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a b s t r a c t

In this paper, we study the free vibration of multilayered magneto-electro-elastic plates
under combined clamped/free lateral boundary conditions using a semi-analytical discrete-
layer approach. More specifically, we use piecewise continuous approximations for the field
variables in the thickness direction and continuous polynomial approximations for those
within the plane of the plate. Group theory is further used to isolate the nature of the
vibrational modes to reduce the computational cost. As numerical examples, two cases of
the lateral boundary conditions combined with the clamped and free edges are considered.
The non-dimensional frequencies and mode shapes of elastic displacements, electric and
magnetic potentials are presented. Our numerical results clearly illustrate the effect of the
stacking sequences and magneto-electric coupling on the frequencies and mode shapes of
the anisotropic magneto-electro-elastic plate, and should be useful in future vibration study
and design of multilayered magneto-electro-elastic plates.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered composites offer many useful features as structural components and as such, response of such composites
under external loads is an important research subject. Besides the common numerical methods, such as the finite-element
and boundary-element methods, various analytical/semi-analytical solutions were presented for layered composite plates.
For instance, Vel and Batra [1] presented an analytical three-dimensional (3D) solution for the static deformation of
multilayered piezoelectric plates under general boundary conditions in terms of series expansion. The corresponding
bending vibration was further solved by Vel et al. [2]. The extended Kantorovich method was also applied to the static
bending of layered piezoelectric plates by Kapuria and Kumari [3], and to the 3D deformation of layered elastic plates by
Kumari et al. [4] where an iterative scheme was employed.

Recent development of smart materials/structures is receiving widespread attention owing to their potential applications
in various engineering fields such as sensors, actuators and microwave devices. As an important member of these smart
materials, magneto-electro-elastic (MEE) materials which consist of piezoelectric (PE) and piezomagnetic (PM) phases, are
able to facilitate the energy conversion between the electric and magnetic fields. Such a phenomenon is called
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magnetoelectric (ME) effect which cannot be found in the pure piezoelectric or piezomagnetic material. Since the report on
the ME effect by van Suchtelen [5], many interesting studies on MEE materials and structures have been carried out. Among
them, the static and dynamic behaviors of typical MEE structures, for example plates and beams, are especially investigated.

For a simply supported multilayered MEE plate, the exact closed-form solution of the deformation under a static
mechanical load was derived using the pseudo Stroh formalism [6]. The corresponding free vibration was analyzed by Pan
and Heyliger [7]. Another method, the state-space formulation, was also widely used in the analysis of the static and
dynamic behaviors of MEE multilayered plates [8,9]. Free vibration of a non-homogeneous transversely isotropic MEE plate
was carried out by Chen et al. [10]. Besides, the discrete-layer and domain-discretization methods were also proposed to the
analysis of free vibration of anisotropic elastic and MEE plates and shells [11–15].

For a simply supported MEE plate, analytical solutions of the field variables can be found that satisfy exactly the lateral
boundary conditions. However, under other lateral boundary conditions such as the clamped or free conditions, one cannot
find such analytical expressions of the field variables. Furthermore, many commercial finite-element codes cannot handle
the multiphase coupling problem. Thus, in this paper, a semi-analytical discrete-layer model of the governing differential
equations is developed and applied to typical layered MEE media under combined clamped and free lateral boundary
conditions. Our representative numerical results on the natural frequencies and mode shapes clearly show the unique
characteristics of these MEE solids which should be of particular interest to the design of layered MEE composites.

2. Formulation

2.1. Governing equations

While our semi-analytical model can be applied to any layered plate, we consider an anisotropic, MEE, and three-layered
rectangular plate with horizontal dimensions a and b and total thickness H (in the vertical or thickness direction) as shown
in Fig. 1. A Cartesian coordinate system is attached to the plate and its origin is at one of the four corners on the bottom
surface, with the plate occupying the region of zZ0. The interface of each layer is assumed to be bonded perfectly. In other
words, the elastic displacements, electric and magnetic potentials, elastic traction, and the z-components of the electric
displacement and magnetic induction are continuous across the interfaces.

