce

�ce

1

pðx1� x01Þ

FT
2

F44

F54

0

B

B

@

1

C

C

A

g4ðx1ÞD’dx01

þ
ð

ch

�ch

1

pðx1� x01Þ

FT
3

F45

F55

0

B

B

@

1

C

C

A

g5ðx1ÞDcdx01þ t

ð21Þ

The extended local intensity factors for either

a � ce � ch or a � ch � ce are then given by

KðlÞ ¼ K
ðlÞ
II K

ðlÞ
I K

ðlÞ
III K

ðlÞ
D K

ðlÞ
B

* +T

¼ L LLD LL
B

* +

K ð22Þ

where L is a 5� 3 matrix and LD and LB are two

column vectors. They are functions of the mate-

rial property, given by

L¼
F1

0

0

0

B

B

@

1

C

C

A

�
FT
2

0

0

0

B

B

@

1

C

C

A

�F54

F55

FT
3

0

0

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

2

6

6

4

F2F55�F3F45

F44F55�F54F45

4 5

�
FT
3

0

0

0

B

@

1

C

A

F3

F55

3

7

5
F��1
1

ð23aÞ
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LD ¼ ðF54F
T
3 � F55F

T
2 Þ=ðF55F44 � F54F45Þ

LB ¼ ðF45F
T
2 � F44F

T
3 Þ=ðF55F44 � F54F45Þ

ð23bÞ

In (22), the extended intensity factor K is

defined as

K ¼ ðKII KI KIII KD KBÞT

¼
ffiffiffiffiffiffi

pa
p

ðs112 s122 s132 D1
2 B1

2 ÞT ð23cÞ

For the MEE media, the relationship between

the local J-integral and the extended intensity

factor is

JðlÞ ¼KTðL LLD LLB ÞT
H

4
ðL LLD LLB ÞK

ð24Þ

Equations (22)–(24) demonstrate that the local

J-integral is only related to the material property

and the extended intensity factor, and is indepen-

dent of the yielding parameters, such as the elec-

tric displacement saturation, the magnetic

induction saturation, and the size of the electric

and magnetic yielding zones.

Strip Electric-magnetic Breakdown
(SEMB) Model

Based on the arguments by McMeeking [8]

and the relationship between the PS and DB

models, we introduce the “electric breakdown”

and “magnetic breakdown” concepts, which

result in the strip electric-magnetic breakdown

(SEMB) model. As schematically shown in

Fig. 1, in this model, the MEE material is

mechanically brittle, and two regions – the elec-

tric breakdown (or yielding) region and the mag-

netic breakdown (or yielding) region – are

assumed along the crack front line, where the

electric field strength in the electric breakdown

region is equal to the electric breakdown strength,

Eb, while the magnetic field strength in the mag-

netic breakdown region is equal to the magnetic

breakdown strength, Hb.

For an electrically and magnetically imperme-

able crack, the boundary conditions along the

crack faces and the electric andmagnetic yielding

strips are

S2 ¼ ð s21 s22 s23 D2 B2 ÞT ¼ 0;

x1j j � a
ð25aÞ

uiðx1;0þÞ ¼ uiðx1;0�Þ
E2ðx1;0þÞ ¼ E2ðx1;0�Þ ¼ Eb; a< x1j j< ce

H2ðx1;0þÞ ¼H2ðx1;0�Þ ¼Hb; a< x1j j< ch

ð25bÞ

Dual Boundary Integral Equations of the
SEMB Model

Using Green’s functions for the extended dislo-

cations given by Zhao and Fan [10] and the

boundary conditions in (25), we have the follow-

ing extended dual boundary integral equations of

the SEMB model [10]:

ð

a

�a

1

pðx1 � x01Þ
F1 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
FT
2g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
FT
3g5Dcdx

0
1 þ t� ¼ 0;

x1j j � a

ð26aÞ

ð

a

�a

1

pðx1� x01Þ
F2 gih ib�dx01

þ
ð

ce

�ce

1

pðx1� x01Þ
F44g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1� x01Þ
F45g5Dcdx

