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Abstract A bilayer beam model is extended to study
the fracture behavior of dielectric interfacial cracks. In
this model, a semi-infinite crack with an original open-
ing value is oriented along the interface between two
dielectric layers which are under mechanical/electrical
loading. Taking into account the effect of the electro-
static traction on the interfacial crack, a nonlinear ana-
lytical solution is derived, along with also a developed
finite element analysis method where a special consti-
tutive equation for the capacitor element in ANSYS
is utilized to simulate the electrostatic tractions. Both
the analytical and numerical solutions predict the same
results which further show that the elastic and dielec-
tric mismatches can play a significant role in the inter-
facial cracking behavior under mechanical and elec-
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trical loading. Furthermore, the electrostatic tractions
may cause hysteresis loops in the curve of crack open-
ing versus applied mechanical displacement or versus
applied electric voltage. An applied mechanical load is
the driving force for the interfacial cracking, while an
applied electric field retards it.

Keywords Bilayer beam model · Dielectric
bimaterials · Electrostatic traction · Nonlinear
analytical solution · TRANS126 element · Interfacial
fracture

1 Introduction

Debonding is one of the common failure modes in com-
posite materials. The study of interfacial crack began
about 60 years ago (e.g., Cherepanov 1962; England
1965; Erdogan 1965; Rice and Sih 1965, etc.). The
bilayer beam model is one of the most important ones
widely used in the calibration of interfacial fracture
toughness of layered materials and structures (e.g.,
Tada et al. 1985; Williams 1988; Suo and Hutchinson
1989; Shapery and Davidson 1990; Suo 1990). The
problem of a homogeneous layer with a crack located
on the mid-plane with rigid grips, as shown in Fig.1,
was solved analytically by Rice in 1968. Liechti and
Chai (1990) studied the mixed mode interfacial frac-
ture problem using a gripped bilayer beam model. A
detailed review on the bilayer beam fracture model was
given by Hutchinson and Suo (1992). The advantage of
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Fig. 1 Schematic diagram of the bilayer beam fracture model

such a beam fracture model is that the energy release
rate calculated is completely independent of the crack
tip location and is determined only by the difference
between the energy far ahead of the crack tip and that
far behind the crack tip. Thus, the energy release rate in
this model can be analytically and simply expressed in
terms of the elastic material properties and the geomet-
ric parameters, avoiding the evaluation of the local field
variables at the crack tip. Furthermore, the analytical
solution can be easily utilized to extract the interfacial
fracture toughness by using the bilayer beam fracture
model experiment.

Because of its coupled mechanical and electric
properties, dielectric/piezoelectric materials have been
widely used in intelligent structures and systems,
such as sensors or actuators. Meanwhile, multi-layered
structures are often preferred in the manufacture of
composite materials and are widely used in engineering
to enhance the efficiency and sensitivity of materials or
structures. Thus, for the safety of smart structures, it
is necessary to study the interface fracture of dielec-
tric/piezoelectric material. However, such an exten-
sion is never simple, taking for example, on the treat-
ment of the boundary condition on crack face. Because
the dielectric constant inside the crack differs to that
in the surrounding material, electric charges will be
induced along the crack faces when an electric field
is applied. Therefore, the influence of electric bound-
ary condition on the fracture of electrically insulating
cracks in dielectric and piezoelectric materials under
mechanical-electric loading are important as was pre-
viously reported (e.g., Zhang and Hack 1992; Suo et al.
1992; Hao and Shen 1994; Zhang et al. 1998; Zhang
and Gao 2004; McMeeking 2004; Gao et al. 2004b;
Landis 2004; Schneider 2007; Li and Chen 2008). Gao
et al. (2004a) estimated the electrostatic force between
the induced charges on the two crack faces and ana-
lyzed the effect of the electrostatic force on the frac-

ture behavior. If one takes the electrostatic traction
along the crack faces as a mechanical boundary con-
dition, then the traction-free boundary condition along
the crack faces does not hold any more. Ricoeur and
Kuna (2009) developed a general relation describing
electrostatic stresses on the interface between dielec-
tric bodies exposed to electric fields. The derivation
was based on the thermodynamic consideration of the
electromechanical system, which leads to a formulation
of the configurational forces acting on the interface.