For a linear, anisotropic MEE solid, the coupled constitutive equation can be written in the following form:

si ¼ cikγk�ekiEk�qkiHk; Di ¼ eikγkþεikEkþdikHk; Bi ¼ qikγkþdikEkþμikHk; (1)

where si, Di and Bi are the stress, electric displacement and magnetic induction, respectively; γk, Ek and Hk are the strain,
electric field and magnetic field, respectively; cik, εik and μik are the elastic, dielectric, and magnetic permeability coefficients,
respectively; eik, qik and dik are the piezoelectric, piezomagnetic and magnetoelectric coefficients, respectively. We remark
that various uncoupled cases can be reduced by setting the appropriate coupling coefficients to zero.

The relationship between the strain and displacement, electric (magnetic) field and its potential can be expressed as

γij ¼ 0:5ðui;jþuj;iÞ; Ei ¼ �φi; Hi ¼ �ψ ; i; (2)

where ui are the elastic displacements, and φ and ψ are the electric and magnetic potentials, respectively. The subscript after
the comma, e.g. “,i”, in the elastic displacement, electric and magnetic potentials denotes partial derivative with respect to
the i-th coordinate xi (x1¼x, x2¼y, x3¼z).

For the problem to be considered in this paper, we assume that the body forces, electric charge and current densities are
zero; thus the governing equations of motion in the dynamic case are given by

sij; j ¼ ρ
∂2ui

∂t2
; Dj; j ¼ 0; Bj; j ¼ 0; (3)

where ρ is the density of the material.
While general conditions may be prescribed to the lateral boundaries (along the whole thickness of the plate; i.e., for any

given z-coordinate in the problem domain) of the layered plate, we consider the following two typical cases.

Fig. 1. The three-layered magneto-electro-elastic plate.
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Case I: CCCC, which means that the four sides of the plate are “clamped”:

u1 ¼ u2 ¼ u3 ¼ φ¼ ψ ¼ 0;

on x¼ 0 and x¼ a; with y A ð0; bÞ; on y¼ 0 and y¼ b; with xAð0; aÞ: (4)

Case II: FCFC, which means that two sides of the plate are “free” (say, y¼0 and b) while the other two are clamped (x¼0
and a):

s21 ¼ s22 ¼ s23 ¼D2 ¼ B2 ¼ 0 on y¼ 0 and y ¼ b; with xAð0; aÞ
u1 ¼ u2 ¼ u3 ¼ φ¼ ψ ¼ 0 on x¼ 0 and x¼ a; with y Að0; bÞ: (5)

We point out that the clamped and free conditions are terminologies for the mechanical quantities only. For the electrical
ones, φ¼0 indicates a conducting or closed circuit condition, whilst D2¼0 denotes an insulating or open circuit condition.
Similar statements can be made for the corresponding magnetic quantities.

2.2. The semi-analytical discrete-layer model

Our semi-analytical discrete-layer models are based on the idea of allowing for discontinuity of the slope of the primary
unknowns because of the continuity of extended traction between dissimilar layers. They provide some benefits over
classical single-layer theories in that the known breaks in slope are explicitly represented via C0 continuity through the
thickness. The primary steps of this development are presented below.

In our model, we split the approximation of the primary unknowns into the product of functions in the z-direction
multiplied by functions in (x,y) and then solve the weak form of the governing equations. The latter can be obtained by
forming the weighted residuals

0¼
Z
V
δui sij;j�ρ

∂2ui

∂t2

� �
dV ; 0¼

Z
V
δφDj;j dV ; 0¼

Z
V
δψBj;j dV (6)

These expressions are then integrated by parts to yield the final weak form of the original differential equations [12]. We
assume that the five primary field variables (u� u1, v� u2, w� u3, φ,ψ) can be approximated using the form, say for u, as

uðx; y; zÞ ¼ ∑
n

j ¼ 1
ajf

u
j ðx; y; zÞ (7)

where aj are the unknown constants and f uj the given functions of the coordinates. The complete functions f are then split
into the following form

f uj ðx; y; zÞ ¼ gjðzÞ hjðx; yÞ (8)

Hence the three-dimensional approximations are split into the products of the through-thickness approximation
multiplied by the in-plane approximation. For homogeneous solids, such a separation is somewhat inconsequential. But for
layered materials, it allows for approximations in the z-direction that are piecewise continuous rather than fully continuous
over the thickness direction. Since in exact solutions the interface conditions are enforced exactly, this class of
approximation allows for a closer representation with those constraints.

