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Free Vibration of a Multilayered
One-Dimensional Quasi-Crystal
Plate
An exact closed-form solution of free vibration of a simply supported and multilayered
one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formu-
lation and propagator matrix method. Natural frequencies and mode shapes are pre-
sented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates
made of crystals and QCs. The natural frequencies and the corresponding mode shapes
of the plates show the influence of stacking sequence on multilayered plates and the different
roles phonon and phason modes play in dynamic analysis of QCs. This work could be
employed to further expand the applications of QCs especially if used as composite materials.
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1 Introduction

From the diffraction image of rapidly cooled Al–Mn alloys,
Shechtman et al. discovered quasi-crystals (QCs) in 1982 [1]. This
discovery was revolutionary and showed that QCs exhibit symme-
tries that are forbidden in classical crystallography. Crystal struc-
tures have periodically repeating unit cells that completely fill
space and must have two-fold, three-fold, four-fold, or six-fold
rotational symmetry. On the contrary, QCs can be both ordered
and nonperiodic which form patterns that completely fill space but
lack translational symmetry. Since 1980s, several hundred alloys
with thermodynamic stability have been found to exhibit quasi-
crystalline behavior [2].

Attributing to their nonperiodic atomic structure, QCs possess
properties, such as corrosion resistivity, low thermal conductivity,
low coefficients of friction, low porosity, high hardness, and high
wear resistance. These properties have enabled QCs to be applied
as thin films and coatings [2]. Since QCs are hard and brittle at
room temperature [2,3], the linear elastic theory established by
Ding et al. [4] can be employed to analyze the mechanical proper-
ties of QCs. Due to the complicated nature of QC elastic equa-
tions, the majority of work is limited to the defect analysis in QC,
such as dislocations and cracks under static deformation [3,5–7].

A 1D QC refers to a three-dimensional (3D) structure with
atomic arrangement quasi-periodically in one direction and peri-
odically in the plane perpendicular to that direction. While
dynamic analysis of crystals has been studied extensively, includ-
ing damping effects [8], static and transient bending of 1D QC
plates were only recently studied [9]. Although various plane frac-
ture dynamic analyses for QCs were conducted [5–7], and free
vibration and elastic wave problems were analyzed for other lay-
ered structures [10,11], free vibration of 1D QC layered plates in
3D finite space has not been reported in literature, to the best of
the authors’ knowledge. Therefore, in this work, we derive the
exact closed-form solutions of free vibration for 3D layered plates
made of 1D QCs and crystals under laterally simply supported
conditions. The pseudo-Stroh formalism [12] and the propagator

matrix method [13] are utilized to obtain the natural frequencies
and mode shapes of 1D QCs layered plates. As numerical illustra-
tions, the normalized natural frequencies of homogeneous crystal
and QC plates and sandwich plates composed of QCs and crystals
with different stacking sequences are presented. This work could
be applied to analyze composites with QC layer(s) and further
expand the applications of QCs.

2 Fundamental Equations

In this section, we describe the fundamentals of linear elastic
theory for QCs. The displacement field in classical crystals is the
phonon displacement field ui (i¼ 1,2,3). In QCs, the phason dis-
placement field wi is introduced to describe the rearrangement of
atomic configurations along the quasi-periodic direction. Both dis-
placement fields are needed in the analysis of QCs and they are
actually coupled with each other [4,5].

Based on the linear elastic theory of QCs [4], the strain–
displacement relations are given by

eij ¼
1

2

@ui

@xj
þ @uj

@xi

� �

wij ¼
@wi

@xj

(1)

where eij is the phonon strain tensor and wij is the phason strain
tensor. The phonon strain tensor is symmetric, whereas the phason
strain tensor is asymmetric.