To fully understand the effect of the electrosta-
tic tractions on the fracture behavior, Zhang and Xie
(2012) developed a pre-cracked parallel-plate capacitor
model, in which an infinitely long beam of a dielectric
material containing a semi-infinite crack with an orig-
inal crack opening value is under mechanical and/or
electric loading. In their model, the dielectric mater-
ial is sandwiched between two rigid electrodes, and
therefore, the electrostatic tractions along the dielec-
tric/electrode interfaces can be considered. This model
allows one to obtain solution analytically in a straight-
forward way. Their results (Zhang and Xie 2012) indi-
cated that the fracture problem might be converted into
an electrically sticky problem if the electrostatic trac-
tions are high enough. They also found the hysteresis
loops in both curves of crack opening displacement
versus the applied electric field or versus the applied
mechanical load. The mechanical load is the driving
force to propagate the crack, while the applied elec-
tric field retards crack propagation due to the electro-
static tractions. Furthermore, the fracture criterion is
composed of two parts: the energy release rate must
exceed a critical value and the mechanical load must
be higher than the critical value for crack opening. Xie
et al. (2014) further developed the pre-cracked parallel-
plate capacitor model for piezoelectric materials.

Following Zhang and Xie (2012) and Hutchinson
and Suo (1992), we study, in the present paper, the
effects of the electrostatic tractions on the interfacial
fracture behavior of a bimaterial by using the extended
bilayer beam fracture model, shown in Fig. 2. A semi-
infinite crack is located along the interface between the
two layers, which have different dielectric and elas-
tic properties. The pre-cracked bilayer beam is sand-
wiched between two rigid electrodes, and mechanical
and electric loads are applied on the electrodes. As
charges will be induced along the crack faces when an
electric field is applied, the electrostatic force between
the induced charges on the two crack faces will be con-
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Fig. 2 Schematic diagram
of the bilayer beam fracture
model applied by combined
mechanical-electrical
loading
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Fig. 3 A pre-cracked
bilayer beam under
mechanical and electric
loading dielectric material
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sidered in the study. For simplicity, the layer materials
are dielectric following isotropic and linear constitutive
equations such that analytic solutions can be derived
from the proposed model. This paper is organized as
follows. After the introduction, Sect. 2 describes the
bilayer beam model and the analytical derivation. A
finite element model for the bilayer beam with the
electrostatic traction is presented in Sect. 3. Numeri-
cal examples are given in Sect. 4, and conclusions are
drawn in Sect. 5.

2 A nonlinear bilayer beam model

Figure 3 shows a bilayer beam between two rigid
electrodes, in which there is a semi-infinite interfacial
notch or crack. Before applying the voltage or the dis-
placement loading, the thickness of each layer in the
uncracked part is denoted by Hi0, where i = 1 and 2
indicate the upper and lower layer, respectively. In the
pre-cracked part, the thickness of each layer is reduced
to hi0 due to the notch width δ0. In the present paper,

we take h10/h20 ≡ H10/H20. Each layer is homoge-
nous, with the Young’s modulus, Poisson’s ratio and
the dielectric constant being denoted, respectively, by
Yi , νi and κi .

A Cartesian coordinate system oxy is attached to the
bilayer beam such that the origin o coincides with the
tip of the notch and the x-axis is along the interface.
An electric voltage V and a relative mechanical dis-
placement �H are applied on the two rigid electrodes.
Thereafter, �H is also called the mechanical load. Due
to the applied loads, each layer changes its thickness
by �Hi in front of the crack tip and by �hi behind the
crack tip such that

hi = hi0 + �hi , (1a)

Hi = Hi0 + �Hi , (1b)

�H = �H1 + �H2. (1c)

When the mechanical displacement �H and the elec-
tric voltage V are independent variables, the electric
enthalpy, P , will be the appropriate thermodynamics
function. In the differential form, we have

d P = Fd(�H) − QdV, (2)
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Fig. 4 Beam segment far ahead of the crack tip x → +∞,
showing the perfectly bounded bilayer beam

where F denotes the mechanical force and Q the elec-
tric charge.

