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In this paper, we solve the in-plane crack problem in piezoelectric semiconductors under a
transient thermal load. General boundary conditions and sample geometry are allowed in
the proposed formulation. The coupled governing partial differential equations (PDE) for
stresses, electric displacement field and current are satisfied in a local weak-form on small
fictitious subdomains. All field quantities are approximated by the moving least-squares
(MLS) scheme. After performing the spatial integrations, we obtain a system of ordinary
differential equations for the nodal unknowns. The influence of initial electron density
on the intensity factors and energy release rate is investigated.
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1. Introduction

Piezoelectric materials (PZ) have a wide range of engineering applications in smart structures and devices. Certain piezo-
electric materials are also temperature sensitive, i.e. an electric charge or voltage is generated when temperature variations
are exposed. This effect is called the pyroelectric effect. If a temperature load is considered in a piezoelectric solid it is needed
to take into account the coupling of thermo-electro-mechanical fields. The theory of thermo-piezoelectricity was for the first
time proposed by Mindlin [22]. The physical laws for thermo-piezoelectric materials were explored by Nowacki [23].
Dynamic thermoelasticity is relevant for many engineering problems since thermal stresses play an important role in the
integrity of structures. The uncoupled thermoelasticity is considered here, since there is no heat production due to the strain
rate, i.e. the thermoelastic dissipation. Thus, the temperature field is not influenced by mechanical deformation and the heat
conduction equation can be solved first to obtain the temperature distribution. However, the coupling of mechanical and
electric fields is still valid. Recently, Sladek et al. [39] analyzed non-conducting piezoelectric materials under a thermal load.

However, piezoelectric materials can be either dielectrics or semiconductors. Up to date dielectric materials are more
intensively investigated than semiconductors. The analyzed problem for non-conducting PZ is simpler than for semiconduc-
tors. In piezoelectric semiconductors the induced electric field produces also the electric current. The interaction between
mechanical fields and mobile charges in piezoelectric semiconductors is called the acoustoelectric effect [18,50]. An acoustic
wave traveling in a PZ semiconductor can be amplified by application of an initial or biasing direct current electric field [44].
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Nomenclature

Latin symbols
a crack-length
c specific heat
cijkl elasticity tensor
dij carrier diffusion tensor
eijk piezoelectric tensor
hij dielectric tensor
kij thermal conductivity
nj outward unit normal vector
pj pyroelectric material coefficients
pT vector of complete basis functions
q electric charge of electron
ti traction vector
ui elastic displacements
u�ik test function
w⁄ test function
wa weight function
Di electric displacements
Ei electric field
G energy release rate
Ji electric current
KI, KII stress intensity factors
KD electric displacement intensity factor
Kc strain intensity factor
KE electric vector intensity factor
M electron density
Na shape function associated with the node a

Greek symbols
bij linear thermal expansion
dij Kronecker delta
eij strain tensor
/ electric potential
kij stress-temperature modulus
lij electron mobility tensor
m⁄ test function
q mass density
rij stress tensor
s time
Cu boundary with prescribed displacements
Ct boundary with prescribed tractions
Cp boundary with prescribed electric potential
Cq boundary with prescribed normal component of the electric displacements
Ca boundary with prescribed electron density
Cb boundary with prescribed electric current flux
Ce boundary with prescribed temperature
Cf boundary with prescribed heat flux
XS local subdomain
@XS boundary of the local subdomain

Other symbols
f, i partial derivative of the function f
_f time derivative of the function f
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This phenomenon is utilized in many acoustoelectric devices [15,4]. In literature one can find also more sophisticated models
of deformable piezoelectric semiconductors [52,53]. Lorenzi and Tiersten [52] derived governing equations for finitely
deformable, polarized and magnetizable heat conducting and electrically semiconducting continuum. The model consists
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of five suitably defined interpenetrating continua. The relative displacement of the bound electronic continuum with respect
to the lattice continuum produces electrical polarization, and electrical conduction results from the motion of the charged
free electronic and hole fluids. However, this model seems to be complicated for treatment of wave-interaction problems.
Later, Maugin and Dahar [53] derived linearized governing equations for piezoelectric semiconducting crystals on the base
of fully nonlinear theory of the continuum. While more sophisticated models require more advanced computational meth-
ods, there is even no available modeling result for simpler models like the Hutson and White linear model [18].