In this study, the functions gjðzÞ in Eq. (8) are taken to be piecewise linear functions over an individual sub-layer of the
laminate. These layers need not be the same as the individual physical layers of the laminate. The functions hjðx; yÞ in Eq. (8)
are taken to be the products of polynomials over the range of xC(0,a) and of yC(0,b) or hðx; yÞ ¼ f xðxÞf yðyÞ. For the case of
zero values at the endpoints, such as the clamped plate, the functions f xðxðξÞÞ can be written in terms of the normalized
coordinates ξ and expressed as

f xðxðξÞÞ ¼
ðξ�ξ1Þðξ�ξ2Þ…ðξ�ξnÞ
ðξi�ξ1Þðξi�ξ2Þ…ðξi�ξnÞ

(9)

where n must be greater than or equal to 2, ξ1¼�1, ξn¼1, and the remaining ξi are at equally spaced locations between
(�1,1). The functions f yðyÞ have a similar form except for that the normalized coordinate η replaces ξ. These functions have
the advantage of having pure symmetry (evenness) or asymmetry (oddness) about their normalized coordinate origins, and
hence the resulting approximations can be grouped with that in mind. For example, the first two even functions of this
nature are ð1�ξ2i Þ and ð1�ξ2i Þð1=9�ξ2i Þ. Both of these are symmetric about the mid-line ξi ¼0 and are zero at the endpoints
(�1,1). For the case of the free-free condition, the approximation functions in the appropriate direction are replaced with
Legendre polynomials. In this case, the lowest order used is not quadratic but rather constant (even) over the domain, and
the increasing order of the polynomial retains the even/odd structure about the origin. Hence the even polynomials take the
sequential forms 1, (3x2�1)/2, (35x4�30x2þ3)/8, and so on, whilst the odd functions appear as x, (5x3�3x)/2,
(63x5�70x3þ15x)/8 and so on [16].

The eigenvalue problem that results from the discretization of the governing equations can be separated into different
combinations of (u,v,w,φ,ψ) according to their various symmetries about the middle lines of the plate. This allows for a
significant reduction in the size of the matrix expression that needs to be solved for any combination of approximations.
This is in fact one of the primary advantages of Ritz-based discrete-layer models for the analysis of rectangular plates over
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alternatives such as finite element methods. Not only are the global approximation methods generally more accurate per
degree-of-freedom, but the applications of group theory significantly reduces the size of the resulting eigenvalue problem.
The nature and combination of these approximations are given in Table 1 which shows that one can solve 4 separate smaller
eigenvalue problems instead of a large problem. For example, if 16 layers are used that include 6 terms in the x- and
y-direction, the full matrix expression would be of the order 5(16þ1)(6)(6)¼3060. However, splitting this problem into four
smaller groups in x and y, where only the appropriate odd or even terms are kept, reduces this to solving 4 problems with
much smaller dimension 5(16þ1)(3)(3)¼765.

2.3. Finite element model

To compare and check with our semi-analytic discrete-layer model, we have also built a finite element model based on
COMSOL [17]. In terms of COMSOL, once Eqs. (1)–(3) are expressed as a general form with the PDE module, the analysis of
the three-dimensional vibration of the MEE plate can be carried out. The general governing equation for the dynamics
system in COMSOL software [17] is given in the PDE vector form as

ea
∂2u
∂t2

þda
∂u
∂t

þ∇�ð�c∇u�αuþγÞþβ�uþau¼ f (10)

where ea is the mass coefficient, da damping coefficient, c diffusion coefficient, α conservative flux convection coefficient,
β convection coefficient, a absorption coefficient, γ conservative flux source term, and f is the source term. The MEE
multilayered plate is assumed to be linear and free of any load, without any damping. Thus, only two coefficient matrices,
i.e., those related to the diffusion and mass coefficients, are kept. The elements of these two matrices are given in Appendix A.