Far ahead the crack tip, x → +∞, the configura-
tion can be treated as two parallel-plate capacitors in
series, as shown in Fig. 4. For this plane strain problem,
it is assumed that the displacement in the x-direction
is negligible. Thus, the following conditions must be
satisfied on the upper surface of layer 1 (i = 1) and
lower surface of layer 2 (i = 2):

σ+
Ei + σ+

Mi ≡ σ+
i = ciε

+
i , (3)

q+
i ≡ D+

i = κi E+
i , (4)

here and hereafter, the superscript “+” is used exclu-
sively for the fields at x → +∞. Also in Eqs. (3)
and (4), ci = 1−νi

(1+νi )(1−2νi )
Yi , σ

+
Mi and σ+

Ei denotes the
stresses induced by the mechanical loading and the
electric loading, respectively. σ+

i , ε+
i , q+

i , D+
i and E+

i
are the stress, strain, density of the electric charges,
electric displacement and the electric field strength in
each layer, respectively, which are calculated by

ε+
i = �Hi

Hi0
, (5)

E+
i = − V +

i

Hi
, (6)

where V +
i is the electric voltage between the two sur-

faces of each layer.
Along the interface, y = 0, between the two layers,

the mechanical balance requires

c1ε
+
1 + t+E = c2ε

+
2 , (7)

where t+E is the electrostatic tractions on the interface
given by Ricoeur and Kuna (2009)

t+E = 1

2
D+(E+

1 − E+
2 ), (8)

In Eq. (8), D+is the continuous electric displacement
across the interface (y = 0)

D+
1 = κ1 E+

1 , D+
2 = κ2 E+

2 , (9a)

D+ = D+
1 = D+

2 . (9b)

The potential drops across the two layers satisfy

V +
1 + V +

2 = V . (10)

Solving Eqs. (6), (9) and (10) yields

E+
1 = − κ2V

κ1 H2 + κ2 H1
, E+

2 = − κ1V

κ2 H1 + κ1 H2
.

(11)

Substituting Eq. (11) into Eq. (9) and then into Eq.
(8), we obtain the electrostatic tractions in terms of the
applied voltage V , thicknesses Hi and the dielectric
constants κi of the two layers

t+E = (κ2 − κ1)κ1κ2V 2

2(κ1 H2 + κ2 H1)2 . (12)

Substituting Eq. (12) into Eq. (7) gives

c1
�H1

H10
− c2

�H2

H20
= − (κ2 − κ1)κ1κ2V 2

2(κ1 H2 + κ2 H1)2 . (13)

If κ1 = κ2, the dielectric mismatch disappears and
there is no electrostatic tractions on the interface. Then,
Eq. (13) is reduced to

c1
�H1

H10
− c2

�H2

H20
= 0. (14)

Solving Eqs. (1) and (14) gives

�H1 = c2 H10

c1 H20 + c2 H10
�H,

�H2 = c1 H20

c1 H20 + c2 H10
�H. (15)

In this case, the deformation of each layer is indepen-
dent of the applied electric load.

When κ1 �= κ2, substituting Eq. (1c) into Eq. (13),
we obtain the following cubic equation for (�H1/H10)

(�H1/H10)
3 + e2 (�H1/H10)

2

+e1 (�H1/H10) + e0 = 0, (16)

where the coefficients e2, e1and e0 are given by

e2 = 2d2 − d1,

e1 = −2d1d2 + (d2)
2,

e0 = −d1(d2)
2 − d3, (17)
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with

d1 = c2�H

c2 H10 + c1 H20
, (18a)

d2 = κ1(H20/H10) + κ1(�H/H10) + κ2

κ2 − κ1
, (18b)

d3 = κ1κ2V 2

(κ2 − κ1)(H10/H20)(c2 H10 + c1 H20)H10
.

(18c)

Solving Eq. (16) gives

�H1/H10 =
⎡
⎣−e∗

0

2
+

√(
e∗

0

2

)2

+
(

e∗
1

3

)3
⎤
⎦

1
3

+
⎡
⎣−e∗

0

2
−

√(
e∗

0

2

)2

+
(

e∗
1

3

)3
⎤
⎦

1
3

−e2

3
, (19)

where

e∗
0 = e0 − e1e2

3
+ 2

(e2

3

)3
,

e∗
1 = e1 − 3

(e2

3

)2
. (20)

The other two roots of Eq. (16) have no physical mean-
ing. From Eq. (19) and Eq. (1c), it can be seen that
each layer can be deformed under mechanical and/or
electric loadings.