The generalized constitutive relations of quasi-crystalline mate-
rial are written as [4]

rij ¼ Cijklekl þ Rijklwkl

Hij ¼ Rklijekl þ Kijklwkl

(2)

where rij is the phonon stress tensor, Cijkl phonon elastic con-
stants, Hij phason stress tensor, Kijkl phason elastic constants, Rijkl

phonon–phason coupling elastic constants, and repeated indices
indicate the summation from 1 to 3. It should be noted that
although for 1D QCs the phonon stress tensor is symmetric
(rij¼ rji), the phason stress tensor is not (Hij 6¼ Hji) [5].
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The elastic constants in Eq. (2) depend on the crystal system
and Laue class. Particularly for 1D QC, there are 31 possible point
groups which are organized into six crystal systems and ten Laue
classes [14]. In this work, the hexagonal system and Laue class 10
with point groups 62h2h; 6mm; �6m2h, and 6/mhmm are considered.
For this Laue class, there are five independent phonon elastic con-
stants, two independent phason elastic constants, and three inde-
pendent phonon–phason coupling elastic constants.

Referring to the Cartesian coordinate system (x1, x2, x3), we
consider a 1D hexagonal QC plate with x1-axis and x2-axis in the
periodic directions and x3-axis in the quasi-periodic direction.
Accordingly, w1¼w2¼ 0. Thus, in terms of this coordinate sys-
tem, the linear constitutive relations Eq. (2) for 1D hexagonal QC
are reduced to [5]

r11 ¼ C11e11 þ C12e22 þ C13e33 þ R1w33

r22 ¼ C12e11 þ C11e22 þ C13e33 þ R1w33

r33 ¼ C13e11 þ C13e22 þ C33e33 þ R2w33

r23 ¼ r32 ¼ 2C44e23 þ R3w32

r13 ¼ r31 ¼ 2C44e13 þ R3w31

r12 ¼ r21 ¼ 2C66e12

H31 ¼ 2R3e13 þ K2w31

H32 ¼ 2R3e23 þ K2w32

H33 ¼ R1e11 þ R1e22 þ R2e33 þ K1w33

(3)

with C66 ¼ ðC11 � C12Þ=2.
In the absence of body forces, the dynamic equations of motion

are governed by [5]

@rij

@xj
¼ q

@2ui

@t2

@Hij

@xj
¼ q

@2wi

@t2

(4)

where q is the density of the material. The first equation of motion
in Eq. (4) is related to phonon modes and will produce three inde-
pendent equations. For QCs, there exist several theories to
describe the dynamic behavior of phasons. The second equation
of motion in Eq. (4), derived by Ding et al. [4], follows Bak’s [15]
model, where phasons are represented by wave propagation. Bak
[15] also claims that the structural disorders or structural fluctua-
tions characterize phasons. Another well-known model, presented
by Lubensky et al. [16], considers phason modes to be diffusive
with a large diffusive time. Accordingly, the large diffusive time
is attributed to the insensitivity of phasons to spatial translation
[16]. Among the various dynamic theories for QCs, there also
exists a combination of these two theories as was adopted by Fan
et al. [7]. Even though the unusual behavior of phasons
presents many challenges and different points of view in the field,
each theory offers valuable insight. Bak’s theory, however, is
more frequently utilized due to its simplicity [5].

3 Problem Description

We consider an N-layered 1D QC plate as shown in Fig. 1. The
origin of the coordinate system is at one of the four corners on
the bottom surface such that the plate thickness is in the positive
x3-direction. The dimensions of the plate are x1� x2� x3¼
L1� L2�H and its four lateral sides are simply supported. It is
also obvious that layer j has its lower and upper interfaces at
x3¼ x3

(j) and x3¼ x3
(jþ1), respectively. Accordingly, the thickness

of layer j is written as

hj ¼ x
ðjþ1Þ
3 � x

jð Þ
3 (5)

It follows that x3
(1)¼ 0 and x3

(Nþ 1)¼H. Along the interface of
the layers, it is assumed that the displacement and traction vectors
are continuous.

