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Abstract In addition to the hexagonal crystals of class 6 mm, many piezoelectric
materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-
posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse
isotropy after poling, with the isotropic plane perpendicular to the poling direction. In
this paper, simple and elegant line-integral expressions are derived for extended displace-
ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-
dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-
versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The
derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-
magnetic, or purely elastic materials. Several numerical examples are given to show both
the multi-field coupling effect and the interface/surface effect in transversely isotropic
MEE materials.
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1 Introduction

The magneto-electro-elastic (MEE) or multiferroic composite materials, which exhibit the
multi-field couplings among the elastic, electric, and magnetic fields, have recently stimulated
a great deal of scientific research for their potential applications to the multifunctional devices
such as memories, harvesters, sensors, transducers, and actuators[1–2]. MEE materials are
usually composites made of multi-phases or multi-layers, such as particulate composites, rod-
array composites, and laminate composites[1]. The desirable magneto-electric (ME) coupling
usually arises from the strain-mediated elastic interaction across piezomagnetic-piezoelectric
interfaces[1–2]. Therefore, the interfaces can have a great influence on the property of MEE
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materials and the performance of MEE devices. At the same time, as common defects in
crystalline solids, dislocations inevitably interact with the microstructures and interfaces of the
MEE materials and therefore affect the mechanical, electrical, and magnetic properties of MEE
materials. Due to the above facts, it is necessary to investigate the interaction of dislocations
with interfaces in MEE composite materials.

For the problem of dislocation-interface interactions, most related work in the literature is
confined to purely elastic materials[3–8]. Little work has been done to treat the interaction of an
arbitrary three-dimensional (3D) dislocation loop with the interface/surface of MEE composite
materials. Recently, Han et al.[9] derived analytical expressions of the extended displacements
and extended stresses induced by a planar dislocation loop of arbitrary shape in a generally
anisotropic MEE bimaterial. As an extension to our recent work[3], by utilizing the potential
theory, in this paper we mainly solve the extended displacements and extended stresses due to
a 3D dislocation loop of arbitrary shape, and the interaction energy between two arbitrarily
shaped 3D dislocation loops in transversely isotropic MEE bimaterials. The MEE bimaterial
considered here is composed of two dissimilar semi-infinite transversely isotropic MEE solids,
which are perfectly bonded together at a planar interface. We assume that the bimaterial
interface is parallel to the isotropic plane of both MEE solids (i.e., perpendicular to the poling
direction of both MEE solids).

The present paper is organized as follows. In Section 2, we express the point-force Green’s
function for the non-degenerate transversely isotropic MEE bimaterials in a new way for the sake
of later derivations of the dislocation solutions. In Section 3, using Green’s function method,
we derive line-integral expressions for the extended displacements and extended stresses of an
arbitrary 3D dislocation loop, and the interaction energy between two arbitrary 3D dislocation
loops in transversely isotropic MEE bimaterials. In Section 4, we provide several numerical
examples to show the multi-field coupling effect and the influence of material interface/surface
on the extended displacements, extended stresses, and interaction energy of dislocation loops.
Concluding remarks are drawn in Section 5.

2 Point-force Green’s function for transversely isotropic MEE bimaterials

Before the discussion, it would be pointed out that throughout the paper we follow the
conventions below: (i) The range of Roman indices is from 1 to 3 for lowercase letters (i, j, k,
etc.) and from 1 to 5 for uppercase letters (I, J , K, etc.), and the range of Greek indices (α, β,
γ, etc.) is from 1 to 2, unless otherwise specified. (ii) When dealing with bimaterials, the Greek
index λ or μ in the square bracket (i.e., [λ] or [μ]) indicates the corresponding relationship with
material λ or material μ.

In the Cartesian coordinates (x1, x2, x3), we consider a bimaterial which is composed of two
joined half-spaces, as shown in Fig. 1(a). In this bimaterial, one half-space (x3 >0) is occupied
by transversely isotropic MEE material 1, and the other half-space (x3 <0) is occupied by
transversely isotropic MEE material 2. The two half-spaces are perfectly bonded together at
the planar interface (x3=0), which means that both the extended displacements uI and the
extended stresses σ3J are continuous at x3=0 (the extended displacement and extended stress
are defined in (A2)). We further assume that the isotropic plane of each material is parallel to
the bimaterial interface (x3=0).

We denote the point-force Green’s function for transversely isotropic MEE bimaterials as
u

[λ][μ]
IJ (y; x), which means the Ith component of the extended displacement at point y (y1, y2,
y3) in material λ due to the Jth component (of unit magnitude) of the extended body force
applied at point x (x1, x2, x3) in material μ (the extended body force is defined in (A2)). By
virtue of the image method, the point-force Green’s function for bimaterials can be divided into
two parts as follows:
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u
[λ][μ]
IJ (y; x) = δλμu

[μ]
IJ (y; x) + U

[λ][μ]
IJ (y; x), (1)

where u[μ]
IJ (y; x) is the point-force Green’s function for the transversely isotropic MEE full space

occupied by material μ, while U [λ][μ]
IJ (y; x) is the complementary part from the image sources

due to the bimaterial interface; δij is the 3×3 Kronecker delta defined as

δij =

{
1, i = j,

0, i �= j.
(2)

According to the reciprocity theorem in linear magneto-electro-elasticity[10], we can find that⎧⎨⎩u
[μ]
IJ (y; x) = u

[μ]
JI(x; y) = u

[μ]
JI (y; x),

U
[λ][μ]
IJ (y; x) = U

[μ][λ]
JI (x; y).

(3)

For the sake of later derivations, we now express u[μ]
IJ (y; x) and U

[λ][μ]
IJ (y; x) in terms of

second derivatives of certain potential functions as follows:(
u

[μ]
IJ (y; x)

U
[λ][μ]
IJ (y; x)

)
=

1

4πc[μ]
44

∂2

∂yI∂xJ

(
Ψ[μ]

IJ (y; x)
Ψ[λ][μ]

IJ (y; x)

)
+

δIJ

4πc[μ]
44

∂2

∂x2
3

(
Φ[μ]

I (y; x)
Φ[λ][μ]

I (y; x)

)
, (4)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ψ[μ]

ξη (y; x)
Ψ[λ][μ]

ξη (y; x)

)
=

(
ψ

[μ]
1 (y; x) − ψ

[μ]
5 (y; x)

ψ
[λ][μ]
1 (y; x) − ψ

[λ][μ]
5 (y; x)

)
,(

Ψ[μ]
(i+2)η(y; x)

Ψ[λ][μ]
(i+2)η(y; x)

)
=

(
ψ

[μ]
2;i(y; x)

ψ
[λ][μ]
2;i (y; x)

)
,(

Ψ[μ]
ξ(j+2)(y; x)

Ψ[λ][μ]
ξ(j+2)(y; x)

)
=

(
ψ

[μ]
3;j(y; x)

ψ
[λ][μ]
3;j (y; x)

)
,(

Ψ[μ]
(i+2)(j+2)(y; x)

Ψ[λ][μ]
(i+2)(j+2)(y; x)

)
=

(
ψ

[μ]
4;ij(y; x)

ψ
[λ][μ]
4;ij (y; x)

)
,

(5a)

and (
Φ[μ]

ξ (y; x)
Φ[λ][μ]

ξ (y; x)

)
= (γ[μ]

5 )2
(

ψ
[μ]
5 (y; x)

ψ
[λ][μ]
5 (y; x)

)
,

(
Φ[μ]

i+2(y; x)
Φ[λ][μ]

i+2 (y; x)

)
=
(

0
0

)
. (5b)

In (4) and (5b), the material constants c[μ]
44 and γ[μ]

5 are defined in (A3b) and (A6), respec-
tively. In (4), the extended partial derivative is defined as follows:

∂

∂yI
=

⎧⎪⎪⎨⎪⎪⎩
∂

∂yi
, I = i = 1, 2, 3,

∂

∂y3
, I = 4, 5,

∂

∂xI
=

⎧⎪⎪⎨⎪⎪⎩
∂

∂xi
, I = i = 1, 2, 3,

∂

∂x3
, I = 4, 5,

(6a)

and the extended Kronecker delta is defined as

δIJ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δij , I = i = 1, 2, 3, J = j = 1, 2, 3,
δi3, I = i = 1, 2, 3, J = 4, 5,
δ3j , I = 4, 5, J = j = 1, 2, 3,
1, I = 4, 5, J = 4, 5.