Based on Eqs. (2)–(4), the electric enthalpy density
in the upper or lower layer is given by

p+
i = 1

2
σ+

i ε+
i − 1

2
D+

i E+
i , (21)

where i = 1 and 2 indicate the upper and lower layer,
respectively.

Thus, the electric enthalpy per unit length P+ can
be expressed as

P+ = 1

2
σ+

1 ε+
1 H1 − 1

2
D+

1 E+
1 H1

+ 1

2
σ+

2 ε+
2 H2 − 1

2
D+

2 E+
2 H2. (22)

Similarly, far behind the crack tip, x → −∞, the
two layers are separated by a notch gap, which can be
considered as three parallel-plate capacitors in series
with two dielectric parallel-plate capacitors and one
vacuum parallel-plate capacitor, as shown in Fig. 5.
The two dielectric parallel-plate capacitors have thick-
ness h1 and h2, respectively, and the gap between them,
called the notch width, is δ. The following conditions

δδδ Δ+= 0

x

1101 hhh Δ+=

2202 hhh Δ+=

V

111 ,,c κν

222 ,,c κν

cκ

Fig. 5 Beam segment far behind the crack tip x → −∞, show-
ing an interfacial crack with an original width between two
dielectric layers

must be satisfied in each layer (hereafter, the superscript
“-” is used exclusively for the quantities at x → −∞)

σ−
Ei + σ−

Mi ≡ σ−
i = ciε

−
i , (23)

q−
i ≡ D−

i = κi E−
i . (24)

The elastic strain, ε−
i , electric field strengths in each

layer, E−
i , and inside the gap, E−

c , are respectively cal-
culated by

ε−
i = �hi

hi0
, (25)

E−
i = − V −

i

hi
, E−

c = − V −
c

δ
, (26)

where V −
i and V −

c are the potential drops across each
layer and the gap, respectively, which satisfy the rela-
tion

V −
1 + V −

c + V −
2 = V . (27)

The electric displacement is continuous across the
interfaces between the layers and the gap, which
requires

D−
1 = κ1 E−

1 , D−
2 = κ2 E−

2 , D−
c = κc E−

c , (28a)

D−
1 = D−

2 = D−
c = D−, (28b)

where κcdenotes the dielectric constant of the medium
inside the gap. Solving Eqs. (26)–(28) yields

E−
i = − V

L0

κc

κi
, E−

c = − V

L0
, (29)

where

L0 = κc

κ1
h1 + κc

κ2
h2 + δ. (30)
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Thus, we have the density of the electric charge

q− ≡ D− = −κc
V

L0
. (31)

The electrostatic traction on the bottom of layer 1 (i =
1) or on the top of layer 2 (i = 2) is given by Ricoeur
and Kuna (2009)

ti = (−1)i 1

2

κcV 2

L2
0

(
1 − κc

κi

)
, (32)

The mechanical force balance requires

(−1)i ti = ci
�hi

hi0
= ci

hi − hi0

hi0
. (33)

Thus, we have
c1h20(h1 − h10)

c2h10(h2 − h20)
= κ2(κ1 − κc)

κ1(κ2 − κc)
. (34)

Equation (34) can be rewritten as

h1 − h10

h2 − h20
= R, (35)

where R is a material and geometry related parameter
defined as

R = c2h10

c1h20

κ1κ2 − κ2κc

κ1κ2 − κ1κc
. (36)

Finally, we have

h1 = Rh2 − Rh20 + h10, (37)

δ = H + Rh20 − h10 − (R + 1)h2, (38)

L0 =
(

κc

κ1
− 1

)
(h10 − Rh20)

+H +
(

κc

κ1
R + κc

κ2
− R − 1

)
h2, (39)

where Eq. (39) is obtained from Eq. (30) by using Eqs.
(37) and (38). Substituting Eq. (39) into Eqs. (32) and
(33) for i = 2, we obtain the following cubic equation
for h2

(h2/h20)
3 + b2(h2/h20)