For time-dependent harmonic motion, the solution for phonon
and phason displacements under simply supported lateral bound-
ary conditions can be assumed as

u ¼

u1

u2

u3

w3

8>>><
>>>:

9>>>=
>>>;
¼ esx3þixt

a1 cos px1 sin qx2

a2 sin px1 cos qx2

a3 sin px1 sin qx2

a4 sin px1 sin qx2

8>>><
>>>:

9>>>=
>>>;

(6)

where

p ¼ np=L1 q ¼ mp=L2

n and m are positive integers, x the frequency, s the eigenvalue to
be determined, and a1, a2, a3, and a4 are coefficients to be deter-
mined. The solution in Eq. (6) represents only one part of a double
Fourier series expansion with summations for n and m over suita-
ble ranges. Thus, whenever the periodic terms appear, summation
is implied.

By substituting the solution in Eq. (6) into the general strain–
displacement relations, Eq. (1), and subsequently into the consti-
tutive relations, Eq. (3), the traction vector with respect to the x3

direction is found to be

t ¼

r13

r23

r33

H33

8>>><
>>>:

9>>>=
>>>;
¼ esx3þixt

b1 cos px1 sin qx2

b2 sin px1 cos qx2

b3 sin px1 sin qx2

b4 sin px1 sin qx2

8>>><
>>>:

9>>>=
>>>;

(7)

The two vectors

a ¼ a1; a2; a3; a4f gt; b ¼ b1; b2; b3; b4f gt
(8)

with the superscript t indicating vector or matrix transpose, are
introduced to represent the coefficients in Eqs. (6) and (7), respec-
tively. It can be shown that the coefficient vector b in Eq. (7) can
be expressed in terms of the coefficient vector a in Eq. (6) by

b ¼ sT � Rtð Þa (9)

where

T ¼

C44

0

0

0

0

C44

0

0

0

0

C33

R2

0

0

R2

K1

2
666664

3
777775

R ¼

0

0

�C44p

�R3p

0

0

�C44q

�R3q

C13p

C13q

0

0

R1p

R1q

0

0

2
666664

3
777775

(10)

Fig. 1 N-layered QC plate
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Substituting Eq. (6) into Eq. (4), the following simplified equations are obtained:

� a1C11p2 � a1C66q2 � a2C12pq� a2C66pqþ a1qx2

þ s a3C13pþ a3C44pþ a4R1pþ a4R3pð Þ þ a1C44s2 ¼ 0

� a1C12pq� a1C66pq� a2C66p2 � a2C11q2 þ a2qx2

þ s a3C13qþ a3C44qþ a4R1qþ a4R3qð Þ þ a2C44s2 ¼ 0

� a3C44p2 � a3C44q2 � a4R3p2 � a4R3q2 þ a3qx2

� s a1C13pþ a1C44pþ a2C13qþ a2C44qð Þ

þ s2 a3C33 þ a4R2ð Þ ¼ 0

� a3R3p2 � a3R3q2 � a4K2p2 � a4K2q2 þ a4qx2

� s a1R1pþ a1R3pþ a2R1qþ a2R3qð Þ þ s2 a4K1 þ a3R2ð Þ ¼ 0

(11)

These equations further simplify to

Qþ s R� Rtð Þ þ s2T
� �

a ¼ 0 (12)

where

Q ¼

�ðC11p2 þ C66q2Þ þ qx2

�pq C12 þ C66ð Þ
0

0

�pq C12 þ C66ð Þ
� C66p2 þ C11q2ð Þ þ qx2

0

0

0

0

�C44 p2 þ q2ð Þ þ qx2

�R3 p2 þ q2ð Þ

0

0

�R3ðp2 þ q2Þ
�K2 p2 þ q2ð Þ þ qx2

2
66664

3
77775 (13)

The formulation in Eq. (12) is similar to the Stroh formalism
[17,18]. Thus, it can be appropriately named as the pseudo-Stroh
formalism [12].

Using the relation between vectors a and b as indicated by
Eq. (9), Eq. (12) can be recast into the following 8� 8 linear
eigenproblem:

N
a

b

� �
¼ s

a

b

� �
(14)

where

N ¼ T�1Rt T�1

�Q� RT�1Rt �RT�1

" #
(15)

Solving the eigenproblem in Eq. (14) yields eight eigenvalues si

(for i¼ 1, 2,…, 8). The first four eigenvalues are ordered to have
positive real parts. In the case where the real part of the eigen-
value is zero, the positive imaginary portion is taken. The next
four eigenvalues have opposite signs of the first four. The eigen-
vectors corresponding to the eigenvalues si follow the same order
and make up the vectors a and b [13].