(6b)
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Similarly, for easy use in this paper, we further define the extended differential as

dyI =

{
dyi, I = i = 1, 2, 3,
dy3, I = 4, 5,

dxI =

{
dxi, I = i = 1, 2, 3,
dx3, I = 4, 5,

(6c)

and the extended permutation symbol as

εIJK =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εijk, I = i = 1, 2, 3, J = j = 1, 2, 3, K = k = 1, 2, 3,
ε3jk, I = 4, 5, J = j = 1, 2, 3, K = k = 1, 2, 3,
εi3k, J = 4, 5, K = k = 1, 2, 3, I = i = 1, 2, 3,
εij3, K = 4, 5, I = i = 1, 2, 3, J = j = 1, 2, 3,
0, otherwise,

(6d)

where εijk is the classic permutation symbol defined as

εijk =

⎧⎪⎨⎪⎩
+ 1, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),
− 1, (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3),
0, otherwise.

(7)

Based upon the general solutions of the coupled equations for transversely isotropic MEE
media summarized in Appendix A[11−12], the unknown functions in (5a) and (5b) for the non-
degenerate bimaterials are found to be(

ψ
[μ]
5 (y; x)

ψ
[λ][μ]
5 (y; x)

)
Δ=

(
ψ

[μ]
5

ψ
[λ][μ]
5

)
= γ

[μ]
5

(
χ

[μ]
5 (y; x)

p
[λ][μ]
55 χ

[λ][μ]
55 (y; x)

)
, (8a)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ψ

[μ]
1 (y; x)

ψ
[λ][μ]
1 (y; x)

)
Δ=

(
ψ

[μ]
1

ψ
[λ][μ]
1

)
=

4∑
n=1

H
[μ]
n

⎛⎝ χ
[μ]
n (y; x)

4∑
m=1

p
[λ][μ]
mn χ

[λ][μ]
mn (y; x)

⎞⎠,
(

ψ
[μ]
2;i(y; x)

ψ
[λ][μ]
2;i (y; x)

)
Δ=

(
ψ

[μ]
2;i

ψ
[λ][μ]
2;i

)
=

4∑
n=1

H
[μ]
n

⎛⎝ m
[μ]
ni χ

[μ]
n (y; x)

4∑
m=1

m
[λ]
mip

[λ][μ]
mn χ

[λ][μ]
mn (y; x)

⎞⎠,
(

ψ
[μ]
3;j(y; x)

ψ
[λ][μ]
3;j (y; x)

)
Δ=

(
ψ

[μ]
3;j

ψ
[λ][μ]
3;j

)
=

4∑
n=1

H
[μ]
n

⎛⎝ m
[μ]
njχ

[μ]
n (y; x)

4∑
m=1

m
[μ]
nj p

[λ][μ]
mn χ

[λ][μ]
mn (y; x)

⎞⎠,
(

ψ
[μ]
4;ij(y; x)

ψ
[λ][μ]
4;ij (y; x)

)
Δ=

(
ψ

[μ]
4;ij

ψ
[λ][μ]
4;ij

)
=

4∑
n=1

H
[μ]
n

⎛⎝ m
[μ]
nim

[μ]
njχ

[μ]
n (y; x)

4∑
m=1

m
[λ]
mim

[μ]
nj p

[λ][μ]
mn χ

[λ][μ]
mn (y; x)

⎞⎠.

(8b)

In (8b), the material constant m[μ]
nj (n = 1, 2, 3, 4) is defined in (A11). In (8a) and (8b),

the symbol “Δ=” means that, without confusion, ψ[μ]
∗ (y; x) and ψ

[λ][μ]
∗ (y; x) can be written as

ψ
[μ]
∗ and ψ

[λ][μ]
∗ for short, respectively. From (8b), we can further obtain the following useful

relations:

ψ
[μ]
2;i = ψ

[μ]
3;i , ψ

[μ]
4;ij = ψ

[μ]
4;ji. (9)
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For the bimaterial with a perfectly-bonded interface, the unknown coefficients in (8a) and
(8b) are determined by[11]

⎛⎜⎜⎜⎝
H

[μ]
1

H
[μ]
2

H
[μ]
3

H
[μ]
4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
s
[μ]
1 s

[μ]
2 s

[μ]
3 s

[μ]
4

α
[μ]
11 α

[μ]
21 α

[μ]
31 α

[μ]
41

α
[μ]
12 α

[μ]
22 α

[μ]
32 α

[μ]
42

α
[μ]
13 α

[μ]
23 α

[μ]
33 α

[μ]
43

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠ , (10)

(
p
[μ][μ]
55

p
[3−μ][μ]
55

)
=
(

1 −1
c
[μ]
44 s

[μ]
5 c

[3−μ]
44 s

[3−μ]
5

)−1( −1
c
[μ]
44 s

[μ]
5

)
, (11a)

and⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
[μ][μ]
1n

p
[μ][μ]
2n

p
[μ][μ]
3n

p
[μ][μ]
4n

p
[3−μ][μ]
1n

p
[3−μ][μ]
2n

p
[3−μ][μ]
3n

p
[3−μ][μ]
4n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 −1 −1 −1 −1
α

[μ]
11 α

[μ]
21 α

[μ]
31 α

[μ]
41 α

[3−μ]
11 α

[3−μ]
21 α

[3−μ]
31 α

[3−μ]
41

α
[μ]
12 α

[μ]
22 α

[μ]
32 α

[μ]
42 α

[3−μ]
12 α

[3−μ]
22 α

[3−μ]
32 α

[3−μ]
42

α
[μ]
13 α

[μ]
23 α

[μ]
33 α

[μ]
43 α

[3−μ]
13 α

[3−μ]
23 α

[3−μ]
33 α

[3−μ]
43

ω
[μ]
11 ω

[μ]
21 ω

[μ]
31 ω

[μ]
41 ω

[3−μ]
11 ω

[3−μ]
21 ω

[3−μ]
31 ω

[3−μ]
41

θ
[μ]
11 θ

[μ]
21 θ

[μ]
31 θ

[μ]
41 −θ[3−μ]

11 −θ[3−μ]
21 −θ[3−μ]

31 −θ[3−μ]
41

θ
[μ]
12 θ

[μ]
22 θ

[μ]
32 θ

[μ]
42 −θ[3−μ]

12 −θ[3−μ]
22 −θ[3−μ]

32 −θ[3−μ]
42

θ
[μ]
13 θ

[μ]
23 θ

[μ]
33 θ

[μ]
43 −θ[3−μ]

13 −θ[3−μ]
23 −θ[3−μ]

33 −θ[3−μ]
43

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
α

[μ]
n1

α
[μ]
n2

α
[μ]
n3

ω
[μ]
n1

−θ[μ]
n1

−θ[μ]
n2

−θ[μ]
n3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n = 1, 2, 3, 4), (11b)

in which the material constants s[μ]
J , α[μ]

nj , ω[μ]
nj , and θ[μ]

nj (n = 1, 2, 3, 4) are defined in (A6) and
(A11), respectively.

Also in (8a) and (8b), the unknown functions are defined as[13–14]

χ
[μ]
J (y; x) Δ= χ

[μ]
J =

{
z
[μ]
J ln(R[μ]

J + z
[μ]
J ) −R

[μ]
J if R

[μ]
J + z

[μ]
J �= 0,

− z
[μ]
J ln(R[μ]

J − z
[μ]
J ) −R

[μ]
J if R

[μ]
J + z

[μ]
J = 0,

or

χ
[μ]
J (y; x) =

{
− z

[μ]
J ln(R[μ]

J − z
[μ]
J ) −R

[μ]
J if R

[μ]
J − z

[μ]
J �= 0,

z
[μ]
J ln(R[μ]

J + z
[μ]
J ) −R

[μ]
J if R[μ]

J − z
[μ]
J = 0,

(12)

χ
[λ][μ]
IJ (y; x) Δ= χ

[λ][μ]
IJ = z

[λ][μ]
IJ ln(R[λ][μ]

IJ + z
[λ][μ]
IJ ) −R

[λ][μ]
IJ ,

where
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⎧⎪⎨⎪⎩
R

[μ]
J = R

[μ]
J (y; x) =

√
(y1 − x1)2 + (y2 − x2)2 + (z[μ]

J )2,

R
[λ][μ]
IJ = R

[λ][μ]
IJ (y; x) =

√
(y1 − x1)2 + (y2 − x2)2 + (z[λ][μ]

IJ )2,

(13)

⎧⎨⎩ z
[μ]
J = z

[μ]
J (y; x) = s

[μ]
J (y3 − x3),

z
[λ][μ]
IJ = z

[λ][μ]
IJ (y; x) = (−1)λ+1s

[λ]
I y3 + (−1)μ+1s

[μ]
J x3.

