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Free Vibration of a Multilayered
One-Dimensional Quasi-Crystal

An exact closed-form solution of free vibration of a simply supported and multilayered

one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formu-
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lation and propagator matrix method. Natural frequencies and mode shapes are pre-
sented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates
made of crystals and QCs. The natural frequencies and the corresponding mode shapes
of the plates show the influence of stacking sequence on multilayered plates and the different
roles phonon and phason modes play in dynamic analysis of QCs. This work could be

employed to further expand the applications of QCs especially if used as composite materials.
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1 Introduction

From the diffraction image of rapidly cooled Al-Mn alloys,
Shechtman et al. discovered quasi-crystals (QCs) in 1982 [1]. This
discovery was revolutionary and showed that QCs exhibit symme-
tries that are forbidden in classical crystallography. Crystal struc-
tures have periodically repeating unit cells that completely fill
space and must have two-fold, three-fold, four-fold, or six-fold
rotational symmetry. On the contrary, QCs can be both ordered
and nonperiodic which form patterns that completely fill space but
lack translational symmetry. Since 1980s, several hundred alloys
with thermodynamic stability have been found to exhibit quasi-
crystalline behavior [2].

Attributing to their nonperiodic atomic structure, QCs possess
properties, such as corrosion resistivity, low thermal conductivity,
low coefficients of friction, low porosity, high hardness, and high
wear resistance. These properties have enabled QCs to be applied
as thin films and coatings [2]. Since QCs are hard and brittle at
room temperature [2,3], the linear elastic theory established by
Ding et al. [4] can be employed to analyze the mechanical proper-
ties of QCs. Due to the complicated nature of QC elastic equa-
tions, the majority of work is limited to the defect analysis in QC,
such as dislocations and cracks under static deformation [3,5-7].

A 1D QC refers to a three-dimensional (3D) structure with
atomic arrangement quasi-periodically in one direction and peri-
odically in the plane perpendicular to that direction. While
dynamic analysis of crystals has been studied extensively, includ-
ing damping effects [8], static and transient bending of 1D QC
plates were only recently studied [9]. Although various plane frac-
ture dynamic analyses for QCs were conducted [5-7], and free
vibration and elastic wave problems were analyzed for other lay-
ered structures [10,11], free vibration of 1D QC layered plates in
3D finite space has not been reported in literature, to the best of
the authors’ knowledge. Therefore, in this work, we derive the
exact closed-form solutions of free vibration for 3D layered plates
made of 1D QCs and crystals under laterally simply supported
conditions. The pseudo-Stroh formalism [12] and the propagator
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matrix method [13] are utilized to obtain the natural frequencies
and mode shapes of 1D QCs layered plates. As numerical illustra-
tions, the normalized natural frequencies of homogeneous crystal
and QC plates and sandwich plates composed of QCs and crystals
with different stacking sequences are presented. This work could
be applied to analyze composites with QC layer(s) and further
expand the applications of QCs.

2 Fundamental Equations

In this section, we describe the fundamentals of linear elastic
theory for QCs. The displacement field in classical crystals is the
phonon displacement field u; (i =1,2,3). In QCs, the phason dis-
placement field w; is introduced to describe the rearrangement of
atomic configurations along the quasi-periodic direction. Both dis-
placement fields are needed in the analysis of QCs and they are
actually coupled with each other [4,5].

Based on the linear elastic theory of QCs [4], the strain—
displacement relations are given by

oL (0w oy
1‘7_2 8X/ 8)(,-

Owi
x;

(€]

wij =

where ¢&;; is the phonon strain tensor and wy; is the phason strain
tensor. The phonon strain tensor is symmetric, whereas the phason
strain tensor is asymmetric.