Piezoelectric ceramics are brittle and susceptible to fracture during service. To improve the performance and to predict
the reliable service lifetime of ceramic piezoelectric components, it is necessary to analyze theoretically the damage and
fracture processes taking place in piezoelectric materials with consideration of the coupling effect of mechanics and electrics.
Deeg [5] and Pak [25] addressed the plane and anti-plane fracture problems of an infinite piezoelectric body and obtained
the closed form solutions of stress field and electric displacement field near the crack tip. There are only few papers devoted
to crack problems in piezoelectric semiconductor materials. These papers concerned only the anti-plane crack problem in
unbounded domain with a semi-infinite crack [43] or a finite crack [17] under stationary conditions. The Fourier transform
technique was applied to reduce the problem to a pair of dual integral equations. In the present paper, we aim at analyzing
the in-plane crack problem in bounded domains under a transient thermal load.

The solution of the boundary value problems for conducting piezoelectric solids requires advanced numerical methods
due to the high mathematical complexity. Transient regime brings additional complications. Thus, efficient computational
methods to solve the boundary or the initial-boundary value problems for piezoelectric solids are required. Notably, the
finite element method (FEM) [13,12,7,19] and boundary element method (BEM) [26,20,6,14,9,10,30,34] were applied to solve
general piezoelectric problems. Fracture and damage behaviours of a cracked piezoelectric solid under coupled thermal,
mechanical and electrical loads were studied by Yu and Qin [45,46]. A review on fracture of thermo-piezoelectric materials
was given by Qin [28]. Boundary value problems for coupled fields are complex. Analytical methods can be only applied to
simple problems of thermo-piezoelectricity [41,32,33]. However, the analysis and design process of smart engineering struc-
tures with integrated piezoelectric actuators or sensors require powerful calculation tools. Up to now the FEM provides an
effective technique [42,11,31] in a homogeneous medium. Rao and Sunar [29] investigated the piezothermoelectric problem
of intelligent structures with distributed piezoelectric sensors and actuators and concluded that the inclusion of the thermal
effects may help improve the performance characteristics of the system.

In recent years, meshless formulations are becoming popular due to their high adaptivity and low costs to prepare input
and output data for numerical analyses. A variety of meshless methods has been proposed so far and some of them are also
applied to PZ problems [24,21,36–39]. They can be derived either from a weak-form formulation on the global domain or on
a set of local subdomains. In this paper, both the heat conduction equation and coupled electro-mechanical governing equa-
tions are satisfied in a weak form on small fictitious subdomains. The meshless Petrov–Galerkin (MLPG) method [35] is then
applied to the subdomains. Nodal points are introduced and spread on the analyzed domain and each node is surrounded by
a small circle for simplicity, but without loss of generality. The spatial variations of the displacement, electric potential and
electron density are approximated by the moving least-squares (MLS) scheme [51]. After performing the spatial integrations,
a system of ordinary differential equations for unknown nodal values is obtained. The essential boundary conditions on the
global boundary are satisfied by the collocation. Then, the system of the ordinary differential equations of the second order
resulting from the equations of motion is solved by the Houbolt finite-difference scheme [16] and backward difference
method.
2. Local integral equations for piezoelectric semiconductor