(14)

The functions defined in (12) satisfy the following useful relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(γ[μ]

J )2
∂2

∂y2
3

χ
[μ]
J = −

( ∂2

∂y2
1

+
∂2

∂y2
2

)
χ

[μ]
J =

1

R
[μ]
J

,

(γ[λ]
I )2

∂2

∂y2
3

χ
[λ][μ]
IJ = −

( ∂2

∂y2
1

+
∂2

∂y2
2

)
χ

[λ][μ]
IJ =

1

R
[λ][μ]
IJ

,

(15)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂yi
χ

[μ]
J = − ∂

∂xi
χ

[μ]
J ,

∂

∂yξ
χ

[λ][μ]
IJ = − ∂

∂xξ
χ

[λ][μ]
IJ ,

∂

∂y3
χ

[λ][μ]
IJ = (−1)λ+μs

[λ]
I γ

[μ]
J

∂

∂x3
χ

[λ][μ]
IJ .

(16)

3 Line-integral forms of extended displacements, stresses, and interac-
tion energy of arbitrarily shaped 3D dislocation loops in transversely
isotropic MEE bimaterials

3.1 Extended displacements of arbitrarily shaped 3D dislocation loop
Now, we consider an arbitrarily shaped 3D dislocation loop C bounding a curved surface

A in transversely isotropic MEE bimaterials (see Fig. 1(b)). Based upon the classical theory
of dislocations, the extended displacements induced by this dislocation loop can be expressed
as[15]

u
[μ][λ]
N (x) = −

5∑
J,K=1

3∑
i,l=1

∫
A

dAibJc
[λ]
iJKl

∂

∂yl
u

[λ][μ]
KN (y; x), (17)

where u[μ][λ]
N (x) is the Nth component of the extended displacement at point x (x1, x2, x3)

in material μ due to the dislocation loop C located in material λ, dAi at point y (y1, y2,
y3) is the ith component of the vector area element dA, and the positive normal of dA is
associated with the positive direction of the closed dislocation line according to the right-hand
rule (Fig. 1(b)), the extended elastic coefficient tensor c[λ]

iJKl is defined by (A3a) and (A3b), bJ
is the Jth component of the extended Burgers vector b defined as

bJ = u−J − u+
J =

⎧⎪⎨⎪⎩
u−j − u+

j , J = j = 1, 2, 3,

ϕ− − ϕ+, J = 4,

ψ− − ψ+, J = 5,

(18)
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Fig. 1 Two transversely isotropic MEE half-spaces perfectly bonded together at planar interface
x3=0 and arbitrarily shaped 3D dislocation loop located in one half-space of transversely
isotropic MEE bimaterial (“T.I.” is abbreviation for “transversely isotropic”)

in which u−J and u+
J denote the Jth component of the extended displacement at the same point

on the lower and upper surface of the cut face, respectively. The positive normal of dA (see
Fig. 1(b)) should point from the lower surface to the upper surface of the cut face. In this paper,
we assume that the extended Burgers vector b is constant over the dislocation surface.

Substituting (1) into (17), we can obtain that

u
[μ][λ]
N (x) = δλμu

[λ]
N (x) + U

[μ][λ]
N (x), (19)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u

[λ]
N (x) = −

5∑
J,K=1

3∑
i,l=1

∫
A

dAibJc
[λ]
iJKl

∂

∂yl
U

[λ]
KN (y; x),

U
[μ][λ]
N (x) = −

5∑
J,K=1

3∑
i,l=1

∫
A

dAibJc
[λ]
iJKl

∂

∂yl
U

[λ][μ]
KN (y; x).

(20)

The above u[λ]
N (x) denotes the Nth component of the extended displacement at point x (x1,

x2, x3) induced by the dislocation loop C in a transversely isotropic MEE full space occupied
by material λ, and U

[μ][λ]
N (x) is the complementary part from the image sources due to the

bimaterial interface.
Substituting (A3a), (A3b), (4), (5a), and (5b) into (20), and then making use of (15), (16),

(A6), (A13), and the following Stokes’ theorem[16]

∫
A

(
dAi

∂

∂yj
− dAj

∂

∂yi

)
F (y) =

3∑
k=1

∮
C

F (y)εijkdyk,

or

3∑
i,j,k=1

∫
A

εijk
∂

∂yi
Fj(y)dAk =

3∑
l=1

∮
C

Fl(y)dyl, (21)
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we can transform the area integrals in (20) into the line-integral form as follows:

(
u

[λ]
N (x)

U
[μ][λ]
N (x)

)
= − bN

4π

(
Ω[λ]

5 (x)
�
[λ]
[μ]Ω

[λ][μ]
N ;55 (x)

)

− 1
4π

5∑
J=1

3∑
k=1

∮
C

bJεNJkdyk

(
U [λ]

N ;J(y; x)
�
[λ]
[μ]U [λ][μ]

N ;J (y; x)

)

− 1
4π

5∑
J=1

3∑
i,k=1

∂

∂xN

∮
C

bJεiJkdyk
∂

∂yi

(
U [λ]

N ;iJ (y; x)
�
[λ]
[μ]U [λ][μ]

N ;iJ (y; x)

)
, (22)

where �[λ]
[μ] = c

[λ]
44 /c

[μ]
44 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω[λ]
5 (x) =

∫
A

(
dA1

∂

∂y1
+ dA2

∂

∂y2
+ (γ[λ]

5 )2dA3
∂

∂y3

) 1

γ
[λ]
5 R

[λ]
5

,

Ω[λ][μ]
β;55 (x) =

3∑
i,k=1

∮
C

εi3kdyk
∂2

∂yi∂y3

∮
C

ψ
[λ][μ]
5 ,

Ω[λ][μ]
j+2;55(x) =

3∑
i,k=1

εi3kdyk
∂2

∂xi∂x3
ψ

[λ][μ]
5 ,

(23a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
U [λ]

α;ξ(y; x)
U [λ][μ]

α;ξ (y; x)

)
=

∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,(

U [λ]
α;m+2(y; x)

U [λ][μ]
α;m+2(y; x)

)
=
C

[λ]
m+2

c
[λ]
44

(γ[λ]
5 )2

∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
U [λ]

i+2;ξ(y; x)
U [λ][μ]

i+2;ξ (y; x)

)
= − ∂2

∂y3∂x3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
U [λ]

i+2;m+2(y; x)
U [λ][μ]

i+2;m+2(y; x)

)
= −C

[λ]
m+2

c
[λ]
44

(γ[λ]
5 )2

∂2

∂y3∂x3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(23b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
U [λ]

α;ξη(y; x)
U [λ][μ]

α;ξη (y; x)

)
= 2(s[λ]

5 )2
(

ψ
[λ]
1 − ψ

[λ]
5

ψ
[λ][μ]
1 − ψ

[λ][μ]
5

)
,

(
U [λ]

α;3η(y; x)
U [λ][μ]

α;3η (y; x)

)
=

1

c
[λ]
44

⎛⎜⎜⎝ c
[λ]
44 (ψ[λ]

1 − ψ
[λ]
5 ) +

3∑
k=1

C
[λ]
1k ψ

[λ]
2;k

c
[λ]
44 (ψ[λ][μ]

1 − ψ
[λ][μ]
5 ) +

3∑
k=1

C
[λ]
1k ψ

[λ][μ]
2;k

⎞⎟⎟⎠ ,

(
U [λ]

α;m(n+2)(y; x)

U [λ][μ]
α;m(n+2)(y; x)

)
=

1

c
[λ]
44

⎛⎜⎜⎝ C
[λ]
n+2(ψ

[λ]
1 − ψ

[λ]
5 ) +

3∑
k=1

C
[λ]
nkψ

[λ]
2;k

C
[λ]
n+2(ψ

[λ][μ]
1 − ψ

[λ][μ]
5 ) +

3∑
k=1

C
[λ]
nkψ

[λ][μ]
2;k

⎞⎟⎟⎠ ,

(23c)
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ U [λ]
i+2;ξη(y; x)

U [λ][μ]
i+2;ξη(y; x)

⎞⎟⎠ = 2(s[λ]
5 )2

⎛⎜⎝ ψ
[λ]
3;i

ψ
[λ][μ]
3;i

⎞⎟⎠ ,

⎛⎜⎝ U [λ]
i+2;3η(y; x)

U [λ][μ]
i+2;3η(y; x)

⎞⎟⎠ =
1

c
[λ]
44

⎛⎜⎜⎜⎝
c
[λ]
44ψ

[λ]
3;i + c

[λ]
44ψ

[λ]
5 +

3∑
k=1

C
[λ]
1k ψ

[λ]
4;ki

c
[λ]
44ψ

[λ][μ]
3;i + c

[λ]
44ψ

[λ][μ]
5 +

3∑
k=1

C
[λ]
1k ψ

[λ][μ]
4;ki

⎞⎟⎟⎟⎠ ,

⎛⎜⎝ U [λ]
i+2;m(n+2)(y; x)

U [λ][μ]
i+2;m(n+2)(y; x)

⎞⎟⎠ =
1

c
[λ]
44

⎛⎜⎜⎜⎝
C

[λ]
n+2ψ

[λ]
3;i + δinc

[λ]
44ψ

[λ]
5 +

3∑
k=1

C
[λ]
nkψ

[λ]
4;ki

C
[λ]
n+2ψ

[λ][μ]
3;i + δinc

[λ]
44ψ

[λ][μ]
5 +

3∑
k=1

C
[λ]
nkψ

[λ][μ]
4;ki

⎞⎟⎟⎟⎠ ,

(23d)

in which the material constants C[λ]
ij and C

[λ]
J are defined in (A12a) and (A12b), respectively.