3. Results and discussions

We first point out that the convergence of the results using our semi-analytical discrete-layer approximations can be also
self-assessed both by increasing the number of sub-layers through the thickness of the laminate and by varying the number
of terms used in the in-plane polynomial approximations. For the results presented in this study, we varied the layer
numbers as 1, 2, 4, 8, 16, and 32 for the homogeneous plate, and then for each of these discretizations also varied the
number of in-plane functions from a single term (for example, (1�ξ)(1þξ)(1�η)(1þη) for the clamped-clamped plate with
n dimensionless coordinates originated at the plate's in-plane center) up to 36 in-plane terms that include polynomial
products up to the order of 12. Using a total of 32 layers and 36 in-plane terms resulted in frequencies that did not change in
4 significant figures from the prior lower level of approximation. Thus, for the layered specimens, we used 36 layers for
calculating the frequencies presented in this study.

In order to verify our semi-analytical discrete-layer model, a purely elastic homogeneous square plate with CCCC and
FCFC boundary conditions is considered [15]. The top and bottom surfaces of the plate are traction free and the plate is made
of hexagonal material, with material coefficients being given in Appendix B.

Table 2 lists the first ten non-dimensional natural frequencies of the square plate of H/a¼0.2 where the frequencies are
normalized as ω¼ωH

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ=c11

p
based on our semi-analytical discrete-layer (DL) model, as compared to those in [15] and those

based on our FEM formulation of COMSOL [17] with a total of 2�10�10 elements as implemented by the authors. The
group number used in our DL model is also listed in Table 1. It is clearly observed that, the natural frequencies calculated
using our semi-analytical DL model are almost identical to those based on a FEM formulation of COMSOL [17] and also those
in [15] based on a different finite element approach.

3.1. Eigenfrequencies

Having verified our semi-analytical method for the purely elastic plate, we now apply it to the three-layered plate made
of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 with material properties taken from Pan and Heyliger [7] but making
use of the positive magnetic permeability coefficients for CoFe2O4 as listed in Appendix C. It is noted that the density of the

Table 1
Designation of the evenness (E) or oddness (O) of the approximation functions for the four basic groups in the semi-analytical discrete-layer theory.

Displacement Group number

1 2 3 4

x y x y x y x y

u O E O O E E E O
v E O E E O O O E
w E E E O O E O O
φ E E E O O E O O
ψ E E E O O E O O

J.Y. Chen et al. / Journal of Sound and Vibration 333 (2014) 4017–40294020
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two materials is assumed to be equal with ρmax¼5800 kg/m3 being used in the calculation. The three layers are assumed to
have equal thickness. Four stacking sequences of the plate are considered. They are BBB, BFB, FBF and FFF with B
representing BaTiO3 and F representing CoFe2O4, as in [7]. The plate is considered to be square in the horizontal plane with a
side length a¼1 m, and it has a total thickness of 0.3 m in the vertical direction. While the top and bottom surfaces are
assumed extended traction free as in [7], the lateral boundary conditions are either CCCC or FCFC type.

Tables 3–7 list the first ten non-dimensional frequencies for the layered plate with frequencies being normalized by
ω¼ωa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρmax=cmax

p
, and with cmax being the maximum value of the stiffness coefficients (i.e., cmax¼286�109 N/m2). In these

tables, we have also included the results corresponding to the different uncoupled cases: PE and PM represent, respectively,
the material where the piezomagnetic and piezoelectric coupling coefficients are zero, and Elastic represents the material

Table 2
The first ten non-dimensional natural frequencies of an elastic square plate with hexagonal materials calculated by our semi-analytical discrete-layer (DL),
as compared to our FEM, and also those in [15]. The value in the parentheses in DL indicates the group number used.

