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Based on the single-dislocation Green’s function, analytical solutions of the elastic fields due to dislocation
arrays in an anisotropic bimaterial system are derived by virtue of the Cottrell summation formula. The sin-
gularity in the Peach–Koehler (P–K) force is removed by both rigorous mathematical approach and physical
energy consideration. Numerical results for dislocation arrays in the Cu/Nb bimaterial with Kurdjumov–
Sachs (K–S) orientation show that: (1) the traction continuity and periodic condition are both satisfied;
(2) the maximum magnitude of the traction at the interface due to a mixed dislocation array is smaller than
that due to a single mixed dislocation. In other words, the traction at the interface could be suppressed by
the corresponding array with a relatively high density (L < 10 nm); however, the shear stress on the glide
plane increases with increasing dislocation density; (3) the Cu/Nb interface attracts the mixed dislocation
array in copper and repels the screw one there. This implies that the P–K force depends not only on the
material properties, but also on the crystal orientation and the type of Burgers vector, among others.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The line defect of dislocations, by offering a highly effective ap-
proach to produce plastic deformation, controls many important
macroscale properties of a material, such as the material strength,
electric conductivity and optical properties (Zhu and Li, 2010; Ot-
suka et al., 2003; Ohno et al., 2012; Pennycook, 2008; Chen et al.,
2008). Within a crystal, dislocations could nucleate from the sessile
sites (e.g. Frank–Read source), grain boundaries or interfaces be-
tween two different phases (Beausir and Fressengeas, 2013). The
dynamic activity of a dislocation, such as gliding, cross-slip, annihi-
lation, pileup, and tangles, plays a critical role in the behavior of
the material (Ghoniem and Han, 2005; Wang and Beyerlein,
2011; Zhou et al., 2010). In specific circumstances, dislocations
could concentrate themselves in a certain region to reduce the to-
tal energy so that other regions would be free of dislocations. Thus,
dislocation array or dislocation wall, such as tilt wall with edge dis-
locations, twist wall with screw dislocations, would be formed. The
dislocation array can also form during the fabrication of multilayer
materials due to the lattice mismatch between the substrate and
the deposited layer (Krasavin, 2009) (sometimes between the buf-
fer layer and the deposited layer). HRTEM images of silver shows
three sets of dislocation walls with Shockley partials aligning at
the incoherent twin boundary; among them, one set acts as the
front tip of the deformation twins and deviates from the boundary
a few nanometers (Liu et al., 2011). Such phenomena were also
predicted recently via molecular simulation. In terms of its stabil-
ity, there are three different sets of dislocation array in Kurdju-
mov–Sachs (K–S) {112} interface in Cu/Nb (fcc/bcc) bimaterial
(Kang et al., 2012): two sets are located at the interface, and one
set deviates from the interface. Similar results were also observed
in Cu/Fe (fcc/bcc) bimaterial. In molecular simulations, periodic
boundary conditions (PBCs) (Subramaniyan and Sun, 2008) are of-
ten assumed due to the limitation of the modeling size. In order to
study the dislocation effect, one may insert/build a dislocation in
the model. As a consequence of PBC, the model inherently includes
a series of dislocations or dislocation array. The challenging issue is
how to set the original positions of the atoms and their boundaries
in the molecular model. As such, the elastic field due to the dislo-
cation array is needed in building the dislocation-array model in
molecular simulation. It should be noted that, due to the nonlinear
elastic property in dislocation core region, the linear elastic solu-
tion cannot be used to the core region.

To understand the dislocations motion, extensive work has
been carried out on the elastic fields due to the dislocation (e.g. Lu-
barda, 1997; Cai et al., 2001; Gutkin et al., 2013). The fundamental
solutions due to an individual dislocation in isotropic/anisotropic
infinite media and bimaterial were derived. For instance, based
on the Green’s function method, Mura (1963, 1987) proposed a
line-integral expression for the stress field due to a dislocation in
an isotropic elastic and infinite medium where the symmetry
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property of the corresponding Green’s function was applied. Gos-
ling and Willis (1994a) developed a line-integral representation
for the stress field due to an arbitrary dislocation loop in an isotro-
pic half space. Based on the Stroh formalism and Fourier transform,
Chu et al. (2011a, 2012a,b) recently presented a line-integral
expression for the elastic field due to a polygonal-shape dislocation
loop in anisotropic full, half, and bimaterial spaces where the
Green’s functions obtained by Pan and Yuan (2000) were used.
Using the Galerkin potential function and Fourier transform, Tan
and Sun (2006, 2011) derived the point-force Green’s function for
a multilayered heterogeneous thin film and proposed a line-inte-
gral expression for the dislocation-induced stress field.