Consider a homogeneous n-type piezoelectric semiconductor with electron density M0 in the unloaded state with vanish-
ing initial electric field E0. Supposing the frequency of external loadings to be close to the characteristic frequency of elastic
waves, one can assume quasi-static approximation for electromagnetic fields. Then, the effect of Faraday’s induction is
neglected even if there is a magnetic field induced by the electric current according to the Ampere’s law. Eventually, the gov-
erning equations within the linear theory are given by the balance of momentum, Gauss‘s law and conservation of charge
[18]
rij;jðx; sÞ ¼ q€uiðx; sÞ; Di;iðx; sÞ ¼ qMðx; sÞ; q _Mðx; sÞ þ Ji;i ¼ 0; ð1Þ
where €ui, rij, Di, and q are the acceleration of elastic displacements, stress tensor, electric displacement field, and electric
charge of electron, respectively. The electron density and electric current are denoted by M and Ji, respectively. Symbol q
is used for the mass density. A comma followed by an index denotes partial differentiation with respect to the coordinate
associated with the index.In uncoupled thermo-elastic theory the temperature distribution is independent on mechanical
and electrical fields. The governing Eq. (1) have to be supplemented by the heat conduction equation
½kijðxÞh;jðx; sÞ�;i � qc _hðx; sÞ ¼ 0; ð2Þ
where kij and c are the thermal conductivity tensor and specific heat, respectively.
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For most materials the inverse thermoelastic and pyroelectric effects are very weak, i.e. the heat generation by mechan-
ical and electrical fields can be neglected. Then, the constitutive equations [18,50] need to be supplied only with thermal
terms [39]
rijðx; sÞ ¼ cijklðxÞeklðx; sÞ � ekijðxÞEkðx; sÞ � kijðxÞhðx; sÞ;
Diðx; sÞ ¼ eijkðxÞejkðx; sÞ þ hijðxÞEjðx; sÞ þ piðxÞhðx; sÞ;
Jiðx; sÞ ¼ qM0ðxÞlijðxÞEjðx; sÞ � qdijðxÞM;jðx; sÞ; ð3Þ
where cijkl(x), eijk(x), hij(x), lij(x), dij(x) and pj(x) are the elastic, piezoelectric, dielectric, electron mobility, carrier diffusion
and pyroelectric material coefficients, respectively. Generally, these coefficients can be dependent on Cartesian coordinates
in functionally graded materials. Recall that the Joule heating (heat generated by a current passing through a resistive mate-
rial), the Seebeck effect (when a temperature gradient generates an electromotive force in a conductor) as well as the Thom-
son effect (production of heat rate due to temperature gradient when an electric current passes through a conductor) are
omitted in the considered model. The stress–temperature modulus kijðxÞ can be expressed through the stiffness coefficients
and the coefficients of linear thermal expansion bkl
kij ¼ cijklbkl;
since the thermal expansion strains are given as eT
kl ¼ bklh.

For an orthotropic material, the thermal expansion cannot induce shear, hence the coefficient tensor bkl takes the form
bkl ¼ b11dk1dl1 þ b22dk2dl2 þ b33dk3dl3:
The strain tensor eij and the electric field vector Ej are related to the displacements ui and the electric potential / by
eij ¼
1
2
ðui;j þ uj;iÞ; Ej ¼ �/;j: ð4Þ
The governing Eqs. (1)–(4) are for general three-dimensional deformation/motion. In the case of certain crystal symme-
tries, one can formulate also the plane-deformation problems [27]. For instance, in the crystals of hexagonal symmetry with
x3 being the 6-order symmetry axis and assuming u2 = 0 as well as the independence on x2, i.e. ( � ),2 = 0, we have e22 = e23 =
e12 = E2 = J2 = 0, b22 = 0. Thus, the problem is reduced to the two-dimensional (x1,x3)-plane as we will discuss in this paper
with the coordinate vector x being x = (x1,x3).

Using the Voigt notation, the constitutive Eq. (3) are reduced to the following form
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� �
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� �
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The following essential and natural boundary conditions are assumed for the mechanical fields
uiðx; sÞ ¼ ~uiðx; sÞ; on Cu;

tiðx; sÞ � rijnj ¼ ~tiðx; sÞ; on Ct ;C ¼ Cu [ Ct:
For the electrical fields, we assume
/ðx; sÞ ¼ ~/ðx; sÞ; on Cp;

Qðx; sÞ � Diðx; sÞniðxÞ ¼ eQ ðx; sÞ;on Cq; C ¼ Cp [ Cq;
for the electric current fields
Mðx; sÞ ¼ ~Mðx; sÞ; on Ca;

Sðx; sÞ � Jiðx; sÞniðxÞ ¼ eSðx; sÞ; on Cb;C ¼ Ca [ Cb;
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and for the thermal fields
hðx; sÞ ¼ ~hðx; sÞ on Ce;

fðx; sÞ � kijh;jðx; sÞniðxÞ ¼ ~fðx; sÞ on Cf ;C ¼ Ce [ Cf ;
where Cu is the part of the global boundary C with prescribed displacements, while on Ct, Cp, Cq, Ca, Cb, Ce and Cf the trac-
tion vector, the electric potential, the normal component of the electric displacement vector, the electron density, the electric
current flux, the temperature and the heat flux are prescribed, respectively. Recall that eQ ðx; sÞ can be considered approxi-
mately as the surface density of the free charge, provided that the permittivity of the solid is much greater than that of
the surrounding medium (vacuum).