The generalized constitutive relations of quasi-crystalline mate-
rial are written as [4]

0ij = Cijuen + Rijuwu @
Hij = Rujjens + Kijuwi

where g;; is the phonon stress tensor, C;;; phonon elastic con-
stants, H;; phason stress tensor, K;j;; phason elastic constants, R;jy,
phonon—phason coupling elastic constants, and repeated indices
indicate the summation from 1 to 3. It should be noted that
although for 1D QCs the phonon stress tensor is symmetric
(0;j= 0;;), the phason stress tensor is not (H;; # Hj;) [5].
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The elastic constants in Eq. (2) depend on the crystal system
and Laue class. Particularly for 1D QC, there are 31 possible point
groups which are organized into six crystal systems and ten Laue
classes [14]. In this work, the hexagonal system and Laue class 10
with point groups 62,2y, 6mm, 6m2y, and 6/mymm are considered.
For this Laue class, there are five independent phonon elastic con-
stants, two independent phason elastic constants, and three inde-
pendent phonon—phason coupling elastic constants.

Referring to the Cartesian coordinate system (xj, X, x3), we
consider a 1D hexagonal QC plate with x,-axis and x;-axis in the
periodic directions and xs-axis in the quasi-periodic direction.
Accordingly, w; =w, =0. Thus, in terms of this coordinate sys-
tem, the linear constitutive relations Eq. (2) for 1D hexagonal QC
are reduced to [5]

o111 = Crienn + Cnéxn + Ciaézs + Riwss
022 = Caén + Crén + Cizézs + Riwss
033 = Ci3¢11 + Craén + Ci3é33 + Rawss
023 = 03 = 2Cas823 + R3ws,
013 = 031 = 2Ca4813 + R3ws) 3)
o12 = 021 = 2Ce6¢12
Hz3 = 2R3e13 + Kows)
Hz = 2R3e03 + Kowsp
Hzz = Rieny + Rign + Raész + Kiwas
with Ces = (C1y — C1a)/2.

In the absence of body forces, the dynamic equations of motion
are governed by [5]

doj &u;
e 4
8H,~j o 82w,- ( )
o, P oe

where p is the density of the material. The first equation of motion
in Eq. (4) is related to phonon modes and will produce three inde-
pendent equations. For QCs, there exist several theories to
describe the dynamic behavior of phasons. The second equation
of motion in Eq. (4), derived by Ding et al. [4], follows Bak’s [15]
model, where phasons are represented by wave propagation. Bak
[15] also claims that the structural disorders or structural fluctua-
tions characterize phasons. Another well-known model, presented
by Lubensky et al. [16], considers phason modes to be diffusive
with a large diffusive time. Accordingly, the large diffusive time
is attributed to the insensitivity of phasons to spatial translation
[16]. Among the various dynamic theories for QCs, there also
exists a combination of these two theories as was adopted by Fan
et al. [7]. Even though the unusual behavior of phasons
presents many challenges and different points of view in the field,
each theory offers valuable insight. Bak’s theory, however, is
more frequently utilized due to its simplicity [5].

3 Problem Description

We consider an N-layered 1D QC plate as shown in Fig. 1. The
origin of the coordinate system is at one of the four corners on
the bottom surface such that the plate thickness is in the positive
xs-direction. The dimensions of the plate are x; X x; X x3=
Ly x L, x H and its four lateral sides are simply supported. It is
also obvious that layer j has its lower and upper interfaces at
x3=x3 and x3 =x3V Y, respectively. Accordingly, the thickness
of layer j is written as

By =yt =2y ®)
It follows that x;¥'=0 and x;™ " V=H. Along the interface of
the layers, it is assumed that the displacement and traction vectors
are continuous.
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Fig.1 N-layered QC plate

For time-dependent harmonic motion, the solution for phonon
and phason displacements under simply supported lateral bound-
ary conditions can be assumed as

U aj cos px; sin gxp
u i ay sin pxy cos gx;
u = — e.v,\gﬂwt ) ) (6)
us as Sin pxp S gxp
w3 ay sin px; sin gxp
where
p=nn/Ly q=mn/L,

n and m are positive integers, o the frequency, s the eigenvalue to
be determined, and a;, a,, as, and a4 are coefficients to be deter-
mined. The solution in Eq. (6) represents only one part of a double
Fourier series expansion with summations for » and m over suita-
ble ranges. Thus, whenever the periodic terms appear, summation
is implied.