No. CCCC FCFC

DL FEM Ref. [15] DL FEM Ref. [15]

1 0.3332(1) 0.3332 0.3325 0.2193(1) 0.2194 0.2191
2 0.5987(2) 0.5988 0.5960 0.2572(2) 0.2573 0.2566
3 0.5987(3) 0.5988 0.5960 0.3798(2) 0.3798 0.3796
4 0.7459(2) 0.7460 0.7449 0.3967(1) 0.3968 0.3941
5 0.7459(3) 0.7460 0.7449 0.5182(3) 0.5183 0.5163
6 0.8138(4) 0.8136 0.8081 0.5656(4) 0.5657 0.5628
7 0.9354(1) 0.9358 0.9280 0.6260(3) 0.6261 0.6254
8 0.9478(1) 0.9482 0.9405 0.6645(2) 0.6646 0.6570
9 0.9613(4) 0.9617 0.9591 0.6744(4) 0.6744 0.6735

10 1.1091(4) 1.1158 1.1045 0.6958(1) 0.6959 0.6949

Table 3
The first ten non-dimensional frequencies for the square homogeneous plate of BBB or FFF under lateral boundary condition CCCC.

No. BBB FFF

PE(DL) PE(FE) Elastic(DL) Elastic(FE) PM(DL) PM(FE) Elastic(DL) Elastic(FE)

1 1.7817 1.7823 1.6479 1.6494 1.3667 1.3674 1.3621 1.3629
2 2.9486 2.9492 2.7236 2.7242 2.2311 2.2318 2.2234 2.2242
3 2.9486 2.9492 2.7236 2.7242 2.2311 2.2318 2.2234 2.2242
4 3.2195 3.2201 3.1474 3.1479 2.7905 2.7915 2.7904 2.7914
5 3.2195 3.2201 3.1474 3.1479 2.7905 2.7915 2.7904 2.7914
6 3.7120 3.7121 3.5958 3.5964 2.9345 2.9353 2.9237 2.9244
7 3.9106 3.9113 3.7107 3.7108 3.1898 3.1899 3.1898 3.1899
8 4.4042 4.4050 4.0486 4.0493 3.3033 3.3041 3.2910 3.2918
9 4.5056 4.5069 4.1059 4.1065 3.3441 3.3451 3.3306 3.3316

10 4.6486 4.6495 4.5659 4.5668 3.8735 3.8743 3.8580 3.8589

Table 4
The first ten non-dimensional frequencies for the square plate with BFB under lateral boundary condition CCCC.

No. PE(DL) PE(FE) PM(DL) PM(FE) MEE(DL) MEE(FE)

1 1.3428 1.3434 1.2889 1.2894 1.3452 1.3458
2 2.2191 2.2199 2.1305 2.1312 2.2231 2.2238
3 2.2191 2.2199 2.1305 2.1312 2.2231 2.2238
4 2.6177 2.6182 2.5753 2.5759 2.6178 2.6184
5 2.6177 2.6182 2.5753 2.5759 2.6178 2.6184
6 2.9348 2.9357 2.8132 2.8139 2.9404 2.9413
7 2.9939 2.9940 2.9931 2.9931 2.9939 2.9940
8 3.3061 3.3073 3.1668 3.1677 3.3123 3.3134
9 3.3689 3.3703 3.2129 3.2139 3.3758 3.3772

10 3.7728 3.7736 3.7213a 3.7298 3.7729 3.7738

a There is another repeated frequency from other groups (2 and 3) which is 3.7289.
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which is purely elastic without any piezoelectric and piezomagnetic coupling. In each of these cases, the results from our
semi-analytical DL models are compared with those from our FE formulation based on COMSOL. In every case but one (the
lowest mode of the BFB CFCF plate as highlighted in bold italics in Table 6), the DL results are slightly lower, and hence
slightly more accurate.

Comparing Tables 3–5, we notice that while under the lateral boundary condition CCCC, there are two repeated modes
(modes 2 and 3, and 4 and 5), all the modes under CFCF are well separated. We further observe that there are certain modes,
which are independent of the PE/PM coupling in the plate. In other words, the PE/PM coupling coefficients have very little or
no effect on the mode frequencies. These are highlighted by bold fonts for modes 4, 5, 7 and 10 in Tables 3–5, and modes 3,
and 7–9 in Tables 6 and 7. Again, comparing these tables for the independent modes, we find that their mode numbers are
different for different boundary conditions. This interesting phenomenon can also be found in the other stacking sequences
under other lateral boundary conditions.

3.2. Mode shapes

Figs. 2 and 3 show the first six mode shapes of the elastic displacement component uz¼w of the BFB plate under
boundary conditions CCCC and FCFC. Because of symmetric lateral boundary conditions for the CCCC plate, identical mode

Table 5
The first ten non-dimensional frequencies for the square plate with FBF under lateral boundary condition CCCC.