2 + b1(h2/h20) + b0 = 0,

(40)

where

b0 = −a2
1 − 1

2

(
1 − κc

κ2

)
κcV 2

c2a2
2h2

20

,

b1 = −2a1 + a2
1,

b2 = 2a1 − 1, (41)

with

a1 =
(
κc

κ1
(−R+h10/h20)+H/h20+R−h10/h20

)
/a2,

a2 = κc

κ1
R + κc

κ2
− R − 1. (42)

Solving Eq. (40) gives us the following three roots

h2/h20 =
[
−b∗

0

2
+ √

λ

] 1
3 +

[
−b∗

0

2
− √

λ

] 1
3 − b2

3
,

(43a)

h2/h20 = −1 − i
√

3

2

[
−b∗

0

2
+ √

λ

] 1
3

+−1 + i
√

3

2

[
−b∗

0

2
− √

λ

] 1
3 − b2

3
,

(43b)

h2/h20 = −1 + i
√

3

2

[
−b∗

0

2
+ √

λ

] 1
3

+−1 − i
√

3

2

[
−b∗

0

2
− √

λ

] 1
3 − b2

3
,

(43c)

where

b∗
0 = b0 − b1b2

3
+ 2

(
b2

3

)3

,

b∗
1 = b1 − 3

(
b2

3

)2

,

λ =
(

b∗
0

2

)2

+
(

b∗
1

3

)3

. (44)

Detailed discussions about the three solutions were
given in Fan et al. (2011) and Zhang and Xie (2012).

We discuss two special cases of the electric field
associated with Eq. (40):

1. The electric field E0 corresponding to the critical
gap opening with

δ = 0. (45)

For this case, we can solve Eq. (40) for E (by let-
ting δ = 0, or substituting h2 = h20 + (δ0 +
�H)R/(R + 1) into Eq. (40)) to find the corre-
sponding electric field as

E0 ≡ − V0

h10

=
√

2c2

(R+1)κc

(
1− κc

κ2

)
ητ

[
ξ

(
1+ R

R + 1
τ

)

+κc

κ2

(
1

η
+ τ

)]
, (46)

where the dimensionless geometric parameters are
defined by

τ ≡ δ0 + �H

h10
, η = h10

h20
≡ H10

H20
, (47)
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and the dielectric mismatch parameters are denoted
by

γ = κ1 − κ2

κ1 + κ2
, ξ = κc

κ1
. (48)

It can be seen that E0is dependent on the material
properties and geometric parameters, as well as on
the mechanical loading via τ . In general, we have
ξ << 1, τ << 1, η ∼ 1, and γ ∼ 1, and thus Eq.
(46) is simplified to

E0 ≡
√

2c2

(R + 1)κc
ητ

[
ξ + κc

κ2

1

η

]
. (49)

2. The electric field Emax (which is also the maximum
tolerant value) corresponding to the threshold in the
δ− E curve. For this case, we take the derivative of
Eq. (40) with respect to E (i.e., taking the derivative
of δ with respect to E), and let the result equals zero,
which gives us

Emax ≡
√

2c2

(R+1)κc
(1−κc/κ2) ηk

[
ξ

(
1+ R

R+1
k

)

+ κc

κ2

(
1

η
+ 1

R + 1
k

)
+ τ − k

]
, (50)

where the dimensionless parameter is given by

k = ξ + κc/(ηκ2) + τ

3 [ξ R/(R + 1) + κc/[(R + 1)κ2] − 1]
. (51)

Similar to E0, Emax depends on the material properties
and geometric parameters, as well as on the mechanical
loading via τ . Generally, Eq. (50) can be simplified to

Emax ≡
√

2c2

(R + 1)κc
ηk

[
ξ + κc

κ2

1

η
+ τ − k

]
. (52)

It is easily to show that E0 ≤ Emax. These solutions for
E0 and Emax will be plotted and discussed in Sect. 4.