It can be observed from (23c) and (23d) that⎛⎜⎝ U [λ]
i;mn(y; x)

U [λ][μ]
i;mn (y; x)

⎞⎟⎠ =

⎛⎜⎝ U [λ]
i;nm(y; x)

U [λ][μ]
i;nm (y; x)

⎞⎟⎠ . (24)

Note that the area integral Ω[λ]
5 (x) in (23a) denotes the quasi solid angle subtended by the

cut face A of the dislocation loop C in material λ at point x, which can also be transformed
into a line integral[17].
3.2 Extended stresses of arbitrarily shaped 3D dislocation loop

Using the constitutive relation for transversely isotropic MEE materials as shown in (A1b),
we can derive from (19) the extended stresses as follows:

σ
[μ][λ]
iJ (x) = δλμσ

[λ]
iJ (x) + S

[μ][λ]
iJ (x), (25)

in which ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ
[λ]
iJ (x) =

5∑
K=1

3∑
l=1

c
[λ]
iJKl

∂

∂xl
u

[λ]
K (x),

S
[μ][λ]
iJ (x) =

5∑
K=1

3∑
l=1

c
[μ]
iJKl

∂

∂xl
U

[μ][λ]
K (x),

(26)

where σ[μ][λ]
iJ (x) denotes the extended stress at point x (x1, x2, x3) in transversely isotropic

MEE material μ due to an arbitrarily shaped 3D dislocation loop C located in transversely
isotropic MEE material λ, σ[λ]

iJ (x) is the extended stresses at point x (x1, x2, x3) induced by
the same dislocation loop C in a transversely isotropic MEE full space occupied by material λ,
S

[μ][λ]
iJ (x) is the complementary part from the image sources due to the bimaterial interface.

Substituting (22) into (26), we can express σ[λ]
iJ (x) and S

[μ][λ]
iJ (x) in terms of line integrals
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as(
σ

[λ]
pQ(x)

S
[μ][λ]
pQ (x)

)
= − 1

4π

5∑
J=1

3∑
i=1

∮
C

bJ(εiJpdyQ + εiJQdyp)
∂

∂yi

(
C

[λ]
Q S [λ]

pQ;J (y; x)

�
[λ]
[μ]C

[μ]
Q S [λ][μ]

pQ;J (y; x)

)

− 1
4π

5∑
J=1

3∑
i,k=1

∮
C

bJεiJkdyk
∂

∂yi

∂2

∂xp∂xQ

(
C

[λ]
Q S [λ]

pQ;iJ (y; x)

�
[λ]
[μ]C

[μ]
Q S [λ][μ]

pQ;iJ (y; x)

)

+
δpQ

4π

5∑
J=1

3∑
i,k=1

∮
C

bJεiJkdyk
∂

∂yi

(
∂2

∂x2
1

+
∂2

∂x2
2

)(
C

[λ]
Q S [λ]

pQ;iJ (y; x)

�
[λ]
[μ]C

[μ]
Q S [λ][μ]

pQ;iJ (y; x)

)

+
δpQ

4π

5∑
J=1

3∑
i,k=1

∮
C

bJεiJkdyk
∂

∂yi

∂2

∂x2
3

(
C

[λ]
Q S [λ]

3Q;iJ (y; x)

�
[λ]
[μ]C

[μ]
Q S [λ][μ]

3Q;iJ (y; x)

)
, (27)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
S [λ]

αβ;N (y; x)

S [λ][μ]
αβ;N (y; x)

)
=
C

[λ]
N

c
[λ]
44

∂2

∂x2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
S [λ]

α(j+2);N (y; x)

S [λ][μ]
α(j+2);N (y; x)

)
= −C

[λ]
N

c
[λ]
44

∂2

∂x3∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
S [λ]

3β;N (y; x)
S [λ][μ]

3β;N (y; x)

)
=

(
S [λ]

β3;N (y; x)
S [λ][μ]

β3;N (y; x)

)
,

(
S [λ]

3(j+2);N (y; x)

S [λ][μ]
3(j+2);N (y; x)

)
=
C

[λ]
N

c
[λ]
44

∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(28a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
S [λ]

αβ;ξη(y; x)

S [λ][μ]
αβ;ξη(y; x)

)
= 2(s[λ]

5 )2
(

2(s[λ]
5 )2(ψ[λ]

1 − ψ
[λ]
5 )

2(s[μ]
5 )2(ψ[λ][μ]

1 − ψ
[λ][μ]
5 )

)
,

(
S [λ]

αβ;ξ(n+2)(y; x)

S [λ][μ]
αβ;ξ(n+2)(y; x)

)

=
1

c
[λ]
44

⎛⎜⎜⎝ 2(s[λ]
5 )2

(
C

[λ]
n+2(ψ

[λ]
1 − ψ

[λ]
5 ) +

3∑
q=1

C
[λ]
nqψ

[λ]
2;q

)
2(s[μ]

5 )2
(
C

[λ]
n+2(ψ

[λ][μ]
1 − ψ

[λ][μ]
5 ) +

3∑
q=1

C
[λ]
nqψ

[λ][μ]
2;q

)
⎞⎟⎟⎠ ,

(
S [λ]

αβ;3N (y; x)

S [λ][μ]
αβ;3N (y; x)

)
=

1

c
[λ]
44

⎛⎜⎜⎝ 2(s[λ]
5 )2

(
c
[λ]
44 (ψ[λ]

1 − ψ
[λ]
5 ) +

3∑
q=1

C
[λ]
1q ψ

[λ]
2;q

)
2(s[μ]

5 )2
(
c
[λ]
44 (ψ[λ][μ]

1 − ψ
[λ][μ]
5 ) +

3∑
q=1

C
[λ]
1q ψ

[λ][μ]
2;q

)
⎞⎟⎟⎠ ,

(28b)
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
C

[λ]
j+2S [λ]

i(j+2);ξη(y; x)

C
[μ]
j+2S [λ][μ]

i(j+2);ξη(y; x)

)
= 2(s[λ]

5 )2

⎛⎜⎜⎝ C
[λ]
j+2(ψ

[λ]
1 − ψ

[λ]
5 ) +

3∑
q=1

C
[λ]
jq ψ

[λ]
3;q

C
[μ]
j+2(ψ

[λ][μ]
1 − ψ

[λ][μ]
5 ) +

3∑
q=1

C
[μ]
jq ψ

[λ][μ]
3;q

⎞⎟⎟⎠ ,

(
C

[λ]
j+2S [λ]

i(j+2);ξ(n+2)(y; x)

C
[μ]
j+2S [λ][μ]

i(j+2);ξ(n+2)(y; x)

)
=

1

c
[λ]
44

·

⎛⎜⎜⎜⎜⎝
C

[λ]
j+2

(
C

[λ]
n+2ψ

[λ]
1 +

3∑
q=1

C
[λ]
nqψ

[λ]
2;q

)
+

3∑
q=1

C
[λ]
jq

(
C

[λ]
n+2ψ

[λ]
3;q +

3∑
p=1

C
[λ]
npψ

[λ]
4;pq

)

C
[μ]
j+2

(
C

[λ]
n+2ψ

[λ][μ]
1 +

3∑
q=1

C
[λ]
nqψ

[λ][μ]
2;q

)
+

3∑
q=1

C
[μ]
jq

(
C

[λ]
n+2ψ

[λ][μ]
3;q +

3∑
p=1

C
[λ]
npψ

[λ][μ]
4;pq

)
⎞⎟⎟⎟⎟⎠ ,

(
C

[λ]
j+2S [λ]

i(j+2);3N (y; x)

C
[μ]
j+2S [λ][μ]

i(j+2);3N (y; x)

)
=

1

c
[λ]
44

·

⎛⎜⎜⎜⎜⎝
C

[λ]
j+2

(
c
[λ]
44ψ

[λ]
1 +

3∑
q=1

C
[λ]
1q ψ

[λ]
2;q

)
+

3∑
q=1

C
[λ]
jq

(
c
[λ]
44ψ

[λ]
3;q +

3∑
p=1

C
[λ]
1p ψ

[λ]
4;pq

)

C
[μ]
j+2

(
c
[λ]
44ψ

[λ][μ]
1 +

3∑
q=1

C
[λ]
1q ψ

[λ][μ]
2;q

)
+

3∑
q=1

C
[μ]
jq

(
c
[λ]
44ψ

[λ][μ]
3;q +

3∑
p=1

C
[λ]
1p ψ

[λ][μ]
4;pq

)
⎞⎟⎟⎟⎟⎠ ,

(
S [λ]

3β;mN (y; x)
S [λ][μ]

3β;mN (y; x)

)
=

(
S [λ]

β3;mN (y; x)
S [λ][μ]

β3;mN (y; x)

)
.