The initial conditions for the mechanical displacements are assumed as
uiðx; sÞjs¼0 ¼ uiðx;0Þ and _uiðx; sÞjs¼0 ¼ _uiðx; 0Þ in X:
As shown by Atluri et al. [2] the local weak form of the governing equations (1) can be written with
Z
Xs

rij;jðx; sÞ � q€uiðx; sÞ
� �

u�ikðxÞdX ¼ 0; ð8Þ
where u�ikðxÞ is a test function and Xs �X.
Applying the Gauss divergence theorem to the first integral, we obtain
Z

@Xs

rijðx; sÞnjðxÞu�ikðxÞdC�
Z

Xs

rijðx; sÞu�ik;jðxÞdX�
Z

Xs

q€uiðx; sÞu�ikðxÞdX ¼ 0; ð9Þ
where the boundary of the local subdomain @ Xs consists of three parts @ Xs = Ls [ Cst [ Csu [1]. Here, Ls is the local boundary
that is totally inside the global domain, Cst is the part of the local boundary which coincides with the global traction bound-
ary, i.e., Cst = @ Xs \ Ct, and similarly Csu is the part of the local boundary that coincides with the global displacement bound-
ary, i.e., Csu = @ Xs \ Cu. Similar definitions are valid also for other fields and related integration parts.

By choosing the characteristic function as the test function u�ikðxÞ in each subdomain
u�ikðxÞ ¼
dik at x 2 Xs

0 at x R Xs

�
;

the local weak-form (9) is converted into the following local boundary-domain integral equations
Z
Ls

tiðx; sÞdC�
Z

Xs

q€uiðx; sÞdX ¼ �
Z

Cst

~tiðx; sÞdC: ð10Þ
Eq. (10) is recognized as the overall force equilibrium conditions on the subdomain Xs. Note that the local integral Eq. (10)
is valid for both the homogeneous and nonhomogeneous solids. Nonhomogeneous material properties are included in Eq.
(10) through the elastic, piezoelectric, and thermo-elastic coefficients involved in the traction components
tiðx; sÞ ¼ ½cijklðxÞuk;lðx; sÞ þ ekijðxÞ/;kðx; sÞ � kijðxÞhðx; sÞ�njðxÞ:
Similarly, the local weak-form of the second governing equation in (1) can be written as
Z
Xs

Dj;jðx; sÞ � qMðx; sÞ
� �

v�ðxÞdX ¼ 0; ð11Þ
where v⁄(x) is a test function.
Applying the Gauss divergence theorem to the local weak-form (11) and choosing the characteristic function as the test

function v⁄(x), we obtain
Z
Ls

Qðx; sÞdC�
Z

Xs

qMðx; sÞdX ¼ �
Z

Csq

eQ ðx; sÞdC; ð12Þ
where
Qðx; sÞ ¼ Djðx; sÞnjðxÞ ¼ ½ejkluk;lðx; sÞ � hjk/;kðx; sÞ þ pjhðx; sÞ�nj:
The local integral equation corresponding to the last governing equation in (1) has the form
Z
Ls

Sðx; sÞdCþ
Z

Xs

q _Mðx; sÞdX ¼ �
Z

Csb

eSðx; sÞdC; ð13Þ
where the electric current flux is given by
Sðx; sÞ ¼ Jjðx; sÞnjðxÞ ¼ ½�qM0lkj/;kðx; sÞ � qdjkM;kðx; sÞ�nj:
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The local weak-form of the heat conduction Eq. (2) can be written as
Z
Xs

kijðxÞh;jðx; sÞ
� �

;i � qc _hðx; sÞ
n o

w�ðxÞ dX ¼ 0; ð14Þ
where w⁄(x) is a test function.
Applying the Gauss divergence theorem to the local weak-form and considering the characteristic function for the test

function w⁄(x), we also obtain
Z
Ls

fðx; sÞdC�
Z

Xs

qc _hðx; sÞdX ¼ �
Z

Csf

~fðx; sÞdC; ð15Þ
where the heat flux is defined as
fðx; sÞ � kijh;jðx; sÞniðxÞ:
3. Numerical solution in terms of the MLPG method