No. PE(DL) PE(FE) PM(DL) PM(FE) MEE(DL) MEE(FE)

1 1.4453 1.4463 1.3911 1.3920 1.4477 1.4486
2 2.3591 2.3602 2.2704 2.2715 2.3631 2.3641
3 2.3591 2.3602 2.2704 2.2715 2.3641 2.3641
4 2.7592 2.7603 2.7377 2.7388 2.7596 2.7607
5 2.7592 2.7603 2.7377 2.7388 2.7596 2.7607
6 3.1106 3.1117 2.9855 2.9867 3.1162 3.1173
7 3.1622 3.1623 3.1619 3.1620 3.1622 3.1623
8 3.5005 3.5017 3.3609 3.3622 3.5069 3.5080
9 3.5537 3.5552 3.4014 3.4030 3.5609 3.5624

10 3.9687 3.9702 3.9401 3.9390 3.9691 3.9706

Table 6
The first ten non-dimensional frequencies for the square plate with BFB under lateral boundary condition FCFC.

No. PE(DL) PE(FE) PM(DL) PM(FE) MEE(DL) MEE(FE)

1 0.9054 0.9059 0.8726 0.8730 0.9069 0.9047
2 0.9836 0.9839 0.9646 0.9649 0.9844 0.9848
3 1.2038 1.2040 1.2020 1.2022 1.2038 1.2040
4 1.5609 1.5610 1.5146 1.5147 1.5623 1.5623
5 1.8998 1.9006 1.8348 1.8355 1.9028 1.9036
6 2.0254 2.0261 1.9704 1.9710 2.0283 2.0289
7 2.2101 2.2107 2.1856 2.1862 2.2102 2.2108
8 2.2359 2.2360 2.2202 2.2203 2.2359 2.2361
9 2.4412 2.4415 2.3945 2.3947 2.4443 2.4416

10 2.5091 2.5095 2.4363 2.4366 2.5124 2.5127

Table 7
The first ten non-dimensional frequencies for the square plate with FBF under lateral boundary condition FCFC.

No. PE(DL) PE(FE) PM(DL) PM(FE) MEE(DL) MEE(FE)

1 0.9803 0.9811 0.9459 0.9467 0.9818 0.9826
2 1.0633 1.0639 1.0425 1.0431 1.0641 1.0647
3 1.2721 1.2724 1.2714 1.2717 1.2721 1.2724
4 1.7141 1.7142 1.6803 1.6804 1.7155 1.7156
5 2.0214 2.0225 1.9529 1.9541 2.0245 2.0256
6 2.1700 2.1709 2.1039 2.1049 2.1728 2.1738
7 2.3321 2.3330 2.3206 2.3216 2.3323 2.3333
8 2.3630 2.3632 2.3550 2.3553 2.3631 2.3634
9 2.5735 2.5738 2.5475 2.5478 2.5738 2.5741

10 2.7116 2.7120 2.6324 2.6330 2.7149 2.7154
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shapes corresponding to double frequencies can be found in Fig. 2(b) and (c), (d) and (e). It is clear that the mode shapes are
identical to those in the purely elastic plate under the same lateral boundary conditions. For the corresponding FCFC
boundary case, however, all these mode shapes are separated (Fig. 3) and further are totally different to those in the CCCC
case. Furthermore, the effect of layering on the mode shape is also shown clearly in the third mode shape in Fig. 3(c).

Fig. 4 shows the vertical profile of the first mode shapes of the electric and magnetic potentials of the BFB plate under
CCCC (Fig. 4(a) and (b)) and FCFC (Fig. 4(c) and (d)) boundary conditions. These mode shapes are on the vertical central
plane parallel to the xoz plane. It is observed from Fig. 4(a) and (b) that the electric and magnetic potentials φ and ψ reach
their maximum in the center of the plate and are quickly reduced to zero on the lateral boundary due to the clamped
conditions (CCCC case). For the corresponding FCFC case (Fig. 4(c) and (d)), however, due to the extended traction-free
lateral boundary conditions on both sides, the electric and magnetic potential distributions are totally different. Again, the
layering effect can be also clearly seen in these two figures for the FCFC case.