The elastic fields due to a dislocation array or wall can be ob-
tained by superposing the contributions of all the dislocations in
the wall (e.g. Chou, 1962; Hartley, 1969; Nakahara et al., 1972;
Chou and Lin, 1975; Rey and Saada, 1975; Hirth et al., 1979; Lubar-
da and Kouris, 1996). Chou (1962) obtained the stress field due to
an equally spaced straight dislocation array in the basal planes in a
hexagonal crystal. Hirth et al. (1979) derived the stress field of a
dislocation array located at the interface of bicrystals and solved
the long-range field issue. The Cottrell summation formula (Cott-
rell, 1953) was used by Hirth and Lothe (1982) for dealing with
the dislocation array in isotropic material, and simple expressions
for the stress field were obtained. Gosling and Willis (1994b) calcu-
lated the energy of a dislocation array in an anisotropic half space.
Lubarda (1997) obtained the elastic energy due to a dislocation ar-
ray which are near the bimaterial interface or near the free surface
of an isotropic half space. Recently, de Geus et al. (2014) studied
the stress field due to dislocation walls with pile-up in a homoge-
neous isotropic full space. However, the influence of anisotropy in
bicrystals is seldom explored.

In this paper, we derive the elastic field due to a dislocation ar-
ray in an anisotropic and elastic bimaterial system. Based on the
exact closed-form solutions of the induced strain and stress fields,
we then investigate the influence of the interface and the period
length of the dislocation array on the elastic field and P–K force.
This paper is organized as follows. The Green’s function due to a
single dislocation in an anisotropic bimaterial system is briefly re-
viewed in Section 2. The elastic field due to the dislocation array is
derived and the P–K force is investigated in Section 3. For the
important Cu/Nb bimaterial system, the influence of the interface
and period length of the dislocation array on the stress field and
P–K force is illustrated numerically in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. Green’s functions due to a dislocation in bimaterial

The elastic fields due to a single dislocation in isotropic or
anisotropic bimaterial were studied in previous literature (Dun-
durs and Mura, 1964; Barnett and Lothe, 1974; Ting, 1996). For
completeness of the topic studied here, we present only the main
results in terms of the Stroh formalism (Stroh, 1958, 1962) as
follows.

We assume that Materials 1 and 2 occupy the half plane z > 0
and z < 0, respectively, and that the dislocation with Burgers vector
b = (Du1,Du2,Du3) is located at (X,Z) in the half plane of Material k
(k = 1 or 2). Then if the field point x = (x,z) is in Material k, the dis-
placement and traction vectors can be expressed as (Ting, 1996):
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If the field point (x, z) is in the other half-plane, i.e., Material l
(l – k) (k, l = 1 or 2), then the displacement and traction vectors
can be expressed as:
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In Eqs. (1) and (2), an overbar means complex conjugate; the
superscripts k and l denote, respectively, the quantity associated
with Materials k and l; pk

J , Ak, and Bk are the Stroh eigenvalues
and the corresponding eigenmatrices. Also in Eqs. (1) and (2),
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where za
j and sa

j (a ¼ 1;2) are complex variables associated with the
field and source points, respectively. They are defined as:

za
j ¼ xþ pa

j z; sa
j ¼ X þ pa

j Z ð5Þ

We point out that the first term in Eq. (1) corresponds to the
full-plane dislocation Green’s functions in Material k with

q1;k ¼ ðBkÞT b ð6Þ

whilst the second term in Eq. (1), called also the image part, is the
complementary part of the dislocation Green’s function solutions
due to the interface or the inhomogeneity of the two half-planes.
The complex vectors qðkÞj (k = 1,2; j = 1,2,3) in Eq. (1) and qðlÞj

(l = 1,2; j = 1,2,3) in Eq. (2) are determined using the continuity
conditions along the interface of the two half-planes. For a perfect
interface and after some algebraic calculations, these unknown vec-
tors can be obtained as (k, l = 1 or 2, but l – k):
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with

Ma ¼ �iBaðAaÞ�1 ða ¼ 1;2Þ
I1 ¼ diag½1;0;0�; I2 ¼ diag½0;1;0�; I3 ¼ diag½0;0;1�

ð8Þ

Similar Green’s function expressions can be derived for a half
plane or bimaterial with general (or imperfect) surface/interface
conditions. Detailed discussion can be found in the references
(Pan, 2003a,b). We point out that linear elasticity is assumed in
deriving these solutions, and thus the solutions are not suitable
for the dislocation core region where nonlinearity exists.