(28c)

During the derivation of (27), we have made use of (15) and (16), along with the following
relations:

δαξεβη3 − δαηεβξ3 = δαβεξη3, (29)

and

2∑
τ=1

∮
C

εα3τdyτ
∂2

∂yα∂yξ

(
ψ

[λ]
5

ψ
[λ][μ]
5

)

=
∮
C

εαξ3dy3
∂2

∂yα∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
+

2∑
τ=1

∮
C

εξ3τdyτ
∂2

∂yα∂yα

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
. (30)

(30) can be verified by Stokes’ theorem in (21).
By virtue of (9), we can obtain from (28b) and (28c) that(

S [λ]
pq;iJ (y; x)

S [λ][μ]
pq;iJ (y; x)

)
=

(
S [λ]

qp;iJ (y; x)
S [λ][μ]

qp;iJ (y; x)

)
,

(
S [λ]

pQ;ij(y; x)
S [λ][μ]

pQ;ij(y; x)

)
=

(
S [λ]

pQ;ji(y; x)
S [λ][μ]

pQ;ji(y; x)

)
, (31a)

and

c
[λ]
44S [λ]

ξq;αJ (y; x) = C
[λ]
J S [λ]

αJ;ξq(y; x). (31b)
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3.3 Interaction energy between two arbitrarily shaped 3D dislocation loops

Suppose that there are two arbitrarily shaped 3D dislocation loops C and C̃ in transversely
isotropic MEE bimaterials. The dislocation loop C is located in material λ and bounds a curved
surface A with an extended Burgers vector b, the dislocation loop C̃ is located in material μ
and bounds a curved surface Ã with an extended Burgers vector b̃. Based upon the classical
theory of dislocations[15], the interaction energy w[μ][λ]

I between the two dislocation loops can
be expressed as

w
[μ][λ]
I = δλμw

[λ]
I +W

[μ][λ]
I , (32)

in which

w
[λ]
I =

5∑
Q=1

3∑
p=1

∫
eA

dÃpb̃Qσ
[λ]
pQ(x) , W

[μ][λ]
I =

5∑
Q=1

3∑
p=1

∫
eA

dÃpb̃QS
[μ][λ]
pQ (x), (33)

where σ[λ]
pQ(x) and S[μ][λ]

pQ (x) are the two parts of the extended stress induced by the dislocation
loop C, as given in (27), dÃp is the pth component of the vector area element dÃ defined at point
x (x1, x2, x3) on the dislocation surface Ã. The above w[λ]

I is the interaction energy between the
two dislocation loops C̃ and C in a transversely isotropic MEE full space occupied by material
λ, and W [μ][λ]

I is the complementary part from the image sources due to the bimaterial interface.

Substituting (27) into (33), and then making use of (16), the Stokes theorem in (21) and
the following relations:

εαβ3εξη3 = δαξδβη − δαηδβξ,

2∑
β=1

εαβ3εξβ3 = δαξ, (34)

3∑
i=1

∮
C

dyi
∂

∂yi

∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
=
∮
C

d
∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
=
(

0
0

)
, (35)

we can thus express the interaction energy in terms of double line integrals as

(
w

[λ]
I

W
[μ][λ]
I

)
= − 1

2π

5∑
I,J=1

3∑
k,p,q=1

b̃IbJ

∮
eC

dxp

∮
C

dyqεIJkεpqk

(
C

[λ]
I W [λ]

Jq (y; x)
�
[λ]
[μ]C

[μ]
I W [λ][μ]

Jq (y; x)

)

+
1
4π

5∑
I,J=1

b̃IbJ

∮
eC

dxI

∮
C

dyJ

(
C

[λ]
I W [λ]

J (y; x)
�
[λ]
[μ]C

[μ]
I W [λ][μ]

J (y; x)

)

− 1
4π

5∑
I,J=1

3∑
m,n,p,q=1

b̃IbJ

∮
eC

dxm

∮
C

dynεpImεqJn

· ∂2

∂xp∂yq

(
C

[λ]
I S [λ]

pI;qJ (y; x)
�
[λ]
[μ]C

[μ]
I S [λ][μ]

pI;qJ (y; x)

)
, (36)
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in which ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
W [λ]

αβ(y; x)

W [λ][μ]
αβ (y; x)

)
= − ∂2

∂x3∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
W [λ]

(i+2)β(y; x)

W [λ][μ]
(i+2)β(y; x)

)
=
C

[λ]
i+2

c
[λ]
44

∂2

∂x2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
W [λ]

α3 (y; x)

W [λ][μ]
α3 (y; x)

)
=

∂2

∂y2
3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
W [λ]

(i+2)3(y; x)

W [λ][μ]
(i+2)3(y; x)

)
= −C

[λ]
i+2

c
[λ]
44

∂2

∂x3∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(37a)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
W [λ]

α (y; x)
W [λ][μ]

α (y; x)

)
= − ∂2

∂x3∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
,

(
W [λ]

i+2(y; x)
W [λ][μ]

i+2 (y; x)

)
= −C

[λ]
i+2

c
[λ]
44

∂2

∂x3∂y3

(
ψ

[λ]
5

ψ
[λ][μ]
5

)
.

(37b)

As an immediate application of (36), we now consider one dislocation loop C with an ex-
tended Burgers vector (b1,b2,b3,0,0) and another dislocation loop C̃ with an extended Burgers
vector (b̃1, b̃2, b̃3, 0, 0), both of which are located in the transversely isotropic MEE full space
occupied by material λ. In this special case, the interaction energy between the two dislocation
loops can be expressed in an elegant way as

w
[λ]
I = − c

[λ]
44

4π

3∑
i,j=1

∮
eC

dxi

∮
C

dyj b̃ibj
∂2

∂y2
3

ψ
[λ]
5

− c
[λ]
44

4π

3∑
i,j=1

∮
eC

dxj

∮
C

dyib̃ibj

(
−2

∂2

∂y2
3

ψ
[λ]
5 +

3∑
k=1

∂2

∂y2
k

S [λ]
13;1k(y; x)

)

− c
[λ]
44

4π

3∑
i,j,k=1

∮
eC

dxk

∮
C

dyk

(
b̃ibj

∂2

∂yi∂yj
− b̃ibi

∂2

∂yj∂yj

)
W [λ]

ij;k(y; x), (38)

in which ⎧⎨⎩W [λ]
ij;ξ(y; x) = S [λ]

ij;ξ3(y; x),

W [λ]
ij;3(y; x) = S [λ]

ij;11(y; x).
(39)

During the derivation of (38) from (36), we have made use of (16) and (34), along with the
following relations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
τ=1

∮
eC

εα3τdxτ
∂2

∂xα∂xξ
S [λ]

βγ;η3(y; x)

=
∮
eC

εαξ3dx3
∂2

∂xα∂x3
S [λ]

βγ;η3(y; x) +
2∑

τ=1

∮
eC

εξ3τdxτ
∂2

∂xα∂xα
S [λ]

βγ;η3(y; x),

2∑
τ=1

∮
C

εα3τdyτ
∂2

∂yα∂yξ
S [λ]

βγ;η3(y; x)

=
∮
C

εαξ3dy3
∂2

∂yα∂y3
S [λ]

βγ;η3(y; x) +
2∑

τ=1

∮
C

εξ3τdyτ
∂2

∂yα∂yα
S [λ]

βγ;η3(y; x),

(40)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

∮
eC

dxi
∂

∂xi

∂

∂xn
S [λ]

αj;ξ3(y; x) =
∮
eC

d
∂

∂xn
S [λ]

αj;ξ3(y; x) = 0,

3∑
i=1

∮
C

dyi
∂

∂yi

∂

∂yn
S [λ]

αj;ξ3(y; x) =
∮
C

d
∂

∂yn
S [λ]

αj;ξ3(y; x) = 0.