In the MLPG method the test and the trial functions are not necessarily from the same functional spaces. For internal
nodes, the test function is chosen as a unit step function with its support on the local subdomain. The trial functions, on
the other hand, are chosen to be the MLS approximations by using a number of nodes spreading over the domain of
influence. According to the MLS method (see e.g. Belytschko et al. [3]), the approximation of the displacement field can
be given as
uhðxÞ ¼
Xs

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð16Þ
where pT(x) = {p1(x), p2(x), ...ps(x)} is a vector of complete basis functions of order s and a(x) = {a1(x), a2(x), ...as(x)} is a vector
of unknown parameters that depend on x. For example, in 2-D problems
pTðxÞ ¼ f1; x1; x3g for s ¼ 3
and
pTðxÞ ¼ f1; x1; x3; x2
1; x1x3; x2

3g for s ¼ 6
are linear and quadratic basis functions, respectively. The basis functions are not necessary to be polynomials. It is conve-
nient to introduce r�1/2 – singularity for secondary fields at the crack-tip vicinity for modeling fracture problems [8]. Then,
the basis functions can be considered in the following form
pTðxÞ ¼ f1; x1; x3;
ffiffiffi
r
p

cosðh=2Þ;
ffiffiffi
r
p

sinðh=2Þ;
ffiffiffi
r
p

sinðh=2Þ sin h;
ffiffiffi
r
p

cosðh=2Þ sin hg for s ¼ 7;
where r and h are polar coordinates with the crack-tip as the origin. These enriched basic functions represent all occurring
terms in asymptotic expansion of displacements at the crack tip vicinity. Then, density of node distribution in such a case can
be lower than in the polynomial basis functions at the same accuracy of results.

Following the approximation (16), the approximated functions for the mechanical displacements, the electric potential,
electron density and the temperature can be written as Atluri [1]
uhðx; sÞ ¼¼
Xn

a¼1

NaðxÞûaðsÞ;

/hðx; sÞ ¼
Xn

a¼1

NaðxÞ/̂aðsÞ;

Mhðx; sÞ ¼
Xn

a¼1

NaðxÞ bMaðsÞ;

hhðx; sÞ ¼
Xn

a¼1

NaðxÞĥaðsÞ; ð17Þ
where the nodal values ûaðsÞ ¼ ðûa
1ðsÞ; ûa

3ðsÞÞ
T , /̂aðsÞ, bMaðsÞ, and ĥaðsÞ are fictitious parameters for the displacements, electric

potential, electron density and the temperature, respectively, and Na(x) is the shape function associated with the node a. The
number of nodes n used for the approximation is determined by the weight function wa(x). A 4th-order spline-type weight
function is applied in the present work
waðxÞ ¼ 1� 6 da

ra

� 	2
þ 8 da

ra

� 	3
� 3 da

ra

� 	4
; 0 6 da

6 ra

0; da P ra

8<: ; ð18Þ
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where da = kx - xak and ra is the size of the support domain. It is seen that the C1 – continuity is ensured over the entire
domain, and therefore the continuity conditions of the tractions, the electric charge, the electric current flux and the heat
flux are satisfied. In the MLS approximation the rates of the convergence of the solution may depend upon the nodal distance
as well as the size of the supporting domain [47–49]). It should be noted that a smaller size of the subdomains may induce
larger oscillations in the nodal shape functions [1]. A necessary condition for a regular MLS approximation is that at least m
weight functions are non-zero (i.e. n P s) for each sample point x e X. This condition determines the size of the supporting
domain.

Then, the traction vector ti(x, s) at a boundary point x e @ Xs is approximated in terms of the same nodal values ûaðsÞ as
thðx; sÞ ¼ NðxÞCðxÞ
Xn

a¼1

BaðxÞûaðsÞ þNðxÞLðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ �NðxÞkðxÞ
Xn

a¼1

NaðxÞĥaðsÞ; ð19Þ
where the matrices C(x), L(x) are defined in Eq. (5), the matrix NðxÞ is related to the normal vector n(x) on @ Xs by
NðxÞ ¼
n1 0 n3

0 n3 n1

� �
;

and finally, the matrices Ba and Pa are represented by the gradients of the shape functions as
BaðxÞ ¼
Na
;1

0
Na
;3

0
Na
;3

Na
;1

264
375; PaðxÞ ¼

Na
;1

Na
;3

" #
:

Similarly the normal component of the electric displacement vector Q(x, s) can be approximated by
Q hðx; sÞ ¼ N1ðxÞGðxÞ
Xn

a¼1

BaðxÞûaðsÞ � N1ðxÞHðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ þ N1ðxÞPðxÞ
Xn

a¼1

NaðxÞĥaðsÞ; ð20Þ
where the matrices G(x), H(x), P(x) are defined in Eq. (6) and
N1ðxÞ ¼ n1 n3½ �:
Eventually, the electric current flux S(x, s) is approximated by
Shðx; sÞ ¼ �N1ðxÞqM0AðxÞ
Xn

a¼1

PaðxÞ/̂aðsÞ � N1ðxÞqFðxÞ
Xn

a¼1

PaðxÞ bMaðsÞ; ð21Þ
with the matrices A(x), F(x) being defined in Eq. (7).
The heat flux f(x, s) is approximated by
fhðx; sÞ ¼ kijni

Xn

a¼1

Na
;jðxÞĥaðsÞ ¼ N1ðxÞHðxÞ

Xn

a¼1

PaðxÞĥaðsÞ; ð22Þ� �

where HðxÞ ¼ k11 k13

k13 k33
.

Satisfying the essential boundary conditions and making use of the approximation formulae (17), we obtain the discret-
ized form of these boundary conditions as
Xn

a¼1

NaðxÞûaðsÞ ¼ ~uðx; sÞ for x 2 Cu;

Xn

a¼1

NaðxÞ/̂aðsÞ ¼ ~/ðx; sÞ for x 2 Cp;

Xn

a¼1

NaðxÞ bMaðsÞ ¼ ~Mðx; sÞ for x 2 Ca;

Xn

a¼1

NaðxÞĥaðsÞ ¼ ~hðx; sÞ for x 2 Ce: ð23Þ
Furthermore, in view of the MLS-approximations (19)–(22) for the unknown quantities in the local boundary-domain
integral Eqs. (10), (12), (13), and (15), we obtain their discretized forms as
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Xn

a¼1

Z
Ls

NðxÞCðxÞBaðxÞdC

 �
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Z

Xs

qðxÞNadX

 �
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� �
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Z
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/̂aðsÞ

�
Xn
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Z
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NðxÞkðxÞNaðxÞdC

 �

ĥaðsÞ ¼ �
Z

Cst

~tðx; sÞdC; ð24Þ
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Z
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which are considered on the sub-domains adjacent to the interior nodes as well as to the boundary nodes on Cst, Csq, Csb and
Csf.

Collecting the discretized local boundary-domain integral equations, together with the discretized boundary conditions
for the displacements, electric potential, electron density, and the temperature, results in a complete system of ordinary
differential equations, which can be rearranged in such a way that all known quantities are on the r.h.s of an equation. Thus,
in the matrix form the system becomes
A€FðsÞ þ B _FðsÞ þ CFðsÞ ¼ YðsÞ; ð28Þ
where the vector F contains all the unknowns to be solved, as listed in (23). We point out again that the system matrix has a
block structure and the thermal unknowns can be solved separately from the mechanical and electric unknowns.

There are many time integration procedures for the solution of this system of ordinary differential equations. In the pres-
ent work, the Houbolt method is applied. In the Houbolt finite- difference scheme [16], the ‘‘acceleration’’ is expressed as
€FsþDs ¼
2FsþDs � 5Fs þ 4Fs�Ds � Fs�2Ds

Ds2 ; ð29Þ
where Ds is the time step. The backward difference method is applied for the approximation of ‘‘velocities’’
_FsþDs ¼
FsþDs � Fs

Ds
: ð30Þ
Substituting Eqs. (29) and (30) into Eq. (28), we get the following system of algebraic equations for the unknowns Fs+Ds
2
Ds2 Aþ 1

Ds
Bþ C

� �
FsþDs ¼

1
Ds2 ð5Aþ BDsÞFs þ A

1
Ds2 f�4Fs�Ds þ Fs�2Dsg þ Y: ð31Þ
The value of the time step has to be appropriately selected with respect to material parameters (wave velocities) and time
dependence of the boundary conditions.
Fig. 1. A central crack in a finite strip with prescribed temperatures on the outer boundary and crack surfaces.
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4. Numerical examples

As numerical examples, we analyze a straight central crack in a finite strip under a thermal load. The geometry of the strip
is given in Fig. 1 with the following values: a = 0.5 m, a/w = 0.4 and h/w = 1.2. On the outer boundary of the strip
~ti ¼ 0; eQ ¼ 0 and ~t2 ¼ h0 ¼ 1 deg, while on the crack surface ~ti ¼ 0;~t1 ¼ 0; eS ¼ 0 and electrically impermeable boundary con-
ditions are assumed.