Similar to Eq. (22), the electric enthalpy per unit
length, P− at the location far behind the crack tip, i.e.,
x → −∞, can be also expressed as

P− = 1

2
σ−

1 ε−
1 h1 − 1

2
D−E−

1 h1

+1

2
σ−

2 ε−
2 h2 − 1

2
D−E−

2 h2 − 1

2
D−E−

c δ. (53)

It should be pointed out that without considering the
electrostatic traction, the electric enthalpy expression
in Eq. (53) will be reduced to

P− = −1

2
D−E−

1 h10 − 1

2
D−E−

2 h20

−1

2
D−E−

c (δ0 + �H). (54)

Finally, combing Eqs. (22) and (53), we obtain the
energy release rate as Hutchinson and Suo (1992)

G = P+ − P−

= 1

2
σ+

1 ε+
1 H1 − 1

2
D+

1 E+
1 H1

+1

2
σ+

2 ε+
2 H2 − 1

2
D+

2 E+
2 H2 − 1

2
σ−

1 ε−
1 h1

+1

2
D−E−

1 h1 − 1

2
σ−

2 ε−
2 h2 + 1

2
D−E−

2 h2

+1

2
D−E−

c δ. (55)

3 Finite element model

In the commercial finite element software ANSYS
there is an element TRANS126 called “reduced-
order” element, which is used as a transducer in
structural finite element simulations or as a trans-
ducer in “lumped” electromechanical circuit simula-
tion. “Reduced-order” means that the electrostatic char-
acteristics of an electromechanical device is captured
in terms of the capacitance of the device over a range
of displacements (or stroke of the device) and is fur-
ther formulated in a simple coupled beam-like element
(ANSYS� Academic Research, Element Reference).
Figure 6a shows schematically a parallel-plate capaci-
tor with the gap δ between the two plates. The parallel-
plate capacitor can be reduced to a beam-like element
and the electrostatic force between the electrodes can be
simulated by the TRANS126 element in ANSYS. The
element has two nodes, each with the degrees of free-
dom of UX-VOLT, UY-VOLT or UZ-VOLT as shown
in Fig. 6b. Only the displacement in the gap direction
is concerned. The capacitance C can be expressed in
terms of the gap as

C = C0/δ + C1 + C2δ + C3δ
2 + C4δ

3, (56)

where Ci are the material/geometry related coeffi-
cients. Under an applied voltage, the electrostatic force
between the electrodes can be calculated by

F = 1

2
V 2

c
dC

dδ
, (57)

where Vc is the voltage cross the electrodes. Assuming
that the gap of the capacitor is small and also keeping
only the first term in Eq. (56), the capacitance can be
calculated by

C = κc A

δ
, (58)
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UY, Volt

UY, Volt

− − − − − − − − − − − − − − − − −

δ

+ + + + + + + + + + + + + + + + + + +q

−q

δ

C

(a)

(b)

(c)

Fig. 6 TRANS126 element. a A parallel plate capacitor. b Elec-
trostatic finite element model. c Capacitance C vs. δ curve

where κc is the dielectric constant of the material
between the plates and A is the area of the plate. Fig-
ure 6c shows the typical curve of capacitance C vs. δ

based on Eq. (58).
Substituting Eq. (58) into Eq. (57) yields

F/A = −κc

2

V 2
c

δ2 . (59)

It is interesting to observe that the traction per unit
area given by Eq. (59) is the electrostatic traction act-
ing on the crack faces when the dielectric material (in
the case of κc << κi ) is electrically and mechani-
cally loaded (Landis 2004; Ricoeur and Kuna 2009;
Zhang and Xie 2012). Thus, the TRANS126 element
in ANSYS can be used to simulate the electrostatic trac-
tion acting on the crack faces. Figure 7 shows schemat-
ically the constitutive equation of TRANS126 element
in ANSYS which is the relation of the force F vs. the
distance δ between the two nodes. Also in this figure,
GAPMIN is the critical gap. When the gap is less than
GAPMIN, the element is degenerated to a contact ele-
ment, with the stiffness denoted by KN. In this paper,

F

Contact forcesKN

Capacitive forces

GAPMIN

δ

Fig. 7 Constitutive relationship of TRANS126 element

however, we are not interested in the behavior once the
gap shrinks to zero.