(41)

(40) can be verified by Stokes’ theorem in (21).
Now, we consider a single dislocation loop C with an extended Burgers vector b, which

bounds a curved surfaceA in material λ of the transversely isotropic MEE bimaterial. According
to Hirth and Lothe[15], we can express the self-energy w[λ]

S of the dislocation loop C as

w
[λ]
S = w

[λ]
FS +W

[λ]
IS , (42)

where

w
[λ]
FS =

1
2

5∑
Q=1

3∑
p=1

∫
A

dApbQσ
[λ]
pQ(x) , W

[λ]
IS =

1
2

5∑
Q=1

3∑
p=1

∫
A

dApbQS
[μ][λ]
pQ (x), (43)

in which σ[λ]
pQ(x) and S[μ][λ]

pQ (x) are the two parts of the extended stress induced by the dislocation
loop C, as given in (27); dAp is the pth component of the vector area element dA defined at
point x (x1, x2, x3) on the dislocation surface A. The above w[λ]

FS is the self-energy of the
dislocation loop C in a transversely isotropic MEE full space occupied by material λ, and W [λ]

IS

is the image self-energy from the image sources due to the bimaterial interface.
Following the derivation of (36), similarly, we can obtain from (43) that

w
[λ]
FS =

1
8π

5∑
I,J=1

bIbJ

∮
C

dxI

∮
C

dyJC
[λ]
I W [λ]

J (y; x)

− 1
8π

5∑
I,J=1

3∑
m,n,p,q=1

bIbJ

∮
C

dxm

∮
C

dynεpImεqJn
∂2

∂xp∂yq
C

[λ]
I S [λ]

pI;qJ (y; x), (44a)

and
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W
[λ]
IS = − 1

4π

5∑
I,J=1

3∑
k,p,q=1

bIbJ

∮
C

dxp

∮
C

dyqεIJkεpqkC
[λ]
I W [λ][λ]

Jq (y; x)

+
1
8π

5∑
I,J=1

bIbJ

∮
C

dxI

∮
C

dyJC
[λ]
I W [λ][λ]

J (y; x) − 1
8π

5∑
I,J=1

3∑
m,n,p,q=1

bIbJ

·
∮
C

dxm

∮
C

dynεpImεqJn
∂2

∂xp∂yq
C

[λ]
I S [λ][λ]

pI;qJ (y; x). (44b)

In summary, we have presented line-integral expressions for the extended displacements,
extended stresses, interaction energy, and self-energy of arbitrarily shaped 3D dislocation loops
in transversely isotropic MEE bimaterials, as shown in (22), (27), (36), (44a), and (44b). These
line-integral expressions are the main results of this paper.

4 Numerical examples and discussion

In this section, we utilize our dislocation solutions in Section 3 to investigate the multi-field
coupling effect and the interface/surface effect in transversely isotropic MEE materials. Before
presenting the numerical examples, we point out that our formulations have been verified to be
correct by comparing our numerical results with those in Han and Pan[18].

Example 1 The extended displacements and extended stresses of a cardioid dislocation
loop in transversely isotropic MEE bimaterials.

In the Cartesian coordinates, we consider a transversely isotropic bimaterial which is com-
posed of the MEE BaTiO3-CoFe2O4 (material 1, x3 > 0) and the piezoelectric BaTiO3 (material
2, x3 < 0), with the isotropic plane of both materials being parallel to the perfectly bonded
interface (i.e., x3=0). The MEE BaTiO3-CoFe2O4 composite is based on the 25% BaTiO3 and
75% CoFe2O4. The material coefficients used here are listed as follows[9]:

c11 = 245, c33 = 235, c44 = 47.6, c13 = 138, c66 = 53 GPa, e31 = −1.53, e33 = 4.28,

e15 = 0.05 C · m−2, q31 = 378, q33 = 476, q15 = 331.2 N · A−1·m−1, ε11 = 0.13,

ε33 = 3.24 × 10−9 F · m−1, μ11 = 3.57, μ33 = 1.21 × 10−4 H · m−1, d11 = −3.09,

d33 = 2 334.15× 10−12 s · m−1 for the MEE BaTiO3-CoFe2O4,

c11 = 166, c33 = 162, c44 = 43, c13 = 78,

c66 = 44.5 GPa, e31 = −4.4, e33 = 18.6, e15 = 11.6 C · m−2,

q31 = q33 = q15 = 0, ε11 = 11.2, ε33 = 12.6 × 10−9 F · m−1, μ11 = 0.05,

μ33 = 0.1 × 10−4 H · m−1, d11 = d33 = 0 for the piezoelectric BaTiO3.

We consider a cardioid dislocation loop C1 whose parametric equation is described by⎧⎪⎨⎪⎩
x1(t) = a(1 + cos t) cos t,
x2(t) = a(1 + cos t) sin t, 0 � t � 2π, a > 0,
x3 = h

(45)

with h being a real constant and a being the shape parameter of the cardioid (see Fig. 2). In
this example, the cardioid dislocation loop is assumed to be located on the plane x3 = h = 0.5a
in material 1 (i.e., MEE BaTiO3-CoFe2O4).

Shown in Figs. 3 and 4 are the electric potential φ, magnetic potential ψ, electric displace-
ment component D3, and magnetic induction component B3 on a vertical line (i.e., x1 = 0,
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x2 = 0.5a, −4a � x3 � 5a) due to the loop C1 with an extended Burgers vector (0, 0, 0, Δφ1,
0) or (0, 0, 0, 0, Δψ1). Three different cases are investigated, in which the loop C1 is located
in the perfectly-bonded MEE bimaterial as mentioned above, an MEE BaTiO3-CoFe2O4 half
space (x3 �0) with a free surface at x3 = 0 (see Appendix B), and MEE BaTiO3-CoFe2O4

full space. It can be observed from Figs. 3 and 4 that the curves are very sensitive to different
boundary conditions except for those in Figs. 3(d) and 4(d). This is mainly caused by the
fact that BaTiO3 (i.e., material 2) has relatively large dielectric and piezoelectric coefficients
while but extremely small piezomagnetic and magnetic-permeability coefficients. In addition,
Figs. 3(b), 3(c), 4(b), and (4c) show an obvious ME coupling effect in MEE materials.

Fig. 2 Schematic of cardioid dislocation loop C1 described by (45)

Fig. 3 Electric potential φ or magnetic potential ψ on vertical line (i.e., x1 = 0, x2 = 0.5a, −4a �
x3 � 5a) due to the cardioid loop C1 with extended Burgers vector (0, 0, 0, Δφ1, 0) or (0, 0,
0, 0, Δψ1): (a) φ ∼ (0, 0, 0, Δφ1, 0); (b) ψ ∼ (0, 0, 0, Δφ1, 0); (c) φ ∼ (0, 0, 0, 0, Δψ1); (d)
ψ ∼ (0, 0, 0, 0, Δψ1)
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Fig. 4 Electric displacement component D3 or magnetic induction component B3 on vertical line
(i.e., x1 = 0, x2 = 0.5a, −4a � x3 � 5a) due to cardioid loop C1 with extended Burgers
vector (0, 0, 0, Δφ1, 0) or (0, 0, 0, 0, Δψ1): (a) D3 ∼ (0, 0, 0, Δφ1, 0); (b) B3 ∼ (0, 0, 0,
Δφ1, 0); (c) D3 ∼ (0, 0, 0, 0, Δψ1); (d) B3 ∼ (0, 0, 0, 0, Δψ1)

Example 2 The interaction energy between two cardioid dislocation loops in transversely
isotropic MEE bimaterials

In this example, we investigate the influence of the bimaterial interface and the half-space
surface on the interaction energy between two cardioid dislocation loops C1 and C2 in MEE
materials. The models of the MEE bimaterial, half space (x3 �0) and full space are exactly
the same as those in Example 1. The first loop C1 with the extended Burgers vector (0, 0, 0,
Δφ1, 0) or (0, 0, 0, 0, Δψ1) is also described by (45) with h = 0.5a. The second loop C2 with
the extended Burgers vector (0, 0, 0, Δφ2, 0) or (0, 0, 0, 0, Δψ2) is described by the following
parametric equation:⎧⎪⎨⎪⎩

x1(t) = a(1 + cos t) cos t+ a,

x2(t) = a(1 + cos t) sin t+ a, 0 � t � 2π, a > 0,
x3 = X3

(46)

with X3 being independent of the parameter t. It is noted that (46) is just a simple translation
relative to (45).

The numerical results for the interaction energy between loops C1 and C2 are shown in
Fig. 5. Similarly to Figs. 3 and 4 in Example 1, the interaction energy in Fig. 5 is also sensitive
to different boundary conditions, and an obvious ME coupling effect is also observed.

Example 3 The image self-energy of a cardioid dislocation loop in transversely isotropic
MEE bimaterials
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Fig. 5 Influence of location of loop C2 (i.e., X3) on interaction energy wI between loop C1 described
by (45) with extended Burgers vector (0, 0, 0, Δφ1, 0) or (0, 0, 0, 0, Δψ1) and loop C2

described by (46) with extended Burgers vector (0, 0, 0, Δφ2, 0) or (0, 0, 0, 0, Δψ2): (a) wI ∼
(0, 0, 0, Δφ1, 0) and (0, 0, 0, Δφ2, 0); (b) wI ∼ (0, 0, 0, Δφ1, 0) and (0, 0, 0, 0, Δψ2); (c)
wI ∼ (0, 0, 0, 0, Δψ1) and (0, 0, 0, Δφ2, 0); (d) wI ∼ (0, 0, 0, 0, Δψ1) and (0, 0, 0, 0, Δψ2)

In this example, the model of the MEE bimaterial is also exactly the same as in Example 1.
An MEE BaTiO3-CoFe2O4 half space (x3 � 0) and a piezoelectric BaTiO3 half space (x3 � 0),
both with a free surface at x3 = 0, are also considered here.