Then the general solution for the displacement vector Eq. (6)
and traction vector Eq. (7), with the harmonic time-dependent ixt
factor omitted for simplicity, is obtained as

u

t

( )
¼

A1 A2

B1 B2

" #
hes�x3i

D1

D2

( )
(16)

where

A1 ¼ ½a1; a2; a3; a4�

A2 ¼ ½a5; a6; a7; a8�

B1 ¼ ½b1; b2; b3; b4�

B2 ¼ b5; b6; b7; b8½ �

hes�x3i ¼ diag es1x3 ; es2x3 ; es3x3 ; es4x3 ; e�s1x3 ; e�s2x3 ; e�s3x3 ; e�s4x3½ �
(17)

and D1 and D2 are two 4� 1 constant column matrices to be deter-
mined from boundary conditions of the plate. In other words, the first
four values of the eigenvectors of matrix N form matrices A1 and A2

and last four values of the eigenvectors form matrices B1 and B2.
From Eq. (16), it can be shown that the constant column matri-

ces, D1 and D2, can be solved for any point within layer j as
follows:

D1

D2

( )
j

¼ hes�ðx3�x
ðjÞ
3
Þi�1

A1 A2

B1 B2

" #�1
u

t

( )
x3

(18)

where s* are all the eigenvalues of layer j and x
ðjÞ
3 � x3 � x

ðjþ1Þ
3 .

Letting x3 be x
ðjÞ
3 and x

ðjþ1Þ
3 , the column matrices, in the respective

cases, are written as
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D1

D2

( )
j

¼
A1 A2

B1 B2

" #�1
u

t

( )
x
ðjÞ
3

¼ hes�hji�1
A1 A2

B1 B2

" #�1
u

t

( )
x
ðjþ1Þ
3

(19)

where hj is the thickness of layer j given by Eq. (5). Accordingly,
the displacement vector u and traction vector t on the upper inter-

face x3 ¼ x
ðjþ1Þ
3 can be expressed in terms of those on the lower

interface x3 ¼ x
ðjÞ
3 of layer j as

u

t

( )
x
ðjþ1Þ
3

¼
A1 A2

B1 B2

" #
hes�hji

A1 A2

B1 B2

" #�1
u

t

( )
x
ðjÞ
3

(20)

Since the displacement u and traction t are assumed to be con-
tinuous across the interfaces, Eq. (20) can be applied repeatedly
allowing the physical quantities to propagate from the bottom sur-
face x3¼ 0 to the top surface x3¼H of the multilayered 1D QC
plate. Therefore

u

t

( )
H

¼ PN hNð ÞPN�1 hN�1ð Þ…P2 h2ð ÞP1 h1ð Þ
u

t

( )
0

(21)

where

Pj hj

� �
¼

A1 A2

B1 B2

" #
hes�hji

A1 A2

B1 B2

" #�1

for j ¼ 1; 2;…;N (22)

is defined as the propagator matrix of layer j. For a multilayered
plate, each layer will have a propagator matrix defined. Hence,
this formulation simplifies the analysis of plates composed of
many layers with different material properties in each layer.

For free vibration analysis, the boundary conditions are given
as traction free at the top and bottom surfaces of the plate. Apply-
ing these boundary conditions to Eq. (21), we have

u

0

( )
H

¼
C1 C2

C3 C4

" #
u

0

( )
0

(23)

where Ci are the submatrices of the product of the propagator mat-
rices for the multiple layers. From Eq. (23), the natural frequen-
cies are found by letting the determinant of C3 be zero. It is noted
that in the solution process, the matrix N as given in Eq. (15) is
generated for each layer of a multilayered plate with an unknown
value of x.