By substituting the solution in Eq. (6) into the general strain—
displacement relations, Eq. (1), and subsequently into the consti-
tutive relations, Eq. (3), the traction vector with respect to the x3
direction is found to be

o013 b1 cos px; sin gx;

[ 023 _ esntior b, sin pxy cos gx; @
033 b3 sin px; sin gx;
Hs3 by sin px; sin gx;

The two vectors

a={aj,ay,a3,a4}', b={bi,by,b3,bs}' @)
with the superscript ¢ indicating vector or matrix transpose, are
introduced to represent the coefficients in Egs. (6) and (7), respec-
tively. It can be shown that the coefficient vector b in Eq. (7) can
be expressed in terms of the coefficient vector a in Eq. (6) by

b= (sT—R')a )
where
[Cy O 0 O
0 Cu4 0 O
T =
L0 0 Ry K
(10)
r0 0 CuipRip
0 0 CigRig
R=
—Cup —Cuqg 0 0
L —Rsp —Rsg 0 O
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Substituting Eq. (6) into Eq. (4), the following simplified equations are obtained:

—aiC1ip* — a1Cesq” — a2Cropg — axCe6pq + a pr”

+ s(a3C13p + a3Cyap + asR1p + a4R3p) + a1C4452 =0

— a1Cpq — a1Cospq — a2Cep* — a:C11q* + azpar*

+ s(a3C13q + a3C44q + a4R1q + a4R3q) + a2C44s2 =0

— a3Cup® — a3Cuaq” — asR3p* — asR3q* + azpo?

an

—s(ai1Ci3p + a\Caup + a2C13q + a2Caq)

+ sz(a3C33 + Cl4R2) =0

— a3R3p” — a3R3q” — asKop® — asKng® + aspo’

— s(@R\p + a\R3p + a:R g + a:R3q) + s*(a4K| + a3R,) =0

These equations further simplify to

(Q+s(R—R)+sT)a=0 (12)
where
—(C1up?* + Cesq?) + por? —pq(Cr2 + Ces) 0 0
0— —pq(Cra + Ces) —(Cosp* + C11q?) + pa? 0 0 a3
0 0 —Cu(P® + ) +po*  —R3(P* + )
0 0 R+ @) —Ka(p? + )+ po?
The formulation in Eq. (12) is similar to the Stroh formalism  where
[17,18]. Thus, it can be appropriately named as the pseudo-Stroh
formalism [12]. A = [a),ay,a3,a4]

Using the relation between vectors a and b as indicated by
Eq. (9), Eq. (12) can be recast into the following 8 x 8 linear

eigenproblem:
a a
N b =y b 14
where
N= TR r (15)
" |-Q-RT'R'" —RT!

Solving the eigenproblem in Eq. (14) yields eight eigenvalues s;
(fori=1, 2,..., 8). The first four eigenvalues are ordered to have
positive real parts. In the case where the real part of the eigen-
value is zero, the positive imaginary portion is taken. The next
four eigenvalues have opposite signs of the first four. The eigen-
vectors corresponding to the eigenvalues s; follow the same order
and make up the vectors @ and b [13].

Then the general solution for the displacement vector Eq. (6)
and traction vector Eq. (7), with the harmonic time-dependent iw?
factor omitted for simplicity, is obtained as

ul A A o D,
Ul e
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(16)

A, = [as, a6, a7, ag)
B\ = [by, by, b3, b4
B, = [bs, bs, b7, bg]

. . _ —Soxa .— —
<eS A3> = dlag[es"“ , eSzX37 s , 543 e S1X3 e $2X3 ,e 533 ,e S4X3]