0
1þD1

2 ¼ 0;

x1j j � a

ð26bÞ
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ð

a

�a

1

pðx1 � x01Þ
F3 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
F54g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
F55g5Dcdx

0
1 þ B1

2 ¼ 0;

x1j j � a

ð26cÞ

ð

a

�a

1

pðx1 � x01Þ
G11 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
G21g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
G31g5Dcdx

0
1 þ E1

2 ¼ Eb;

a � x1j j � ce

ð26dÞ

ð

a

�a

1

pðx1 � x01Þ
G12 gih ib�dx01

þ
ð

ce

�ce

1

pðx1 � x01Þ
G22g4D’dx

0
1

þ
ð

ch

�ch

1

pðx1 � x01Þ
G32g5Dcdx

0
1 þ H1

2 ¼ Hb;

a � x1j j � ch

ð26eÞ

Equations (26a)–(26c) are very similar to

(9a)–(9c) of the SEMPS model. Therefore, the

solution for the distribution functions giðx1Þ is the
same as in (11).

For the SEMB model, the following are the

two supplementary conditions : The electric field

intensity factor, KEs, is zero at the end of the

electric yielding zone and the magnetic field

intensity factor, KHs, is zero at the end of the

magnetic yielding zone. If the magnetic yielding

zone is longer than the electric yielding zone

(a � ce � ch), the sizes of the electric and

magnetic yielding zones are given by

re1 ¼ ce � a ¼ a sec
pD�

21

2D�
b1

4 5

� a ð27aÞ

rh1 ¼ ch � a ¼ a sec
pB�

21

2B�
b1

4 5

� a ð27bÞ

where

D�
21 ¼ q1T

�þðF55D
1
2 �F45B

1
2 Þ

ðG21G32�G22G31Þ=ðF55F44�F54F45Þ
D�

b1 ¼G32ðEb�E1
2 Þ�G31ðHb�H1

2 ÞþD�
21

B�
b1 ¼Hb�H1

2 þB�
21

B�
21 ¼ q2T

�þG22

F55D
1
2 �F45B

1
2

F55F44�F54F45

þG32

F44B
1
2 �F54D

1
2

F55F44�F54F45

ð28aÞ

q1 ¼
h

ðG11G32�G12G31Þ

þF3F45�F2F55ÞðG21G32�G22G31Þ
ðF55F44�F54F45Þ

i

F��1
1

q2 ¼ G12þ
G22ðF3F45�F2F55Þ
ðF55F44�F54F45Þ

.

þG32ðF2F54�F3F44Þ
ðF55F44�F54F45Þ

/

F��1
1

ð28bÞ

If the electric yielding zone is longer than the

magnetic yielding zone (a � ce � ch), the sizes

of the electric and magnetic yielding zones are

given by

re2 ¼ ce � a ¼ a sec
pD�

22

2D�
b2

4 5

� a ð29aÞ

rh2 ¼ ch � a ¼ a sec
pB�

22

2B�
b2

4 5

� a ð29bÞ
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where

D�
22 ¼ q4T

� þ G21

F55D
1
2 � F45B

1
2

F55F44 � F54F45

þ G31

F44B
1
2 � F54D

1
2

F55F44 � F54F45

D�
b2 ¼ Eb � E1

2 þ D�
22

B�
22 ¼ q3T

� þ ðF44B
1
2 � F54D

1
2 Þ

� ðG31G22 � G32G21Þ=ðF55F44 � F54F45Þ
B�
b2 ¼ G22ðEb � E1

2 Þ � G21ðHb � H1
2 Þ þ B�

22

ð30aÞ

q3 ¼
h

ðG11G22�G12G21Þ

þðF2F54�F3F44ÞðG31G22�G32G21Þ
ðF55F44�F54F45Þ

i

F��1
1

q4 ¼ G11þ
G21ðF3F45�F2F55Þ
ðF55F44�F54F45Þ

.