4 Natural Frequencies and Mode Shapes

This section illustrates the free vibration response of 1D QCs lay-
ered plates under simply supported lateral boundary conditions using
the novel approach proposed in this paper. Four different simply sup-
ported plates are considered: a homogenous crystal plate made of
BaTiO3; a homogenous QC plate made of Al-Ni-Co; a sandwich
plate BaTiO3/Al-Ni-Co/BaTiO3 (called C/QC/C); and another sand-
wich plate Al-Ni-Co/BaTiO3/Al-Ni-Co (called QC/C/QC).

Elastic constants of QCs are typically measured through meth-
ods of neutron scattering, X-ray diffraction, or nuclear-magnetic
resonance [2]. Although there is no measured value of the phonon–
phason coupling elastic constants in Al-Ni-Co, the kinetic coeffi-
cient of the phason field could be used in its place [5]. For
Al-Ni-Co as a 1D hexagonal QC with Laue class 10, its density
and elastic constants are listed in Table 1. The density and elastic
constants for crystal BaTiO3 are listed in Table 2.

It is imperative to note that in classical crystalline materials,
only phonon field exists and there is no phason field [4,5]. Thus in

Eq. (3), both the phason elastic constants Ki and phonon–phason
coupling elastic constants Ri should be zero. Since a zero value of
the phason elastic constant Ki in the crystal layer would cause sin-
gularity in the involved 4� 4 matrices, a small Ki value (10–8 of
the corresponding Ki value in QC layer) is used in the crystal
layer. Also, the phason components in the displacement vector
given by Eq. (6) and traction vector given by Eq. (7) should be
zero. In doing so, the homogenous crystal plate becomes a special
case of the homogeneous 1D QC plate.

To generalize the application of the numerical examples, the
dimensions and material properties of the plates are normalized.
The maximum lateral dimension denoted as Lmax is used to nor-
malize the dimensions of the plate. For both the homogenous crys-
tal and QC plates considered, the normalized thickness of the
plate is H/Lmax¼ 0.3. For the two sandwich cases, the three
layers are assumed to have equal normalized thickness of
0.1 making the total normalized thickness of the sandwich plate
H/Lmax¼ 0.3. We further assume that the lateral dimensions
of the plates are equal and their normalized values are
L1/Lmax�L2/Lmax¼ 1.0� 1.0. In addition, the phonon, phason,
and phonon–phason coupling elastic constants are normalized by
Cmax with Cmax being the maximum elastic constant in the entire
plate. The maximum density in the entire plate denoted as qmax is
used to normalize the densities of each material layer.

Listed in Table 3 are the first eight natural frequencies of the
four plate cases considered. The values are normalized as [19]

Table 1 Material properties of QC Al-Ni-Co [6]

Crystal properties of Al-Ni-Co
Phonon elastic constants (1010 N/m2)
C11¼ 23.433 C12¼ 5.741 C13¼ 6.663
C33¼ 23.222 C44¼ 7.019 C66¼ 8.846

Phason elastic constants (1010 N/m2)
K1¼ 12.2 K2¼ 2.4

Phonon–phason coupling elastic constants (1010 N/m2)
R1¼ 0.8846 R2¼ 0.8846 R3¼ 0.8846

Density
q¼ 4.186� 103 kg/m3

Table 2 Material properties of crystal BaTiO3 [16]

Crystal properties of BaTiO3

Phonon elastic constants (1010 N/m2)
C11¼ 16.6 C12¼ 7.7 C13¼ 7.8
C33¼ 16.2 C44¼ 4.3 C66¼ 4.45

Phason elastic constants
K1¼K2¼ 0

Phonon–phason coupling elastic constants
R1¼R2¼R3¼ 0

Density
q¼ 5.8� 103 kg/m3

Table 3 Normalized natural frequencies X of various plates
investigated

Mode C Only QC Only C/QC/C QC/C/QC

1 1.18814303 1.27620020 1.09302314 1.34615671
2 2.30033364 2.72975953 2.33240979 2.75146696
3 3.83027810 4.22377419 3.76467035 4.25663661
4 5.80500015 6.34816968 5.50848985 6.42245243
5 6.70177439 7.18942970 6.21371580 7.49126055
6 9.54302478 9.87617597 9.06656633 10.04473201
7 10.90493019 11.78313507 10.28799978 11.91426946
8 12.28258976 12.81437922 11.45737354 13.03354988
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X ¼ xLmax=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmax=qmax

p
(24)