3. Elastic fields due to a dislocation array parallel to the
interface

We now consider an infinite dislocation array parallel to the
bicrystal interface as shown in Fig. 1. The space between two
adjacent dislocations is L, which is also called period length of
the dislocation array. We take the derivative of displacements in
Eqs. (1) and (2) with respect to field point x, which gives us



Fig. 1. Illustration of a dislocation array in a bicrystal system denoted by k and l.
The period length of the array is L, (X0,Z0) represents the single dislocation source
point or one of the dislocation sources in an array, and (x,z) is the field point. For the
system Cu/Nb used in the numerical example, Cu is in the upper half plane, Nb in
the lower half plane. The coordinate x is parallel to [11�2]Cu and [1�12]Nb, z to
[111]Cu and [110]Nb, and y points into the plane of the paper and parallel to
[�110]Cu and [1�1�1]Nb.
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Then the derivative of displacements due to the dislocation ar-
ray can be found by summing Eq. (9) over all the dislocations.
Namely
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According to Eq. (5), we have
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Thence, the summation term in Eq. (10) can be finally simplified
to the similar expressions below
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This type of summation can be represented by an elementary
function via the following Cottrell formula (Cottrell, 1953; Hirth
and Lothe, 1982),
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ð14Þ

Therefore, Eq. (10) becomes
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In index notation, Eq. (15) becomes
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Eqs. (15) and (16) are the main results of this paper. It is clear
that the strain and its corresponding stress can be separated into
two parts, one corresponding to the infinite plane and the other
called image part due to the effect of the interface. This formula-
tion is similar to the result due to a single dislocation.

With Eq. (15) or (16), we can easily find the strain field and thus
the stress field in both materials. For instance, the stress field in
Material k is

rk
ij ¼ Ck

ijklu
k
k;l ð17Þ

Again, Eqs. (15)–(17) apply only to the outside region of dislo-
cation cores.

The P–K force of a dislocation is very important in the simula-
tion of dislocation dynamics (Ghoniem and Han, 2005; Wang and
Beyerlein, 2011; Zhou et al., 2010). Without lose of generality, let
us consider the P–K force on the dislocation source point (X0,Z0)
as shown in Fig. 1. The formula of the P–K force is

F ¼ ½b � rðX0; Z0Þ� � n ð18Þ

where b is the Burgers vector, rðX0; Z0Þ is the stress tensor at the
dislocation source point, and n is the sense of the dislocation line
(Hirth and Lothe, 1982). After carefully checking the stress, one
may find a major challenge in computing the P–K force using Eq.
(18) directly because of the well-known singularity inside the core
region. Thus, we cannot use Eq. (17) combining with Eq. (15), (16)
directly. However, by examining Eq. (10), one can easily detect that
the singularity is actually induced by the dislocation source at
ðX0; Z0Þ; all other sources will not induce any singularity when con-
sidering the P–K force at ðX0; Z0Þ. Furthermore, without remotely
applied stress, the P–K force for a straight dislocation in an infinite
homogeneous medium is zero due to dislocation self-equilibrium
(Eshelby, 1951). In other words, the P–K force at ðX0; Z0Þ due to
the singularity stress induced by the straight dislocation at
ðX0; Z0Þ is zero! Therefore, the singularity term in Eq. (10) can be
simply abandoned when calculating the P–K force. Since we have
to abandon the singularity term in Eq. (10), we cannot use Cottrell
formula in Eq. (14) to find Eqs. (15) or (16) (due to the lack of the
term with n = 0). However, we can directly sum the terms one by
one as briefly presented below.