A7)

and D, and D, are two 4 x 1 constant column matrices to be deter-
mined from boundary conditions of the plate. In other words, the first
four values of the eigenvectors of matrix N form matrices A; and A,
and last four values of the eigenvectors form matrices B and B,.
From Eq. (16), it can be shown that the constant column matri-
ces, Dy and D,, can be solved for any point within layer j as

follows:
-1
D ) A A
R i I R (18)
D, ; B, B, t “

where s* are all the eigenvalues of layer j and xgj) <x; < xg+l).
Letting x3 be ng ) and x§’+1>
cases, are written as

, the column matrices, in the respective
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19

where £; is the thickness of layer j given by Eq. (5). Accordingly,
the displacement vector u and traction vector £ on the upper inter-
(+1)

face x3 = x; '’ can be expressed in terms of those on the lower
interface x3 = xg/ ) of layer j as
-1
u A1 A2 . A1 A2 u
= ) (20)
t)gw [Bi B B, B t)w

Since the displacement u and traction ¢ are assumed to be con-
tinuous across the interfaces, Eq. (20) can be applied repeatedly
allowing the physical quantities to propagate from the bottom sur-
face x3 =0 to the top surface x; =H of the multilayered 1D QC
plate. Therefore

u u
{ } =PN(hN)PNl(th)...Pz(hz)Pl(h]){ } (21)
t t
H 0
where
—1
A A | AT A
) =" TleEem T T forj=1,2,...N (22)
AN
B, B; B, B,

is defined as the propagator matrix of layer j. For a multilayered
plate, each layer will have a propagator matrix defined. Hence,
this formulation simplifies the analysis of plates composed of
many layers with different material properties in each layer.

For free vibration analysis, the boundary conditions are given
as traction free at the top and bottom surfaces of the plate. Apply-
ing these boundary conditions to Eq. (21), we have

u Cl Cz u

0), |G Cif|0]),
where C; are the submatrices of the product of the propagator mat-
rices for the multiple layers. From Eq. (23), the natural frequen-
cies are found by letting the determinant of C5 be zero. It is noted
that in the solution process, the matrix N as given in Eq. (15) is

generated for each layer of a multilayered plate with an unknown
value of w.

(23)

4 Natural Frequencies and Mode Shapes

This section illustrates the free vibration response of 1D QCs lay-
ered plates under simply supported lateral boundary conditions using
the novel approach proposed in this paper. Four different simply sup-
ported plates are considered: a homogenous crystal plate made of
BaTiOs; a homogenous QC plate made of Al-Ni-Co; a sandwich
plate BaTiO3/Al-Ni-Co/BaTiO; (called C/QC/C); and another sand-
wich plate Al-Ni-Co/BaTiO;/Al-Ni-Co (called QC/C/QC).

Elastic constants of QCs are typically measured through meth-
ods of neutron scattering, X-ray diffraction, or nuclear-magnetic
resonance [2]. Although there is no measured value of the phonon—
phason coupling elastic constants in Al-Ni-Co, the kinetic coeffi-
cient of the phason field could be used in its place [5]. For
Al-Ni-Co as a 1D hexagonal QC with Laue class 10, its density
and elastic constants are listed in Table 1. The density and elastic
constants for crystal BaTiO; are listed in Table 2.

It is imperative to note that in classical crystalline materials,
only phonon field exists and there is no phason field [4,5]. Thus in

041019-4 / Vol. 136, AUGUST 2014

Table 1 Material properties of QC Al-Ni-Co [6]

Crystal (Properties of Al-Ni-Co
Phonon elastic constants (10'°N/m?)

Cy;=23.433 Ci1p=5.741 C13=6.663
C33=23.222 C44=17.019 Coo=8.846
Phason elastic constants (IOION/m2)

Phonon—phason coupling elastic constants (10"°N/m?)

R;=0.8846 R, =0.8846 R;=0.8846
Density

p=4.186 x 10°kg/m>

Table 2 Material properties of crystal BaTiO3 [16]

Crystal properties of BaTiO3
Phonon elastic constants (10'°N/m?)
Cy1=16.6
Ci3=162

Phason elastic constants
Kl = K2 = 0

C12 = 77
Cyy=43

C13 :78
Cos=4.45

Phonon—phason coupling elastic constants
Ri=R,=R;=0

Density
p=58x10’kg/m?