Due to the symmetry of the problem with respect to both Cartesian coordinates, only a quarter of the strip is modeled. We
use 930 (31 � 30) nodes equidistantly distributed for the MLS approximation of the physical quantities. The local subdo-
mains are considered to be circular with a radius of rloc = 0.033 m. The material properties correspond to aluminium nitride
(AlN)
c11 ¼ 403 	 109Nm�2; c12 ¼ 143 	 109Nm�2; c13 ¼ 104 	 109Nm�2; c33 ¼ 382 	 109Nm�2;

c44 ¼ 120 	 109Nm�2; e15 ¼ �0:39Cm�2; e31 ¼ �0:66Cm�2; e33 ¼ 1:57Cm�2;

h0 ¼ 8:854 	 10�12CðVmÞ�1
; h11 ¼ h33 ¼ 9:14h0; l11 ¼ l33 ¼ 3:0 	 10�2m2ðVsÞ�1

;

d11 ¼ d33 ¼ 7:0 	 10�4m2s�1; q ¼ 1:602 	 10�19C; q ¼ 3255kg=m3
:

k11 ¼ k33 ¼ 150W=km; b11 ¼ 0:45 	 10�51=K; b33 ¼ b22 ¼ 0:45 	 10�51=K;

p1 ¼ 0; p3 ¼ 0:0C=km2
; c ¼ 740Ws kg�1K�1:
Stationary boundary conditions are considered in the first example and absence of the surface free electric charge eQ ¼ 0 and
the electric current flux eS ¼ 0 are assumed on the outer boundary. Variations of displacements, electric potentials and elec-
tron densities along the crack surface (x3 = 0) for various initial electron densities M0 are presented in Figs. 2–4, respectively.
Fig. 2. Variations of the crack-opening-displacement on the crack surface with normalized coordinate x1/a.

Fig. 3. Variations of the electric potential on the crack surface with normalized coordinate x1/a.



Fig. 4. Variation of the electron density M on the crack surface normalized coordinate x1/a.
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The presented numerical results correspond to a pure thermal load. One can observe while the initial electron density has
only a small influence on the crack displacement, it strongly affects the induced electric potential. The largest value of the
induced potential is for a non-conducting PZ material, and with increasing value of M0, the induced electric potential
decreases. Furthermore, the distribution of the electron density on the crack surface is also strongly dependent on M0 value.
A higher value of M0 results in a higher density of electrons M.

For cracks in homogeneous and linear piezoelectric solids, the asymptotic behaviour of the field quantities was given in
Garcia-Sanchez and Saez [9]. In the crack tip vicinity, the displacements and electric potential show the classical

ffiffiffi
r
p

asymp-
totic behaviour. Hence, correspondingly, the stresses and electrical displacement exhibit 1=

ffiffiffi
r
p

behaviour, where r is the
radial polar coordinate with origin at the crack tip. The generalized intensity factors can be computed from the asymptotic
expressions of the displacements and electric potential [10]
K ¼
KII

KI

KD

264
375 ¼ ffiffiffiffiffi

p
2r

r
ReðYÞ�1
h i u1

u3

/

264
375; ð32Þ
where the matrix Y is determined by the material properties as shown in Garcia-Sanchez et al. [10] and
KI ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

r33ðr;0Þ;

KII ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

r13ðr; 0Þ;

KD ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

D3ðr;0Þ;

Kc ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

e33ðr; 0Þ;

KE ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

E3ðr;0Þ; ð33Þ
are the stress intensity factors (SIF) KI and KII, the electrical displacement intensity factor (EDIF) KD, the strain intensity factor
Kc and the electric vector intensity factor KE, respectively. Recall that the set of intensity factors {KI, KII, KD, Kc, KE} is reducible,
since having known {Kc, KE} one can get {KI, KD} according to the constitutive laws (3).