When the field point is coincident with the source point
ðX0; Z0Þ, we have,
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where Eqs. (5) and (11) are used.
After abandoning the singularity term and making use of

Eq. (19), the first summation term in uk
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Thence, the first summation term in the first expression in Eq.
(15) or (16) can be simply neglected when calculating the P–K
force on the dislocation source. In other words, only the image
stress has contributions to the P–K force. The physical reason on
neglecting the summation term in Eq. (20) can be simply explained
as follows: If one considers the same dislocation array but located
in two different places in an infinite homogenous crystal, it is obvi-
ous that the configurations of the two cases will be exactly the
same. Thus there is no energy difference between the two config-
urations. Consequently, the P–K force is zero.
4. Applications to Cu/Nb (fcc/bcc) bimaterials

In this section, the well-known fcc/bcc interface with K-S orien-
tation is taken as an example to show the influence of the disloca-
tion array density in Cu/Nb binary on the stress field and P–K force.
This low energy interface is often observed in epitaxial growth
(Misra et al., 1998). Referring to Fig. 1, we assign the upper half
plane to be copper Cu where the dislocations are located, and the
lower half plane niobium Nb. The x-axis is parallel to [11–2]Cu

and [1–12]Nb, the z-axis parallel to [111]Cu and [110]Nb, and the
y-axis pointing into the paper is parallel to [�110]Cu and
[1�1�1]Nb. The mixed dislocation array has a Burgers vector
½[101] within the glide plane (11–1). Both Cu and Nb are cubic
crystal and their elastic moduli are (in GPa): C11 = 168.4,
C12 = 121.4 and C44 = 75.4 for Cu, and C11 = 246.0, C12 = 134 and
C44 = 28.7 for Nb (Hirth and Lothe, 1982).
4.1. Traction continuity and periodic properties

Figs. 2a-f show the stress (or traction) fields (r13 r23 and r33)
induced by the dislocation array (a�c) and the corresponding sin-
gle dislocation (d�f). The single mixed dislocation is located at
(X0,Z0)=(0,5 nm) and the period length L is 10 nm for the mixed
dislocation array case. All the stresses in Fig. 2 are normalized by
the effective shear modulus of copper, (C11�C12 + C44) /3, defined
in the plane {111} of the cubic crystal (Hirth and Lothe, 1982; Scat-
tergood and Bacon, 1957; Chu et al. 2011b). It is clearly observed
from these figures that the traction continuity at the interface
z = 0 and the periodic properties of the stresses along the x- axis
are satisfied. It is actually interesting to point out that, under either
a single dislocation or a dislocation array and across the interface,
while the contours of r33 have a smooth tangent (c and f), the slope
of the contours of r13 r23 are not (a,b,d,e).

As expected, singularity occurs at the core region, as shown in
Fig. 2. Since this is dominated by the full-plane part in the strain
expression in Eq. (15) when the field point approaches the source
point (X0,Z0), the contribution from the image part can be ne-
glected when the field point is close to the dislocation core region.
However, away from the core, the stress field due to the dislocation
array is adjusted and the periodic property along the x-direction is
formed, whilst the magnitude of the stress field due to a single dis-
location decreases gradually with increasing distance from the
core. Furthermore, at most field points outside the core region,
the magnitude of the traction due to a single dislocation is larger
than that due to the corresponding dislocation array. This phenom-
enon is further analyzed below.
4.2. Influence of the dislocation array density on the traction

Since the interface is often the source for dislocation nucleation,
the nucleation-driven stresses at the interface, especially the shear
stresses, are important. Weak interfaces are expected to be sheared
easily (Hoagland et al., 2002). Shown in Fig. 3a-c are the tractions
at the interface due to the same mixed dislocation array with dif-
ferent densities (or period lengths). In the calculation, the distance
between the dislocation array and the interface is fixed at 5 nm but
the period length of the array varies. The variation of the tractions
(r13, r23 and r33) along the interface for different period lengths
are shown in Fig. 3a, b and c, respectively. It is noticed that, as
the period length approaches infinity, the results from the disloca-
tion array are reduced to those from a single dislocation (obtained
from the solutions to a single dislocation as independent check of
the formulation for the dislocation array). From Fig. 3, it is further
found that: (1) The maximum magnitude of these tractions all de-
crease with decreasing period length, which is consistent with the
observation in Fig. 2. Namely, the stress fields (r13, r23 and r33) are
suppressed by the dislocation array. For instance, the absolute va-
lue of the maximum r13 decreases from �0.011 le due to a single
dislocation (or the period length L ¼ 1) to �0.0063 le due to the
dislocation array with the period length L = 10 nm. (2) Individual
traction components decrease with different decay rates as L de-
creases. The shear stress r23 as shown in Fig. 3b has a largest decay
rate, whilst the normal stress r33, as shown in Fig. 3c has the small-
est, with the rate of the stress r13 in Fig. 3a in between. (3) The
location where the maximum magnitude of the traction occurs at
the interface varies with the period length of the array, which im-
plies that the possible interface-dislocation-nucleation site would
also change. (4) The sites to reach the extreme value of the shear
stresses r13 and r23 at the interface in case of a single dislocation
are also different, as shown in Fig. 3a and 3b, which means that
there are two possible sites to nucleate dislocations depending
upon the relative contributions from both r13 and r23. However,
with decreasing period length, the two separated sites are gradu-
ally merged (i.e., for L = 10 nm). Thence only one set of nucleation
points needs to be considered in the interface-dislocation-nucle-
ation problem when the density of the dislocation array is relative
high (or with relatively small period length). We should point out
that these interesting features discussed above are associated with
the traction components only; the variation of the in-plane stress
components r11, r22 and r12 are totally different and the maxi-
mum values of these stress components could increase with
increasing dislocation density. For instance, shown in Fig. 3d is
the shear stress on the glide plane {111}; its maximum value in-
creases slightly with increasing dislocation density.