Table 3 Normalized natural frequencies Q of various plates
investigated

Mode C Only QC Only C/QC/C QC/C/QC
1 118814303 127620020  1.09302314  1.34615671
2 230033364 2.72975953  2.33240979  2.75146696
3 3.83027810  4.22377419 376467035  4.25663661
4 5.80500015  6.34816968 550848985  6.42245243
5 670177439 7.18942970 621371580  7.49126055
6 9.54302478  9.87617597  9.06656633  10.04473201
7 10.90493019 1178313507  10.28799978  11.91426946
8 12.28258976  12.81437922  11.45737354  13.03354988

Eq. (3), both the phason elastic constants K; and phonon—phason
coupling elastic constants R; should be zero. Since a zero value of
the phason elastic constant K; in the crystal layer would cause sin-
gularity in the involved 4 x 4 matrices, a small K; value (107 of
the corresponding K; value in QC layer) is used in the crystal
layer. Also, the phason components in the displacement vector
given by Eq. (6) and traction vector given by Eq. (7) should be
zero. In doing so, the homogenous crystal plate becomes a special
case of the homogeneous 1D QC plate.

To generalize the application of the numerical examples, the
dimensions and material properties of the plates are normalized.
The maximum lateral dimension denoted as L, is used to nor-
malize the dimensions of the plate. For both the homogenous crys-
tal and QC plates considered, the normalized thickness of the
plate is H/L,.x=0.3. For the two sandwich cases, the three
layers are assumed to have equal normalized thickness of
0.1 making the total normalized thickness of the sandwich plate
H/L,.x=0.3. We further assume that the lateral dimensions
of the plates are equal and their normalized values are
Ly/Liax X Lo/Linax = 1.0 X 1.0. In addition, the phonon, phason,
and phonon—phason coupling elastic constants are normalized by
Cinax With Cj.« being the maximum elastic constant in the entire
plate. The maximum density in the entire plate denoted as pp.y is
used to normalize the densities of each material layer.

Listed in Table 3 are the first eight natural frequencies of the
four plate cases considered. The values are normalized as [19]

Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.or g/ on 06/02/2014 Terms of Use: http://asme.or g/terms



03 03 T
(a) ¢ (b)
025} 0.25
] » i
"
o ]
£ o2 £ o02p
L ©
£ =
= =
B 015 o 015§
@ @ §
N N
s s |
€ o1 € 01
E E
) H ;
b4 =4 b [-5-ut
005 |-E-ul 005 |2
——u2 u3
u3 b w3
U 1 1 1 1 1 1 1 1 1 _f: A U 2 1 1 1 1 1 1 1 1
1 08 06 04 02 0 02 04 06 08 1 4 08 -06 -04 02 0 02 04 06 08 1
Mode Shape Mode Shape
03— T 03¢
© @
0.25f 025 J |
a a | ¥
6 @ i §
02¢ £ p2f k)
¥ 13 '
£ 4
= % £ ¢ :
- 015 b
o B 015
N ] N ‘
© i © b8 4
£ o1 £ o1 +
£ -
] S i3 i
=4 b [2-u =4 -=-ul }
¢ b | ¥
005 |2 005 w2 g
q u3 1 u3
w3 o [Hws
i) = \ \ . 1 , L L . J o b . . L . L . . . .
1 08 06 04 02 0 02 04 06 08 1 -1 08 06 04 02 0 02 04 08 08 1
Mode Shape Mode Shape

Fig. 2 First mode shape for (a) crystal homogenous plate with normalized natural frequency
Q =1.19, (b) QC homogenous plate with Q = 1.28, (¢) sandwich plate C/QC/C with Q =1.09, and