We first investigate the influence of the distance between the interface/surface and the
cardioid dislocation loop C2 on its image self-energy. Here, the cardioid loop C2 is also described
by (46), with its extended Burgers vector being (0, 0, 0, Δφ2, 0) or (0, 0, 0, 0, Δψ2). The
numerical results are shown in Fig. 6. It can be observed from Fig. 6 that (i) for the loop C2

with an extended Burgers vector (0, 0, 0, Δφ2, 0), the perfect bimaterial interface imposes an
attractive force upon this loop if it is located within MEE BaTiO3-CoFe2O4 which exhibits
a relatively weaker piezoelectric effect, and imposes a repulsive force upon this loop if it is
located within BaTiO3 which exhibits a relatively stronger piezoelectric effect; (ii) for the loop
C2 with an extended Burgers vector (0, 0, 0, 0, Δψ2), the perfect bimaterial interface imposes
a repulsive force upon this loop if it is located within MEE BaTiO3-CoFe2O4 which exhibits a
relatively stronger piezomagnetic effect, and imposes an attractive force upon this loop if it is
located within BaTiO3 which exhibits a relatively weaker piezomagnetic effect; (iii) for the loop
C2 with an extended Burgers vector either (0, 0, 0, Δφ2, 0) or (0, 0, 0, 0,Δψ2), the free surface
always imposes a repulsive force upon this loop. In other words, if the interface or surface is
present, the dislocation loop with an electric-potential (or a magnetic-potential) discontinuity
always has the tendency to move towards the material with a relatively stronger piezoelectric
(or piezomagnetic) effect. This phenomenon in MEE materials is quite different from that for
dislocation loops in purely elastic materials[3].
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Fig. 6 Influence of location of loop C2 (i.e., X3) on image self-energy WIS of loop C2 described by
(46) with extended Burgers vector (0, 0, 0, Δφ2, 0) or (0, 0, 0, 0, Δψ2): (a) WIS ∼ (0, 0, 0,
Δφ2, 0); (b) WIS ∼ (0, 0, 0, 0, Δψ2) (“PE” is abbreviation for “piezoelectric”)

Then, we investigate the influence of the size of the cardioid dislocation loop C1 on its
image self-energy. Here, the cardioid loop C1 with an extended Burgers vector (0, 0, 0, Δφ1,
0) or (0, 0, 0, 0, Δψ1) is also described by (45) with h = 0.5a0 or −0.5a0 (a0 = const. > 0),
but we change the size of this cardioid loop by simply changing its shape parameter a. The
numerical results are shown in Fig. 7. It can be observed from Fig. 7 that (i) for the loop C1

with an extended Burgers vector (0, 0, 0, Δφ1, 0), the perfect bimaterial interface imposes an
expanding force upon this loop if it is located within MEE BaTiO3-CoFe2O4 which exhibits
a relatively weaker piezoelectric effect, and imposes a shrinking force upon this loop if it is
located within BaTiO3 which exhibits a relatively stronger piezoelectric effect; (ii) for the loop
C1 with an extended Burgers vector (0, 0, 0, 0, Δψ1), the perfect bimaterial interface imposes
a shrinking force upon this loop if it is located within MEE BaTiO3-CoFe2O4 which exhibits
a relatively stronger piezomagnetic effect, and imposes an expanding force upon this loop if it
is located within BaTiO3 which exhibits a relatively weaker piezomagnetic effect; (iii) for the
loop C1 with an extended Burgers vector either (0, 0, 0, Δφ1, 0) or (0, 0, 0, 0, Δψ1), the free
surface always imposes a shrinking force upon this loop.

Fig. 7 Influence of size of loop C1 on image self-energy of loop C1 described by (45) with extended
Burgers vector (0, 0, 0, Δφ1, 0) or (0, 0, 0, 0, Δψ1): (a) WIS ∼ (0, 0, 0, Δφ1, 0); (b) WIS ∼
(0, 0, 0, 0, Δψ1) (“PE” is abbreviation for “piezoelectric”)
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5 Conclusions

In this paper, we derive simple and elegant line-integral expressions for the extended displace-
ments, extended stresses, interaction energy, and self-energy of arbitrarily shaped 3D dislocation
loops with constant extended Burgers vector in transversely isotropic MEE bimaterials. These
expressions are very similar to their elastic isotropic full-space counterparts, such as Burgers’
formula for displacements[19], Peach-Koehler’s formula for stresses[20], and Blin’s formula for
the interaction energy[21]. Moreover, it is straightforward to reduce our line-integral expressions
for MEE materials to those for piezoelectric, piezomagnetic, or purely elastic materials.

Our line-integral expressions for transversely isotropic MEE bimaterials are also suitable for
a transversely isotropic MEE half space, provided that we slightly modify some coefficients of
the point-force Green’s function for bimaterials, as shown in Appendix B.

All possible degenerate cases of these expressions can be treated systematically via proper
limiting processes[3]. In numerical calculations, we can also deal with these degenerate cases by
means of a slight perturbation to material coefficients.

Our numerical examples show clearly the multi-field coupling and interface/surface effects
on the extended displacements, extended stresses, and interaction energy of dislocation loops
in the MEE materials. It is also observed from Example 3 that, for a dislocation loop with
an electric-potential (or a magnetic-potential) discontinuity, the bimaterial interface would im-
pose repulsive and shrinking forces to the dislocation loop embedded in the MEE material with
a relatively stronger piezoelectric (or piezomagnetic) effect, while it would impose attractive
and expanding forces to the dislocation loop embedded in the MEE material with a relatively
weaker piezoelectric (or piezomagnetic) effect; however, the half-space surface would always
impose repulsive and shrinking forces to the dislocation loop.
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Appendix A General solutions of coupled equations for transversely isotropic MEE
media

Using the extended Barnett and Lothe notation[22–23], in Cartesian coordinates (x1, x2, x3), the
governing equations and constitutive relations for transversely isotropic MEE media can be expressed
as

fJ (x) +

5X
K=1

3X
i,l=1

ciJKl
∂2

∂xl∂xi
uK(x) = 0, (A1a)

σiJ (x) =
5X

K=1

3X
l=1

ciJKl
∂

∂xl
uK(x), (A1b)

in which the extended body force, extended displacement, and extended stress are defined as

fI =

8><
>:
fi, I = i = 1, 2, 3,

− fe, I = 4,

− fm, I = 5,

uI =

8><
>:
ui, I = i = 1, 2, 3,

φ, I = 4,

ψ, I = 5,

σiJ =

8><
>:
σij , J = j = 1, 2, 3,

Di, J = 4,

Bi, J = 5,

(A2)

where fi, fe, and fm are the body force, electric charge, and electric current (or called magnetic charge),
respectively; ui, φ, and ψ are the elastic displacement, electric potential, and magnetic potential,
respectively; σij , Di, and Bi are the stress, electric displacement, and magnetic induction, respectively.
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Also in (A1a) and (A1b), the extended elastic coefficient tensor for transversely isotropic MEE
media can be written as

ciJKl =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

cijkl, J = j = 1, 2, 3, K = k = 1, 2, 3,

elij , J = j = 1, 2, 3, K = 4,

eikl, J = 4, K = k = 1, 2, 3,

qlij , J = j = 1, 2, 3, K = 5,

qikl, J = 5, K = k = 1, 2, 3,

− dil, J = 4, K = 5 or J = 5, K = 4,

− εil, J = 4, K = 4,

− μil, J = 5, K = 5,

(A3a)

where cijkl, εij , and μij are the elastic, dielectric, and magnetic permeability coefficients, respectively;
eijk, qijk, and dij are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively.
If the isotropic plane of the transversely isotropic MEE medium is parallel to the x1x2-plane, then the
above coefficients can be expressed explicitly as8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

cijkl = (c11 − 2c66)δijδkl + c66(δikδjl + δilδjk)

+ (c11 + c33 − 2c13 − 4c44)δi3δj3δk3δl3

+ (c13 − c11 + 2c66)(δi3δj3δkl + δk3δl3δij)

+ (c44 − c66)(δj3δk3δil + δi3δl3δjk + δj3δl3δik + δi3δk3δjl),

elij = e31δijδl3 + e15(δilδj3 + δi3δjl) + (e33 − e31 − 2e15)δi3δj3δl3,

qlij = q31δijδl3 + q15(δilδj3 + δi3δjl) + (q33 − q31 − 2q15)δi3δj3δl3,

εij = ε11δij + (ε33 − ε11)δi3δj3,

μij = μ11δij + (μ33 − μ11)δi3δj3,

dij = d11δij + (d33 − d11)δi3δj3,

(A3b)

where cmn, ein, and qin (m, n=1, 2, 3, 4, 5, 6) are the contracted elastic, piezoelectric, and piezomag-
netic coefficients; δij is the 3×3 Kronecker delta.