4 Results and discussion

Figure 8a shows the element meshes (with different
zooms) of a bilayer beam model, where the quadrilat-
eral element PLANE223 in ANSYS is used to simulate
the electric field and the TRANS126 element described
in the previous section to simulate the electrostatic
tractions on the notch/crack surfaces. In the numeri-
cal analysis, the bilayer beam is 400mm in length and
40mm in width, and 16297 PLANE223 elements and
200 TRANS126 elements are used (Fig. 8a). The two
cross sections at the two ends of the bilayer beam are
subjected to roller support condition, and the bottom
of the beam is fixed with zero electric potential. The
displacement and electric loads are applied on the top
of the bilayer beam. Figure 8b shows the stress distri-
bution in the thickness direction of the beam by finite
element analysis, where

h10 = h20 = 20 mm, δ0 = 40 µm,

Y1 = 100 GPa, Y2 = 50 GPa, ν1 = ν2 = 0.3,

ξ = κc/κ1 = 10−4,

γ = κ1 − κ2

κ1 + κ2
= 0.5,

�H = 40 µm, E = 5 × 104 V/m. (60)

It can be seen that the stress in the bilayer beam is
uniform except for a small region near the crack tip
and the two ends. This demonstrates that a beam with a
sufficiently large length-to-thickness ratio can be taken
as an infinite one.
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Fig. 8 a Finite element
meshes. b Stress distribution
in the bilayer beam by FEM
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α=0.5, β=0, γ=0.5, η=1, 
ξ=10-4, δ0/h10=10-4

E/E~(x10-6)
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δ /
h 10

(x
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-4
)
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E0=Emax

ΔH/h10=10-4

FEM
ΔH/h10=10-5

FEM
ΔH/h10=10-6

FEM

Fig. 9 The crack width versus the applied electric field strength
under different mechanical loads

In the following numerical calculations, we take
(V/h10)/E∼, and E∼ = √

c1/κ1.
Figure 9 plots the normalized after-deformation gap

versus the normalized applied electric field strength,
E/E∼, under different mechanical loads �H/h10 with
dielectric mismatch γ = 0.5, thickness ratio η = 1,
normalized initial gap δ0/h10 = 10−4 and normal-
ized dielectric constant ξ ≡ κc/κ1 = 10−4. The elas-
tic mismatch is described by the Dundurs parameters
(Hutchinson and Suo 1992)

α = c̄1 − c̄2

c̄1 + c̄2
,

β = 1

2

c̄1(1 − ν1)(1 − 2ν2) − c̄2(1 − ν2)(1 − 2ν1)

c̄1(1 − ν1)(1 − ν2) + c̄2(1 − ν2)(1 − ν1)
,

c̄i = Yi/(1 − ν2
i ). (61)

It can be seen that an applied electric loading pushes
the notch to close. As shown in Fig. 9, the ana-
lytical solution based on Eq. (43a) is in excellent
agreement with that from the FEM model also devel-
oped in this paper. It is also observed that for fixed
V/h10, δ/h10 increases with increasing mechanical
loading �H/h10. We further note that, for other fixed
parameters, when �H/h10 = 10−4, E0 is almost
equal to Emax . In other words, the threshold is about the
same as the electric value which makes the gap being
zero. When E0 = Emax, the δ− E curve intersects with
the E-axis at an angle of 90◦.

Figure 10 plots the after-deformation gap versus the
applied electric field strength for different values of the
initial gap, with δ0 = 0 corresponding to a crack. When
the initial gap is sufficiently large, the threshold appears

α=0.5, β=0, γ=0.5, η=1 
ξ=10-4, ΔH/h10=10-5

E/E~(x10-6)

0 2 4 6 8 10

δ /
h 10

(x
10

-4
)

0

1

2

3

4

5

6

δ0/h10=5x10-4

FEM
δ0/h10=10-4

FEM
δ0/h10=0

FEM

Emax

E0

Fig. 10 The crack width versus the applied electric field strength
for different values of the original crack width

in the curve. For the case δ0/h10 = 5 × 10−4, we have
E0/E∼ = 830 × 10−3(or E0 = 1.08 × 106 V/m) and
Emax/E∼ = 972×10−3(or Emax = 1.26×106 V/m).
In the region E0 < E < Emax, the solution has two
branches. In one branch (i.e., the true physical solu-
tion in the upper part of the curve), the gap decreases
with increasing applied electric field, whereas the other
branch (also the second branch, i.e., the lower part
of the curve) corresponds to one of two solutions of
Eq. (40) satisfying δ > 0. If the applied electric field
exceeds Emax , the notch would close and the problem is
then converted to an electric-field-induced sticky prob-
lem. For this case, the curve for the notch width ver-
sus the applied electric field under a given mechanical
displacement shows a hysteresis loop, as discussed in
detail by Zhang and Xie (2012).