(d) sandwich plate QC/C/QC with @ =1.35

Q = wLmax/\/m

(24)

From Table 3, it can be observed that on the same mode, the QC/
C/QC sandwich plate has the largest natural frequencies compared
with the other plates. On the same mode, the natural frequencies
of the homogeneous crystal plate are closest in value to those of
the C/QC/C sandwich plate. With the exception of the second
mode, the C/QC/C sandwich plate has smaller natural frequencies
compared with the homogenous crystal plate. Furthermore, the
natural frequencies of the homogeneous QC plate are closest in
value to those of the QC/C/QC sandwich plate on the same mode.
Unlike the previous case, the QC/C/QC sandwich plate has higher
natural frequencies compared with the homogenous QC plate.
This demonstrates clearly the interesting effect of stacking
sequences in layered plates on the natural frequencies.

To illustrate the free vibration response of phonon and phason
fields, mode shapes (in the thickness direction) corresponding to
the first four modes given in Table 3 are, respectively, plotted in
Figs. 2-5. The point of analysis is located on the plate at (xy,x;)/
Linax =(0.75,0.75). In these figures, phonon displacements are
normalized by the maximum absolute value in the entire thickness
of the plate and the phason displacement is normalized by the cor-
responding maximum absolute value provided it is nonzero.

Figure 2 shows the antisymmetric mode shapes corresponding
to the first mode. The phonon modal displacements #; and u, are
equal in value in each plate case. Figures 2(b)-2(d), respectively,
for the homogenous QC plate, C/QC/C sandwich plate, and QC/C/
QC sandwich plate, display similar phonon modal displacements.
However, these plates show an opposite response of the phonon
displacement to that of the homogenous crystal plate shown in
Fig. 2(a). This indicates that the first mode for the homogenous
QC plate and sandwich plate is not an elastic response.

Symmetric mode shapes corresponding to the second mode
given in Table 3 are shown in Fig. 3. On this particular mode, the
phonon modal displacements u; and u, are opposite in value for

Journal of Vibration and Acoustics

each given plate. Furthermore, there is no phonon displacement u3
and no phason displacement w; response. From Figs. 3(a) and
3(c), which show, respectively, the modal response for the homog-
enous crystal plate and the C/QC/C sandwich plate, it can be seen
that these two plates exhibit different orders of phonon mode
shapes (second-order curve in C/QC/C versus vertical straight line
in crystal plate). Thus, the response of the C/QC/C sandwich plate
is still predominantly elastic but is influenced by the phonon-
phason coupling due to the introduction of the middle QC layer.
Also in this mode, the free vibration response of the homogenous
QC plate shown in Fig. 3(b) is purely elastic because it exactly
follows the response of the homogenous crystal plate. As for Fig.
3(d) for the QC/C/QC sandwich plate, it is clear that its phonon
mode shapes are completely different than those of the other
plates, implying the important effect of stacking sequences (QC/
C/QC versus C/QC/C) and of the coupling between phonon and
phason fields (crystal versus QC).

Figure 4 shows another set of symmetric mode shapes corre-
sponding to the third mode given in Table 3. On this mode, the
phonon modal displacements #; and u, are exactly the same for
each studied plate. The phonon modal displacement u5 follows a
similar trend of decreasing in algebraic value from the bottom to
the top of all the plate cases. It follows that the phonon modal
response of the homogenous QC plate and sandwich plates is elas-
tically dominated. However, the phonon mode shape distorts sig-
nificantly in the sandwich plates due to the phonon—phason
coupling and stacking sequence. Also on this mode, the phason
mode shape wj follows a linearly decreasing trend from the bot-
tom to the top within each QC layer. This indicates that the pha-
son mode shape in the sandwich plates with a QC layer follows
the corresponding mode shape in a homogenous QC plate.