4.3. Influence of dislocation array density on the P–K force

The image force or P–K force plays a critical role in the analysis
of dislocation dynamics (Ghoniem and Han, 2005; Wang and
Beyerlein, 2011; Zhou et al., 2010; Chu et al. 2012a, b). Generally,
in order to move, a dislocation has to overcome the repulsive force
induced by a hard interface, and the attractive force by a soft inter-
face or free surface (Shehadeh et al., 2007). For the Cu/Nb binary
system, Nb is often regarded as hard material since the effective
shear modulus le (Nb) = 46.9 GPa is larger than le (Cu) = 40.8 GPa.
Thence, the dislocation in the upper Cu half plane will be influ-
enced by the relatively hard Cu/Nb interface. To check this conven-
tional prediction, we first use the artificial binary system: Cu/aNb,
in which the stiffness of aNb is equal to the stiffness of niobium
times the coefficient a. The numerical results of P–K forces with re-
spect to different a are shown in Fig. 4. In the calculation, the per-
iod length of the mixed dislocation array is fixed at L = 10 nm. It is
observed from Fig. 4: (1) as is expected, overall, the magnitude of



Fig. 2. Contours of stress fields due to a single mixed dislocation (½[101] on {111}) and the corresponding dislocation array (the horizontal axis is x, and vertical axis is z, and
their units are both in nm): Shear stress r13 in (a), shear stress r23 in (b), and normal stress r33 in (c), due to the dislocation array; shear stress r13 in (d), shear stress in r23

(e), and normal stress r33 in (f), due to the single dislocation. The source point of the single mixed dislocation is at (0, 5 nm) and the dislocation array is 5 nm away from the
interface with a period length L = 10 nm. The stresses are normalized by the effective shear modulus of copper defined by le = (C11�C12 + C44)/3.
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the P–K force decreases gradually with increasing distance of the
array from the interface; (2) free surface (a = 0) attracts the dislo-
cation as predicted; (3) with increasing coefficient a (i.e. the stiff-
ness of the lower half plane increases), the attractive force
gradually decrease its algebraic value. Finally it changes its sign
and becomes a repulsive force. This phenomenon is also consistent
with the traditional prediction; (4) however, for the real Cu/Nb
(a = 1), the P–K force on the dislocation in copper is not repulsive
force as commonly thought; it is actually attractive when the dis-
tance d < 6.2 nm and repulsive when d > 6.2 nm. This interesting
feature is explained below: for the case of anisotropic material or
bimaterial, the energy analyses due to a dislocation are more com-
plicated. The P–K force depends on the crystal material and dislo-
cation orientations relative to the global interface coordinates. For
instance, graphite is quite easy to be sheared in the c-plane as com-
pared to the other directions. Furthermore, the anisotropy ratio
(A = 2C44/(C11�C12)) is 3.2 for Cu and 0.5 for Nb. They are quite
deviated from the isotropic case (A = 1.0). Thus, in the Cu/Nb sys-
tem studied here, the relative relationship between the two mate-
rials, hard or soft with respect to the dislocation move, depends on
the anisotropy property, crystal orientation, and dislocation orien-
tation. Thence, when one claims that one material is harder than
the other, one needs to be extremely cautious.

It should be noted that Weertman (1965) proposed a different
approach to evaluate the force acting on the dislocation, in which
the stress in the P–K force in Eq. (18) was replaced by the deviator-
ic stress. The numerical results based on this modified method
show that, although its magnitude is different, the trend of the
P–K force is the same as in Fig. 4. This further confirms that our dis-
cussions and statements here are valid.