Figure 11a, b show the influence of the elastic and
dielectric mismatches, respectively, on the gap defor-
mation. Figure 11a shows that for a fixed electric field
and dielectric mismatch, δ/h10 decreases with increas-
ing elastic mismatch α. Furthermore, a large electric
field is required to reach the state of δ = 0 when the
elastic mismatch α is small (algebraically). Figure 11b
plots the variation of δ/h10 vs. the normalized applied
electric field E/E∼ for fixed elastic mismatch α = 0
but with varying dielectric mismatch γ . It is observed
from Fig. 11b that when α = 0 and for a given electric
field, δ/h10 increases with increasing dielectric mis-
match γ , and that an increasing γ means that a large
electric field is required to reach the state of δ = 0.
Figure 11b further shows the difference between the bi-
layer beam and the corresponding homogeneous beam
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Fig. 11 The crack width versus the applied electric field strength
with a different values of elastic mismatch, and b different values
of dielectric mismatch

(α = 0, γ = 0), which actually provide us with the pos-
sibility of tuning the threshold behavior in the δ/h10

vs. V/h10 curve. In other words, a small (or negative)
γ would imply an early threshold whilst a large (or
positive) γ is associated with a late threshold (or even
no threshold at all).

Figure 12 demonstrates the effect of the thick-
ness ratio of the two layers η = h10/h20 on the
after-deformation gap versus the applied electric field
strength by the analytical approach. The fixed para-
meters are α = 0.5, β = 0, γ = 0.5, ξ =
10−4, δ0/h10 = 10−4 and �H/h10 = 10−4. Fig-
ure 12 shows that, when other parameters are fixed
and under a given electric field, δ/h10 decreases with
increasing thickness ratio. This figure further shows
that it is also possible to control the threshold behavior
in the δ/h10 vs. E/E∼curve by changing the thickness
ratio of the two layers of the beam.

α=0.5, γ=0.5, β=0, ξ=10-4, δ0/h10=10-4, ΔH/h10=10−4
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Fig. 12 The crack width versus the applied electric field strength
with different thickness ratios of the two layers
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Fig. 13 Energy release rate versus the applied electric field
strength

Figure 13 plots the energy release rate of the notch
in the bilayer beam. The result shows that the elec-
tric loading reduces the energy release rate, i.e., retards
the crack propagation. It is very interesting to further
observe from Fig. 13 that the energy release rate is more
sensitive to the dielectric mismatch γ . In other words,
for a fixed elastic mismatch α, the energy release rate
decreases sharply with decreasing γ .

5 Concluding remarks

A nonlinear analytical solution considering the elec-
trostatic tractions was derived for a bilayer dielectric
beam model with a semi-infinite interfacial notch or
crack under mechanical and electrical loading. In addi-
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tion, a finite element method was developed and the
finite element analysis was carried out to solve the same
interfacial fracture problem. In the nonlinear finite ele-
ment analysis, the deduced special TRANS126 element
in ANSYS is successfully modified to simulate the
electrostatic tractions. This new element would greatly
broaden the application of finite element analyses to
the failure of materials and structures under mechani-
cal and electrical loadings. The numerical calculations
verify the analytic results, indicating that both elas-
tic and dielectric mismatches can greatly influence the
energy release rate and other fracture behaviors. For
a given mechanical load, there is a maximum toler-
ant electric field Emax, at and beyond which the elec-
trostatic tractions close the crack (notch). The conju-
gate of the maximum tolerant electric field is called
the threshold of applied strain, at and below which the
crack is closed due to the electrostatic tractions. The
analysis and calculations exhibit also a pair of bifur-
cation field, E0, and bifurcation strain. Under a given
mechanical load, a hysteresis loop may occur in curves
of crack width versus applied electric field in the range
of E0 ≤ E ≤ Emax. These results are consistent with
the previous investigations on the effects of electro-
static tractions on fracture of homogenous dielectrics
(Zhang and Xie 2012).
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