According to Hou et al.[11] and Chen et al.[12], the general solution of (A1a) and (A1b) can be
expressed compactly as8>>>>><

>>>>>:

u1(x) + iu2(x) =
“ ∂

∂x1
+ i

∂

∂x2

”“
iΨ5(x) +

4X
n=1

Ψn(x)
”
,

uj+2(x) =
∂

∂x3

4X
n=1

mnjΨn(x) =
∂

∂x3

4X
n=1

αnjγnΨn(x),

(A4a)

and 8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

σ11(x) + σ22(x) =
“ ∂2

∂x2
1

+
∂2

∂x2
2

” 4X
n=1

2
“
ωn1sn − c66

”
Ψn(x),

σ11(x) − σ22(x) + 2iσ12(x) = 2c66
“ ∂

∂x1
+ i

∂

∂x2

”2“
iΨ5(x) +

4X
n=1

Ψn(x)
”
,

σ1(j+2)(x) + iσ2(j+2)(x) =
∂

∂x3

“ ∂

∂x1
+ i

∂

∂x2

”“
iCj+2Ψ5(x) +

4X
n=1

ωnjγnΨn(x)
”
,

σ3(j+2)(x) = −
“ ∂2

∂x2
1

+
∂2

∂x2
2

” 4X
n=1

θnjΨn(x), σij(x) = σji(x),

(A4b)

where i =
√−1, ΨJ satisfies the quasi-harmonic equations as follows:“ ∂2

∂x2
1

+
∂2

∂x2
2

+ γ2
J
∂2

∂x2
3

”
ΨJ (x) = 0 (A5)
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with

γ5 ≡ 1/s5 =
p
c44/c66, γn ≡ 1/sn (n = 1, 2, 3, 4). (A6)

In (A4b), (A5), and (A6), γn (n=1,2,3,4) satisfies the following characteristic equation:

det
“
Πn

”
= 0 (n = 1, 2, 3, 4), (A7)

where

Πn =Π(γn) =

0
BB@

c44 − c11γ
2
n −(c44 + c13) −(e15 + e31) −(q15 + q31)

(c44 + c13)γ
2
n c33 − c44γ

2
n e33 − e15γ

2
n q33 − q15γ

2
n

−(e15 + e31)γ
2
n e15γ

2
n − e33 ε33 − ε11γ

2
n d33 − d11γ

2
n

−(q15 + q31)γ
2
n q15γ

2
n − q33 d33 − d11γ

2
n μ33 − μ11γ

2
n

1
CCA (n = 1, 2, 3, 4). (A8)

In other words, γn (n=1,2,3,4) are the four roots (with positive real part) of the following algebraic
equation:

det(Π(γ)) = n4(γ
2)4 − n3(γ

2)3 + n2(γ
2)2 − n1(γ

2) + n0 = 0, (A9)

where

n0 = − c44 det

0
@ −c33 e33 q33

e33 ε33 d33

q33 d33 μ33

1
A , n4 = −c11 det

0
@ −c44 e15 q15

e15 ε11 d11

q15 d11 μ11

1
A , (A10a)

n1 = det

0
BB@

−c11 −(c13 + c44) (e15 + e31) (q15 + q31)
−(c13 + c44) −c33 e33 q33
(e15 + e31) e33 ε33 d33

(q15 + q31) q33 d33 μ33

1
CCA − c44 det

0
@ −c44 e33 q33

e15 ε33 d33

q15 d33 μ33

1
A

− c44 det

0
@ −c33 e15 q33

e33 ε11 d33

q33 d11 μ33

1
A − c44 det

0
@ −c33 e33 q15

e33 ε33 d11

q33 d33 μ11

1
A ,

n3 = det

0
BB@

−c44 −(c13 + c44) (e15 + e31) (q15 + q31)
−(c13 + c44) −c44 e15 q15
(e15 + e31) e15 ε11 d11

(q15 + q31) q15 d11 μ11

1
CCA − c11 det

0
@ −c33 e33 q33

e15 ε11 d11

q15 d11 μ11

1
A

− c11 det

0
@ −c44 e15 q15

e33 ε33 d33

q15 d11 μ11

1
A − c11 det

0
@ −c44 e15 q15

e15 ε11 d11

q33 d33 μ33

1
A , (A10b)

n2 = det

0
BB@

−c11 0 (e15 + e31) (q15 + q31)
−(c13 + c44) −c44 e33 q33
(e15 + e31) e15 ε33 d33

(q15 + q31) q15 d33 μ33

1
CCA − c44 det

0
@ −c44 e33 q15

e15 ε33 d11

q15 d33 μ11

1
A

+ det

0
BB@

−c11 −(c13 + c44) 0 (q15 + q31)
−(c13 + c44) −c33 e15 q33
(e15 + e31) e33 ε11 d33

(q15 + q31) q33 d11 μ33

1
CCA − c44 det

0
@ −c44 e15 q33

e15 ε11 d33

q15 d11 μ33

1
A

+ det

0
BB@

−c11 −(c13 + c44) (e15 + e31) 0
−(c13 + c44) −c33 e33 q15
(e15 + e31) e33 ε33 d11

(q15 + q31) q33 d33 μ11

1
CCA

− c44 det

0
@ −c33 e15 q15

e33 ε11 d11

q33 d11 μ11

1
A . (A10c)
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Other coefficients in (A4a) and (A4b) are defined as8>><
>>:
mnj = −Λn;1(j+1)/Λn;11, αnj = mnjsn,

θnj = Cj+2 +
3X

k=1

Cjkmnk, ωnj = θnjsn (n = 1, 2, 3, 4),
(A11)

where Λn;pq (n, p, q = 1, 2, 3, 4) are the cofactors of the pq element of the matrix Πn defined by (A8);
Cij is the element of a symmetric matrix defined by

(Cij)3×3 =

0
@ c44 e15 q15

e15 −ε11 −d11

q15 −d11 −μ11

1
A , (A12a)

and CJ is defined by

CJ =

8><
>:
c44, J = 1, 2, 3,

e15, J = 4,

q15, J = 5.

(A12b)

Obviously, we have C1j = Cj1 = Cj+2.
Notice that mnj (n=1, 2, 3, 4) satisfy the following relation:

Πn( −1 mn1 mn2 mn3 )T = 04×1 (n = 1, 2, 3, 4), (A13)

in which “T” denotes the transpose of a matrix or a vector.
Moreover, we have the following relations:8>>>>><

>>>>>:

4X
n=1

snHn = 1,
4X

n=1

snHnmni = 0,
4X

n=1

snHnθnj = Cj+2,

4X
n=1

snHnmniθnj =

(
0, i �= j,

− c44, i = j,

4X
n=1

snHnθnjθn1 = 0,

(A14)

which can be verified by direct substitutions. In (A14), Hn (n = 1, 2, 3, 4) are given by (10).

Appendix B Dislocation loops in transversely isotropic MEE half space with free surface

For arbitrarily shaped 3D dislocation loops in a transversely isotropic MEE half space with a free
surface, the line-integral expressions given in (22), (27), (36), (44a), and (44b) are still applicable, pro-
vided that we make modifications to (11a) and (11b) according to the free-surface boundary condition,
and then set λ = μ=1 for the half space x3 �0 while λ = μ = 2 for the half space x3 �0. Here, we also
assume that the isotropic plane of the transversely isotropic material is parallel to the free surface of
the half space (i.e., the x1x2-plane).

The free-surface boundary condition means the vanishing of the extended stresses σ3J at x3 = 0,
which gives, corresponding to (11a) and (11b), that

p
[µ][µ]
55 = 1, (B1a)

and 0
BBB@

p
[µ][µ]
1n

p
[µ][µ]
2n

p
[µ][µ]
3n

p
[µ][µ]
4n

1
CCCA =

0
BBB@

ω
[µ]
11 ω

[µ]
21 ω

[µ]
31 ω

[µ]
41

θ
[µ]
11 θ

[µ]
21 θ

[µ]
31 θ

[µ]
41

θ
[µ]
12 θ

[µ]
22 θ

[µ]
32 θ

[µ]
42

θ
[µ]
13 θ

[µ]
23 θ

[µ]
33 θ

[µ]
43

1
CCCA

−1 0
BBB@

ω
[µ]
n1

−θ[µ]
n1

−θ[µ]
n2

−θ[µ]
n3

1
CCCA (n = 1, 2, 3, 4). (B1b)