The influence of the period length of the mixed dislocation array
on the P–K force in real Cu/Nb bimaterial is shown in Fig. 5. It is
observed that: (1) Generally, the magnitude of the P–K force de-
creases with decreasing period length. (2) The influence of the



Fig. 3. Variation of the traction/stress on the interface/glide plane for different densities of the mixed dislocation array: Shear traction r13 at the interface in (a), shear traction
r23 at the interface in (b), normal traction r33 at the interface in (c), and shear stress s on glide plane (11�1) in (d). The mixed dislocation array is 5 nm away from the
interface and L is the period length between two adjacent dislocations in the dislocation array. When L!1, the traction/stress due to the dislocation array is reduced to that
due to a single dislocation.
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dislocation array density on the P–K force decreases as the array
approaches the interface. For instance, when the distance of the ar-
ray to the interface is close to 2 nm, as shown in Fig. 5, different
period length or dislocation density would have no effect on the
P–K force. This is understandable since when the dislocation array
Fig. 4. Variation of the P–K force with the distance of dislocation array to the
interface for different interface stiffness. The bimaterial model used here is an
artificial binary material system Cu/aNb, in which the stiffness of material aNb is
assigned by the stiffness of niobium times the coefficient a. The larger the
coefficient a, the harder the interface is.
is very close to the interface, the interaction between the disloca-
tion array and interface and consequently the P–K force on the dis-
location is dominated by the considered single dislocation itself
only; the influence of other dislocations in the array can be ne-
glected. (3) For fixed period length L = 10 nm, the P–K force
changes its sign as the array approaches the interface. The critical
Fig. 5. Variation of the P–K force on the mixed dislocation (½[101]) with the
distance of the dislocation array to the interface for different densities (or period
length). The bimaterial model is Cu/Nb with the orientation of K–S {112} interface
being described in the caption of Fig. 1.



Fig. 7. Distribution of the image stress along x-axis (for fixed z = 5 nm) due to a
single screw/mixed dislocation located at (x = 0,z = 5 nm). The mixed dislocation
has a Burgers vector ½[101] and the screw dislocation has one as ½[�110]. The
bimaterial model is Cu/Nb with the orientation of K–S {112} interface being
described in the caption of Fig. 1.
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distance between the array and the interface is at d	6.2 nm. When
the distance d > 6.2 nm, the P–K force is repulsive, and when
d < 6.2 nm, it is attractive. To our best knowledge, this surprising
phenomenon has not been reported in any previous literature. This
interesting result further demonstrates that one should be very
cautious when judging if the P–K force on a dislocation due to a
bimaterial interface is attractive or repulsive.

In Figs. 4 and 5, only the z-direction P–K force is given. Actually,
we have also calculated the P–K force in the x-direction. Numerical
results show that the x-direction forces are zero under the toler-
ance of the numerical error. Physically, this result means that shift-
ing the dislocation array along the x-direction with a small
increment does not induce any change in the energy profile of
the system. Thence, the x-direction force is zero. Since the other
components of the P–K force are zero except that in z-direction,
the glide force on the glide plane {111} can be obtained by project-
ing the P–K force Fz on the glide plane, which is equivalent to mul-
tiplying a constant coefficient (i.e., directional sine between the
normal of the glide plane and z-direction). Thus the shape of the
variation of the glide force is similar to the P–K force shown in
Figs. 4 and 5.

In our numerical studies presented above, we focused on the
mixed dislocation ½[101] on {111}. To investigate the influence
of different Burgers vectors, we further consider the dislocation
with Burger vector ½[-110] which is a screw type (along y-direc-
tion). The results are shown in Fig. 6. Different from the mixed dis-
location discussed above, the P–K force is now repulsive. These
interesting and different behaviors of the P–K forces on the screw
and mixed dislocations can be explained via the following energy
analysis: For a screw dislocation in a pure cubic crystal, Hirth
and Lothe (1982) derived the energy coefficient Ks (See Eqs. (13–
148) and (13–156) there) for the self-energy. For copper, Ks = 42.1 -
GPa while for niobium, Ks = 44.3 GPa, implying that the P–K force
acting on a screw dislocation in Cu should be repulsive. On the
other hand, for an edge dislocation (See Eqs. (13–149) and
(13�156)), the energy coefficient Kex = 71.9 GPa (Kez = 82.2 GPa)
for copper, Ke = 60.0 GPa for nobium, implying that the P–K force
acting on edge dislocation in Cu should be attractive. The mixed
dislocation ½[101] can be decomposed into a screw part and an
edge part. The ratio of the magnitude of the edge part to screw part
is