From Table 3, it can be observed that on the same mode, the QC/
C/QC sandwich plate has the largest natural frequencies compared
with the other plates. On the same mode, the natural frequencies
of the homogeneous crystal plate are closest in value to those of
the C/QC/C sandwich plate. With the exception of the second
mode, the C/QC/C sandwich plate has smaller natural frequencies
compared with the homogenous crystal plate. Furthermore, the
natural frequencies of the homogeneous QC plate are closest in
value to those of the QC/C/QC sandwich plate on the same mode.
Unlike the previous case, the QC/C/QC sandwich plate has higher
natural frequencies compared with the homogenous QC plate.
This demonstrates clearly the interesting effect of stacking
sequences in layered plates on the natural frequencies.

To illustrate the free vibration response of phonon and phason
fields, mode shapes (in the thickness direction) corresponding to
the first four modes given in Table 3 are, respectively, plotted in
Figs. 2–5. The point of analysis is located on the plate at (x1,x2)/
Lmax¼ (0.75,0.75). In these figures, phonon displacements are
normalized by the maximum absolute value in the entire thickness
of the plate and the phason displacement is normalized by the cor-
responding maximum absolute value provided it is nonzero.

Figure 2 shows the antisymmetric mode shapes corresponding
to the first mode. The phonon modal displacements u1 and u2 are
equal in value in each plate case. Figures 2(b)–2(d), respectively,
for the homogenous QC plate, C/QC/C sandwich plate, and QC/C/
QC sandwich plate, display similar phonon modal displacements.
However, these plates show an opposite response of the phonon
displacement to that of the homogenous crystal plate shown in
Fig. 2(a). This indicates that the first mode for the homogenous
QC plate and sandwich plate is not an elastic response.

Symmetric mode shapes corresponding to the second mode
given in Table 3 are shown in Fig. 3. On this particular mode, the
phonon modal displacements u1 and u2 are opposite in value for

each given plate. Furthermore, there is no phonon displacement u3

and no phason displacement w3 response. From Figs. 3(a) and
3(c), which show, respectively, the modal response for the homog-
enous crystal plate and the C/QC/C sandwich plate, it can be seen
that these two plates exhibit different orders of phonon mode
shapes (second-order curve in C/QC/C versus vertical straight line
in crystal plate). Thus, the response of the C/QC/C sandwich plate
is still predominantly elastic but is influenced by the phonon–
phason coupling due to the introduction of the middle QC layer.
Also in this mode, the free vibration response of the homogenous
QC plate shown in Fig. 3(b) is purely elastic because it exactly
follows the response of the homogenous crystal plate. As for Fig.
3(d) for the QC/C/QC sandwich plate, it is clear that its phonon
mode shapes are completely different than those of the other
plates, implying the important effect of stacking sequences (QC/
C/QC versus C/QC/C) and of the coupling between phonon and
phason fields (crystal versus QC).

Figure 4 shows another set of symmetric mode shapes corre-
sponding to the third mode given in Table 3. On this mode, the
phonon modal displacements u1 and u2 are exactly the same for
each studied plate. The phonon modal displacement u3 follows a
similar trend of decreasing in algebraic value from the bottom to
the top of all the plate cases. It follows that the phonon modal
response of the homogenous QC plate and sandwich plates is elas-
tically dominated. However, the phonon mode shape distorts sig-
nificantly in the sandwich plates due to the phonon–phason
coupling and stacking sequence. Also on this mode, the phason
mode shape w3 follows a linearly decreasing trend from the bot-
tom to the top within each QC layer. This indicates that the pha-
son mode shape in the sandwich plates with a QC layer follows
the corresponding mode shape in a homogenous QC plate.