For the central crack under stationary boundary conditions, non-zero values of thermal stresses occur ahead of the crack
tip. Therefore, there is a finite value of the stress intensity factor. In the non-conducting PZ the stress intensity factor of pure
mode I for the considered boundary conditions is Kstat

I ¼ 4:55 	 105 Pa 	m1=2. This value is computed from Eq. (32) by extrap-
olating the near-field quantities (u1, u3, /) around the crack tip. Recently, Sladek et al. [38] showed that the electrical poten-
tial / caused by a remote pure mechanical load is identical to u3 caused by a remote pure electric displacement loading as a
consequence of the extended Betti’s reciprocal theorem in stationary piezoelasticity (Pan [26]). Thus, it is interesting to
remark that, although a pure mechanical load would induce a finite value of electrical potential / and KE on the electrically
impermeable crack surface, the EDIF KD is still zero for this case.

We now suppose that the crack length is extended by d, then the total energy release rate (ERR) can be expressed as
G ¼ lim
r!0

1
2d

Z d

0
½ri3ðxÞDuiðd� xÞ þ D3ðxÞD/ðd� xÞ�dx; ð34Þ
where Dui and D/ are the displacement and potential discontinuities on the crack faces.



Fig. 5. Influence of the electric current on the energy release rate for a mixed load.

Fig. 6. Time evolution of the SIF for the cracked strip under a pure thermal load of Heaviside time variation on the outer boundary.

Fig. 7. Time evolution of the electric displacement intensity factor for the cracked strip under a pure thermal load of Heaviside time variation on the outer
boundary.
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Since the ERR can be expressed by the intensity factors (e.g., Tian and Rajapakse [40])
G ¼ 1
2

KTYK; ð35Þ
the energy release rate in our case can be expressed as
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G ¼ KIKc � KDKE

2
: ð36Þ
In the second example, the influence of the stationary electric current J0 ¼ 
eSðx3 ¼ 
h=2Þ on the energy release rate is
investigated. Results are illustrated in Fig. 5. Two different initial electron densities are considered in the numerical analyses.
One can observe that the ERR is less sensitive on the electric current for PZ semiconductor as for non-conducting PZ solid,
since the initial electron density M0 = 106 [m�3] can be considered as a value corresponding to a non-conducting solid. We
also remark that a positive value denotes released energy, whilst a negative value represents absorbed energy.

In the final example the influence of the non-stationary boundary conditions on the physical quantities is investigated.
The strip is subjected to a thermal shock with Heaviside time variation on the entire outer boundary while the crack surfaces
are kept at zero temperature. The time variation of the normalized stress intensity factors for a non-conducting and semi-
conductor PZ solid are presented in Fig. 6. One can observe that the initial electron density has no influence on the SIF.

In non-stationary case a pure thermal load can induce finite value of the electric displacement intensity factor (EDIF). The
response of the electric fields is immediate, while that of the elastic ones is taken as finite because of the finite velocity of
elastic waves. The EDIF induced at a pure thermal load is presented in Fig. 7. For non-conducting PZ the character of the EDIF
curve is similar to the SIF, while the EDIF evolution is exponentially growing for the conducting material. This is due to the
strong influence of M0 on KD as observed for electric potential at stationary boundary conditions.
5. Conclusions

The MLPG method has been successfully applied for 2-D crack problems in piezoelectric semiconductors subjected to a
thermal load. Stationary and transient thermal conditions are considered in the heat conduction equation. Our numerical
results reveal that initial density of electrons (carriers of electric charge in n-type PZ semiconductors) has only moderate
influence on the crack displacement. However, the induced electric potential is strongly affected by the initial electron den-
sity. The largest value of the induced potential is achieved for a non-conducting PZ material.

We have also observed that the energy release rate is less sensitive on the electric current for PZ semiconductor as for
almost non-conducting PZ solid. Furthermore, the initial electron density has no influence on the stress intensity factor
(SIF) for a crack under a transient thermal load. In non-stationary case a pure thermal load also yields a finite value of EDIF.
For non-conducting PZ, the character of the EDIF curve is similar to the SIF, while the EDIF evolution is exponentially growing
for the conducting material.

The present method is promising for numerical analyses of multi-field problems like piezoelectric, electro-magnetic or
thermoelastic problems. All approximated fields have C1-continuity as compared to other common domain discretization
methods where continuity is guaranteed only for the primary fields.
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