Fig. 2. The first six mode shapes of displacement component uz¼w for a BFB plate under CCCC boundary conditions: (a) ω¼1.3458, (b) ω¼2.2238, (c)
ω¼2.2238, (d) ω¼2.6184, (e) ω¼2.6184, and (f) ω¼2.9413.

J.Y. Chen et al. / Journal of Sound and Vibration 333 (2014) 4017–4029 4023
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Fig. 5 presents the first mode shapes of the electric and magnetic potentials of the FBF plate under CCCC and FCFC
conditions. While Fig. 5(a) and (b) are somewhat similar to Fig. 4(a) and (b), the shapes of the electric and magnetic
potentials in FBF under FCFC (Fig. 5(c) and (d),) are switched when compared to those in Fig. 4(c) and (b). This is due
to the fact that while Fig. 4 corresponds to stacking sequence BFB, Fig. 5 corresponds to FBF, i.e., the F and B layers
are switched. We further remark that in both Figs. 4 and 5, all the mode shapes are symmetric about the middle
plane.

Figs. 6 and 7 show the first mode shapes of the electric field Ez and magnetic field Hz in the vertical central plane parallel
to the xoz plane of the plate under CCCC and FCFC conditions. Compared to the results for the corresponding potentials in
Figs. 4 and 5, we observe a clear discontinuity of fields across the interface in the three-layered plate, which is caused by the
discontinuity of the material properties. Furthermore, all the mode shapes of fields are anti-symmetric about the
middle plane.

Fig. 3. The first six mode shapes of displacement component uz¼w for a BFB plate with FCFC boundary conditions: (a) ω¼0.9047, (b) ω¼0.9848,
(c) ω¼1.2040, (d) ω¼1.5623, (e) ω¼1.9036, and (f) ω¼2.0289.
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4. Conclusions

In this paper, three-dimensional free vibration of a magneto-electro-elastic (MEE) multilayered plate is studied by using
the semi-analytical discrete layer model. Typical lateral boundary conditions such as clamped and free are considered where

Fig. 4. The first mode shapes of the electric (φ) and magnetic (ψ) potentials in the vertical central plane parallel to the xoz plane in the BFB plate: CCCC vs.
FCFC boundary conditions: (a) electric potential and (b) magnetic potential in CCCC, and (c) electric potential and (d) magnetic potential in FCFC.

Fig. 5. The first mode shapes of electric (φ) and magnetic (ψ) potentials in vertical central plane parallel to the xoz plane in the FBF plate: CCCC vs. FCFC
boundary conditions: (a) electric potential and (b) magnetic potential in CCCC, and (c) electric potential and (d) magnetic potential in FCFC.
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analytical solution of the corresponding free vibration cannot be found. Our discrete-layer formulation is validated
to be accurate and efficient, and it is further applied to the sandwiched MEE plate made of piezoelectric BaTiO3

and magnetostrictive CoFe2O4. The first ten frequencies are presented and the coupling effect of the material

Fig. 6. The first mode shapes of the electric field Ez in the vertical central plane parallel to the xoz plane in the BFB (a) and FBF (b) plates with CCCC
boundary conditions, and in the BFB (c) and FBF (d) plates with FCFC boundary conditions.

Fig. 7. The first mode shapes of the magnetic field Hz in the vertical central plane parallel to the xoz plane in the BFB (a) and FBF (b) plates with CCCC
boundary conditions, and in the BFB (c) and FBF (d) plates with FCFC boundary conditions.
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properties is discussed. For the geometries and boundary conditions considered in this study, we highlight the following
results:

1. For purely elastic hexagonal materials, the addition of lateral clamped boundary conditions increases the frequencies by
50–100% as compared to the free-boundary case.

2. The level of piezoelectric stiffening significantly exceeds that of magnetostrictive stiffening. For instance, under the CCCC
lateral boundary condition, the former gives an increase in frequency of up to 10% as compared to under 2% by the
latter one.

3. Positioning the magnetostrictive layers as the outer layers in the sandwich MEE laminate yields an increase of an average
6–8% in frequency as compared to the laminate with the piezoelectric layers on the outside.