ffiffiffi
3
p

: 1. Thus, the edge part will dominate the interaction and the
P–K force on the mixed dislocation is attractive. Thus our numeri-
cal result is consistent with the theoretical energy analysis based
on Hirth and Lothe (1982).
Fig. 6. Variation of the P–K force on the screw dislocation (½[�110]) with the
distance of the dislocation array to the interface for different densities (or period
lengths). The bimaterial model is Cu/Nb with the orientation of K–S {112} interface
being described in the caption of Fig. 1.
Comparing Fig. 5 and Fig. 6, one may observe that the P–K force
magnitude decreases with increasing dislocation density for the
mixed dislocation while it increases with increasing dislocation
density for the screw dislocation. This is the other interesting fea-
ture from our analysis, which can be further explained by the prin-
ciple of superposition. According to Eq. (18), the P–K force is
Fz = b2r21 for the screw dislocation array and is Fz = b1r11 +
b2r21 + b3r31 for the mixed dislocation array. Furthermore, as dis-
cussed in Section 3, only the image stress has contributions to the
P–K force. For the mixed dislocation ½[101] in the Cu/Nb K-S bima-
terial, the magnitude of b3 (	0.82b) is larger than both b1

(	�0.29b) and b2 (	�0.5b) whilst the image stresses r11 and r21

are much smaller than r31 (which can be seen from our exact
closed-form solutions for the single dislocation case). Therefore,
for the mixed dislocation case, one needs only to focus on the term
b3r31 in the P–K force expression. Consequently, the P–K behavior
will be dominated by the image stress r21 for the screw dislocation
case and by r31 for the mixed dislocation case. Keeping in mind
that the image stresses due to the corresponding arrays can be ob-
tained by superposing the image stresses induced by individual
dislocations in the array we only need to analyze these image
stresses due to a single dislocation. Fig. 7 shows the distribution
of the image stresses along x-direction (for fixed z = 5 nm) induced
by a dislocation located at (x = 0,z = 5 nm), r21 by the screw dislo-
cation and r31 by the mixed dislocation. It is observed from Fig. 7
that for the mixed dislocation case, the sign of the image stress r31

at |x|>10 nm is opposite to that at x = 0. Consequently, the magni-
tude of the total image stress due to the corresponding dislocation
array will decrease. Therefore, the P–K force of the mixed disloca-
tion array decreases with increasing dislocation density (or
decreasing period length). On the other hand, as shown in Fig. 7,
the sign of image stress r21 due to a screw dislocation is the same
in the calculated domain (x = �20 nm � 20 nm). Thus, the P–K
force of the screw dislocation array increases with increasing dislo-
cation density.
5. Conclusions

The strain/stress fields due to a dislocation array in an aniso-
tropic bimaterial are studied in this paper. Main results and con-
clusions are summarized as follows:
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(1) An analytical and simple expression is obtained by using the
Cottrell summation formula, which avoids the item-by-item
summation and thus greatly improve the accuracy and com-
putation efficiency.

(2) It is found that the P–K force associated with the full-plane
part of the stress field due to a dislocation array is exactly
zero, which greatly simplifies the computation of the P–K
force. This property is verified both mathematically and
physically.

(3) Numerical results for the Cu/Nb bimaterial with the K-S
interface demonstrate that the traction continuity on the
interface and the period condition along the dislocation
array are exactly satisfied under the tolerance of computa-
tion error.

(4) By comparing the stress fields at the Cu/Nb K-S interface due
to a single dislocation to those due to a dislocation array, it is
found that the tractions on the interface are suppressed with
increasing dislocation density (not for all the field points, but
for most of them), whist the shear component on the glide
plane {111} increases slightly with increasing dislocation
density.

(5) It is found that the Cu/Nb K-S interface attracts the mixed
dislocation array with Burgers vector ½[101] in copper,
whilst it repels the screw dislocation array with Burgers vec-
tor ½[�110]. This interesting result implies that the P–K
force depends not only on the material property, but also
on the crystal orientation and the Burgers vector orientation
relative to the global coordinates of the bimaterial.
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