þG31ðF2F54�F3F44Þ
ðF55F44�F54F45Þ

/

F��1
1

ð30bÞ

Extended Intensity Factors and Local
J-integral

The stress in front of the crack tip on the x1-axis is

calculated by

S2 �ðs12 s22 s32 D2 B2 ÞT

¼
ð

a

�a

1

pðx1� x01Þ

F1

F2

F3

0

B

B

@

1

C

C

A

giðx1Þh ib�dx01

þ
ð

ce

�ce

1

pðx1� x01Þ

FT
2

F44

F54

0

B

B

@

1

C

C

A

g4ðx1ÞD’dx01

þ
ð

ch

�ch

1

pðx1� x01Þ

FT
3

F45

F55

0

B

B

@

1

C

C

A

g5ðx1ÞDcdx01þ t

ð31Þ

The extended local intensity factor for either

a � ce � ch or a � ch � ce can be expressed as

KðlÞ ¼ M MMD MM
B
Þ K

*

ð32Þ

where K is the extended intensity factor defined

in (17),M is a 5� 3 matrix, andMD andMB are

two column vectors. They are related to the mate-

rial property as

M¼
F1

F2

F3

0

B

B

@

1

C

C

A

�
FT
2

F44

F54

0

B

B

@

1

C

C

A

�G22

G32

FT
3

F45

F55

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

2

6

6

4

G11G32�G12G31

G21G32�G22G31

4 5

�
FT
3

F45

F55

0

B

B

@

1

C

C

A

G12

G32

3

7

7

5

F��1
1

ð33aÞ

MD ¼ðF54F
T
3 �F55F

T
2 Þ=ðF55F44�F54F45Þ

MB ¼ðF45F
T
2 �F44F

T
3 Þ=ðF55F44�F54F45Þ

ð33bÞ

Finally, the local J-integral is obtained as

JðlÞ ¼ KTðM MMD MMB ÞT
H

4
ðM MMD MMB ÞK

ð34Þ

For an impermeable crack, the local J-integral

is related to the material coefficients and the

extended intensity factors, but is independent of

the electric and magnetic breakdown strength.

Concluding Remarks

The SEMPS and SEMB models are presented as

the extension of the PS and DB models in piezo-

electricity. The results demonstrate that the local

J-integral increases with increasing electric and

magnetic fields applied. This means that

a positive electric or magnetic field would pro-

mote propagation of an impermeable crack, while

the negative electric or magnetic field would

retard crack propagation. The local J-integral

can be used as a parameter to describe and predict

the fracture behavior in MEE media under com-

bined mechanical-electric-magnetic loadings.
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It should be pointed out the theoretical analy-

sis carried out should be verified by the experi-

mental observation. To the best of the authors’

knowledge, however, no experimental result on

fracture in the MEE material is available so far.
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Department of Mathematics, Faculty of

Mathematics, “Al. I. Cuza” University of Iaşi,
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Overview

The theory of thermoelasticity studies the

deformation of elastic continuums under the

influence of mechanical forces and thermal

changes. The origin of the theory of

thermoelasticity goes back to the nineteenth cen-

tury when the coupling between thermal and

strain fields has been investigated for the first

time (see [1, 2] for detailed historical notes

concerning the development of the theory).

Since its inception, during almost 200 years,

many research studies have been dedicated

to solve various practical and theoretical prob-

lems and to propose new thermoelastic models.

The state of the art in thermoelasticity, including

its generalized models and the related results, is

described in various monographs [1–7].

Here, the classical theory of thermoelasticity

is considered. The basic equations of the

nonlinear thermoelasticity are presented in

a self-contained manner. Thus, after a short sec-

tion in which some aspects related to deformation

and strain are recalled, the basic principles of

mechanics and thermodynamics are formulated,

and their local forms are derived. Then, the con-

stitutive equations of a thermoelastic body are

presented, and the consequences implied by the

axioms of the constitutive theory are discussed.

The restrictions imposed by the second law of

thermodynamics are also analyzed. Finally, the

basic equations of the nonlinear thermoelasticity

are summarized.
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