Some typical mode shapes are also presented, which should be of benefit for future research in this direction. It is
expected that while the proposed semi-analytical discrete-layer theory can be extended to analyze free vibration of plates
with different shapes and functional graded interface, the results presented in the article could be used as benchmarks to
future numerical investigation in multilayered MEE composites.
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Appendix A

The mass and diffusion coefficients in Eq. (10) are given by

ea ¼

ρ 0 0 0 0
ρ 0 0 0

ρ 0 0
sym 0 0

0

2
6666664

3
7777775
; c¼

Δ11 Δ12 Δ13 Δ14 Δ15

Δ22 Δ23 Δ24 Δ25

Δ33 Δ34 Δ35

sym Δ44 Δ45

Δ55

2
6666664

3
7777775

(A.1)

where the sub-matrices in (A.1) for our transversely isotropic MEE materials can be written as

Δ11 ¼
c11 0 0
0 c66 0
0 0 c55

2
64

3
75; Δ12 ¼

0 c12 0
c66 0 0
0 0 0

2
64

3
75; Δ13 ¼

0 0 c13
0 0 0
c55 0 0

2
64

3
75

Δ22 ¼
c66 0 0
0 c22 0
0 0 c44

2
64

3
75; Δ23 ¼

0 0 0
0 0 c23
0 c44 0

2
64

3
75; Δ33 ¼

c55 0 0
0 c44 0
0 0 c33

2
64

3
75

Δ44 ¼
�ε11 0 0
0 �ε22 0
0 0 �ε33

2
64

3
75; Δ55 ¼

�μ11 0 0
0 �μ22 0
0 0 �μ33

2
64

3
75; Δ45 ¼ 03�3 (A.2)

For the piezoelectric material BaTiO3, the remaining sub-matrices in (A.1) can be written as

Δ14 ¼
0 0 e31
0 0 0
e15 0 0

2
64

3
75; Δ24 ¼

0 0 0
0 0 e32
0 e24 0

2
64

3
75; Δ34 ¼

e15 0 0
0 e24 0
0 0 e33

2
64

3
75

Δ15 ¼Δ25 ¼ Δ35 ¼ 03�3 (A.3)
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For the piezomagnetic material CoFe2O4 the remaining sub-matrices in (A.1) can be written as

Δ15 ¼
0 0 q31
0 0 0
q15 0 0

2
64

3
75; Δ25 ¼

0 0 0
0 0 q32
0 q24 0

2
64

3
75; Δ35 ¼

q15 0 0
0 q24 0
0 0 q33

2
64

3
75

Δ14 ¼Δ24 ¼Δ34 ¼ 03�3 (A.4)

Appendix B

Material properties of the elastic hexagonal square plate are given by

½c� ¼

298:2 27:7 11:0 0 0 0
298:2 11:0 0 0 0

340:9 0 0 0
165:5 0 0

sym: 165:5 0
135:3

2
666666664

3
777777775
GPa; ρ¼ 1850 kg=m3:

Appendix C

Piezoelectric and piezomagnetic material properties (elastic constants cij in 109 N/m2, piezoelectric constants eij in C/m2,
piezomagnetic constants qij in N/Am, dielectric constants εij in 10�9 C2/Nm2, magnetic constants μij in 10�6 Ns2/C2, density
ρ in kg/m3).

Material coefficients of piezoelectric BaTiO3

c11¼c22 c12 c13¼c23 c33 c44¼c55 c66¼0.5(c11–c12)
166 77 78 162 43 44.5

e31¼e32 e33 e24¼e15 ρ

�4.4 18.6 11.6 5800

ε11¼ε22 ε33 μ11¼μ22 μ33
11.2 12.6 5 10

Material coefficients of magnetostrictive CoFe2O4

c11¼c22 c12 c13¼c23 c33 c44¼c55 c66¼0.5(c11–c12)
286 173 170.5 269.5 45.3 56.5

q31¼q32 q33 q24¼q15 ρ

580.3 699.7 550 5800

ε11¼ε22 ε33 μ11¼μ22 μ33
0.08 0.093 590 157
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