Another set of antisymmetric mode shapes corresponding to the
fourth mode are shown in Fig. 5. On this mode, phonon mode
shapes u1 and u2 are opposite in value in each plate case. Similar
to the second mode, there is no phonon displacement u3 and no
phason displacement w3. The C/QC/C sandwich plate shown in

Fig. 2 First mode shape for (a) crystal homogenous plate with normalized natural frequency
X 5 1.19, (b) QC homogenous plate with X 5 1.28, (c) sandwich plate C/QC/C with X 5 1.09, and
(d) sandwich plate QC/C/QC with X 5 1.35
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Fig. 3 Second mode shape for (a) crystal homogenous plate with normalized natural frequency
X 5 2.30, (b) QC homogenous plate with X 5 2.73, (c) sandwich plate C/QC/C with X 5 2.33, and
(d) sandwich plate QC/C/QC with X 5 2.75

Fig. 4 Third mode shape for (a) crystal homogenous plate with normalized natural frequency
X 5 3.83, (b) QC homogenous plate with X 5 4.22, (c) sandwich plate C/QC/C with X 5 3.76, and
(d) sandwich plate QC/C/QC with X 5 4.26
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Fig. 5(c) follows the response of the homogenous crystal plate
shown in Fig. 5(a) with some effect of the phonon–phason cou-
pling. Moreover, Fig. 5(b) for the homogenous QC plate and
Fig. 5(d) for the QC/C/QC sandwich plate are purely elastic
since the modal response is exactly the same to the crystal
plate.

It is noted that from the second and fourth mode shapes shown,
respectively, in Figs. 3 and 5, there is no free vibration response
in the phason field. However, in the first and in the third mode
shapes, shown, respectively, in Figs. 2 and 4, the homogenous QC
plate and both sandwich plates exhibit a nonzero phason mode
shape in QC layers. The fluctuations in phason modes are attrib-
uted to the phonon–phason coupling effect [15]. Another argu-
ment regarding the dynamic behaviour of QCs indicates phason
modes are diffusive with large diffusion time [16]. The large dif-
fusion time is due to atomic rearrangements and the insensitivity
of phasons to spatial translation [5,16]. Since Bak’s theory is uti-
lized in this work, the fluctuations of phason modes are primarily
attributed to the phonon–phason coupling effect.

One of the assumptions in this work includes that the displace-
ment and traction vectors are continuous at the interface of the
layers. This assumption holds with the exception of the sandwich
plates, shown in Figs. 2(c), 2(d), 4(c), and 4(d), where the phason
displacement is discontinuous. In these figures, the mode shape
for phason displacement w3 shows a nonzero response in QC
layers and zero in crystal layers. Since phason fields do not exist
in crystals, the phason components in the displacement vector
given by Eq. (6) and traction vector given by Eq. (7) are explicitly
set equal to zero. According to Fan et al. [20], the only continuity
boundary condition in the phason field that needs to hold at the
interface between QC and crystal layer is that the phason stress is
equal to zero and discontinuity of the phason mode shape at the
interface is attributed to the rearrangement of atomic configura-
tions. Further investigations recently conducted by Yang et al.
[21] on multilayered two-dimensional QC plates show the

influence of stacking sequence on all physical properties espe-
cially at the interface.

5 Conclusions

In this work, the exact closed-form solution of free vibration
for simply supported and multilayered 1D QC plates has been
derived utilizing the pseudo-Stroh formulation and propagator
matrix method. A homogenous crystal plate is also discussed as a
special case of the derivation. Four plate cases as numerical illus-
trations are presented indicating the different roles that phonon
and phason modes play in the dynamic analysis of QCs. With
x3-axis as the quasi-periodic direction, it is expected that phonon
mode shapes for u1 and u2 will be either equal or opposite. The
phason modal displacement w3 will only show a response in QC
layers since phason fields do not exist in crystals. However, if
phonon mode shape u3 does not show any response, the phason
mode shape w3 will neither. The fluctuation of phason modes
between zero and nonzero values is also attributed to the
phonon–phason coupling effect. Specifically for multilayered
plates, the mode shapes will be additionally influenced by the stack-
ing sequence. Although the current applications of QCs are limited,
they possess many advantageous properties which can be greatly
utilized. This work could be employed to further expand the appli-
cations of QC especially if used in layered composite materials.
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