Another set of antisymmetric mode shapes corresponding to the
fourth mode are shown in Fig. 5. On this mode, phonon mode
shapes u; and u, are opposite in value in each plate case. Similar
to the second mode, there is no phonon displacement u#; and no
phason displacement w;. The C/QC/C sandwich plate shown in

AUGUST 2014, Vol. 136 / 041019-5
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Fig.3 Second mode shape for (a) crystal homogenous plate with normalized natural frequency
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Fig. 4 Third mode shape for (a) crystal homogenous plate with normalized natural frequency
Q =3.83, (b) QC homogenous plate with Q =4.22, (¢) sandwich plate C/QC/C with Q = 3.76, and
(d) sandwich plate QC/C/QC with = 4.26
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Fig. 5 Fourth mode shape for (a) crystal homogenous plate with normalized natural frequency
Q =5.81, (b) QC homogenous plate with Q = 6.35, (c) sandwich plate C/QC/C with Q =5.51, and

(d) sandwich plate QC/C/QC with Q = 6.42

Fig. 5(c) follows the response of the homogenous crystal plate
shown in Fig. 5(a) with some effect of the phonon—phason cou-
pling. Moreover, Fig. 5(b) for the homogenous QC plate and
Fig. 5(d) for the QC/C/QC sandwich plate are purely elastic
since the modal response is exactly the same to the crystal
plate.

It is noted that from the second and fourth mode shapes shown,
respectively, in Figs. 3 and 5, there is no free vibration response
in the phason field. However, in the first and in the third mode
shapes, shown, respectively, in Figs. 2 and 4, the homogenous QC
plate and both sandwich plates exhibit a nonzero phason mode
shape in QC layers. The fluctuations in phason modes are attrib-
uted to the phonon—phason coupling effect [15]. Another argu-
ment regarding the dynamic behaviour of QCs indicates phason
modes are diffusive with large diffusion time [16]. The large dif-
fusion time is due to atomic rearrangements and the insensitivity
of phasons to spatial translation [5,16]. Since Bak’s theory is uti-
lized in this work, the fluctuations of phason modes are primarily
attributed to the phonon—phason coupling effect.

One of the assumptions in this work includes that the displace-
ment and traction vectors are continuous at the interface of the
layers. This assumption holds with the exception of the sandwich
plates, shown in Figs. 2(c), 2(d), 4(c), and 4(d), where the phason
displacement is discontinuous. In these figures, the mode shape
for phason displacement w3 shows a nonzero response in QC
layers and zero in crystal layers. Since phason fields do not exist
in crystals, the phason components in the displacement vector
given by Eq. (6) and traction vector given by Eq. (7) are explicitly
set equal to zero. According to Fan et al. [20], the only continuity
boundary condition in the phason field that needs to hold at the
interface between QC and crystal layer is that the phason stress is
equal to zero and discontinuity of the phason mode shape at the
interface is attributed to the rearrangement of atomic configura-
tions. Further investigations recently conducted by Yang et al.
[21] on multilayered two-dimensional QC plates show the
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influence of stacking sequence on all physical properties espe-
cially at the interface.

5 Conclusions

In this work, the exact closed-form solution of free vibration
for simply supported and multilayered 1D QC plates has been
derived utilizing the pseudo-Stroh formulation and propagator
matrix method. A homogenous crystal plate is also discussed as a
special case of the derivation. Four plate cases as numerical illus-
trations are presented indicating the different roles that phonon
and phason modes play in the dynamic analysis of QCs. With
X3-axis as the quasi-periodic direction, it is expected that phonon
mode shapes for u; and u, will be either equal or opposite. The
phason modal displacement w5 will only show a response in QC
layers since phason fields do not exist in crystals. However, if
phonon mode shape u3 does not show any response, the phason
mode shape wz will neither. The fluctuation of phason modes
between zero and nonzero values is also attributed to the
phonon—phason coupling effect. Specifically for multilayered
plates, the mode shapes will be additionally influenced by the stack-
ing sequence. Although the current applications of QCs are limited,
they possess many advantageous properties which can be greatly
utilized. This work could be employed to further expand the appli-
cations of QC especially if used in layered composite materials.
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