
Vol. 126 (2014) ACTA PHYSICA POLONICA A No. 2

Proceedings of the 12th International Conference on Quasicrystals (ICQ12)

Electric-Elastic Field Induced by a Straight Dislocation

in One-Dimensional Quasicrystals
L.-Z. Yanga,b, Y. Gaoa,∗, E. Panc and N. Waksmanskic

aCollege of Science, China Agricultural University, Beijing 100083, China
bCollege of Engineering, China Agricultural University, Beijing 100083, China

cDepartment of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA

By using the generalized Stroh formalism, the electric-elastic �eld induced by a straight dislocation parallel
to a periodic axis of a one-dimensional quasicrystal is obtained. The derivation is concise and the solution is in an
exact closed form. As an illustration, the electric-elastic �elds around a straight dislocation in a one-dimensional
hexagonal quasicrystal are studied. Besides the interesting numerical results presented, the generalized Stroh
formalism can be applied to more complicated dislocation problems in quasicrystals.
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1. Introduction
Since the discovery of quasicrystals (QCs) around

1982 [1], structural, electronic, magnetic, thermal and
mechanical properties of the QC matter have been inves-
tigated intensively. In QCs, there is not only a phonon
�eld which is related to the translations of atoms (stan-
dard elasticity), but also a phason �eld which is related
to rearrangements of atomic con�gurations. The elastic-
ity of QCs is described by the generalized elastic theory
established by Ding et al. [2] that has been proved to be a
powerful and important tool to study the mechanical be-
havior of QCs. Expressions of physical properties of QCs,
such as elasticity, thermal expansion, and piezoelectricity
tensors have been obtained in [3] and [4].
Studies of dislocations in QCs have attracted exten-

sive attention because of their importance not only in QC
structural studies but also in understanding many of their
physical and mechanical properties. So far, analytical
expressions for dislocation-induced elastic �elds in many
QCs have been derived by methods including Green's
function method [5], Stroh eigenvalue method [6], Es-
helby method [7], and displacement function method [8].
Up to now, however, analytical solutions of dislocations
in piezoelectric QCs have not been reported in literature.
This paper utilizes the generalized Stroh formalism to

obtain the electric-elastic �eld induced by a straight dis-
location which is parallel to a periodic axis of a one-
-dimensional (1D) hexagonal QC. As an illustration, nu-
merical results of the induced electric-elastic �eld are pre-
sented and analyzed.

2. Basic equations
A 1D QC is de�ned as a three-dimensional body where

its atom arrangement is quasi-periodic in the x3-axis and
periodic in the x1�x2 plane referred to a coordinate sys-
tem (x1, x2, x3). The polarized direction in the QC is
assumed along the x3-axis.
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Within the theory of elasticity of 1D QCs [2], displace-
ments are denoted as ui (i = 1, 2, 3) in the phonon �eld
and w3 in the phason �eld, both of which depend on
the coordinate in real space. The linear electric-elastic
coupled constitutive equations [4] of the 1D QCs can be
written as

σij = Cijklεkl + dijkωk − e(1)ijkEk,
H3j = dkljεkl +Kjkωk − e(2)3jkEk,

Dj = e
(1)
kljεkl + e

(2)
k3jωk + κjkEk, (2.1)

where

εij = (ui,j + uj,i) /2, ωj = w3,j , Ej = −ϕ,j , (2.2)

j, k, l = 1, 2, 3, repeated indices imply summation and
a comma stands for di�erentiation. Cijkl and Kjk de-
note the elastic constants in phonon and phason �elds,
respectively, dijk � the phonon�phason coupling elastic

constants, e
(1)
ijk and e

(2)
3jk � the piezoelectric constants in

phonon and phason �elds, respectively, κjk � the per-
mittivity constants, and ϕ � the electric potential. In
the following formulation, lowercase subscripts will al-
ways range from 1 to 3, and uppercase subscripts from 1
to 5.

In the absence of body sources, the equilibrium equa-
tions in the piezoelectric QC materials are

σij,j = 0, H3j,j = 0, Dj,j = 0, (2.3)

where σij , H3j and Dj denote, respectively, the phonon
stresses, phason stresses, and electric displacements.

Following the same approach as in magneto-electro-
-elastic media [9], the basic Eqs. (2.1) to (2.3) can be
combined by using the generalized �eld quantities. First,
we introduce the generalized displacement vector as

u = {u1, u2, u3, w3, ϕ}T , (2.4)

where the superscript �T� stands for the matrix trans-
pose. Then, we de�ned the 5×3 generalized stress tensor
σIj (I = 1, 2, 3, 4, 5) as

σIj = σij (I = 1, 2, 3), σ4j = H3j , σ5j = Dj . (2.5)

Finally, the generalized material properties are de�ned
as:

(467)
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Eijkl = Cijkl, Eij4l = dijl, Eij5l = e
(1)
ijl ;

E4jkl = dklj , E4j4l = Kjl, E4j5l = e
(2)
3jl;

E5jkl = e
(1)
klj , E5j4l = e

(2)
l3j , E5j5l = −κjl. (2.6)

With these generalized quantities, Eqs. (2.1) and (2.3)
can be rewritten uniformly as

σij = Eijkluk,l, (2.7)

σij,j = 0. (2.8)

3. Generalized Stroh formalism for 1D QCs
It is well known that the Stroh formalism [10�12] is

powerful and convenient in dealing with plane deforma-
tions of anisotropic elastic materials. In this section, the
Stroh formalism for elastic/piezoelectric solids will be ex-
tended to 1D QC solids.
We assume that the dislocation is in�nite long along

x2 direction so that the generalized stresses and displace-
ments are independent of the x2-axis. Since all �eld vari-
ables are only dependent on x1 and x3, Eq. (2.8) can be
rewritten as

σI1,1 + σI3,3 = 0. (3.1)

From Eq. (3.1) it can be seen that there exists a gen-
eralized stress function vector φ representing the stress
components σI1 and σI3 as

σI1 = −φI,3, σI3 = φI,1. (3.2)

By virtue of the constitutive relation Eq. (2.7), Eq. (3.2)
can be transformed into

Qu,1 +Ru,3 = −φ,3, RTu,1 + Tu,3 = φ,1. (3.3)

where Q, R, and T are 5× 5 real matrices de�ned by the
material constants as

QIK = EI1K1, RIK = EI1K3, TIK = EI3K3. (3.4)

The general solutions for u and φ can be assumed as

u = af(z), φ = bf(z), (3.5)

where z = x1 + px3, f is an arbitrary complex function
of z, a and b are unknown vectors and p is the eigenvalue,
to be given below. Inserting Eq. (3.5) into Eq. (3.3), the
relation between b and a is found to be

b =
(
RT + pR

)
a = −p−1(Q+ pR)a. (3.6)

Then, using Eq. (3.6), Eq. (3.1) can be recast into a
10× 10 linear eigensystem

Nξ = pξ, ξ = {a, b}T , (3.7)

where

N =

[
−T−1RT T−1

−Q+RT−1RT −RT−1

]
. (3.8)

A nontrivial solution for ξ exists if the determinate of the
characteristic matrix in Eq. (3.7) is zero. In other words,

det(N − pI) = 0, (3.9)

where I is a 5×5 unit matrix. The ten eigenvalues p and
the corresponding eigenvectors ξ in Eq. (3.7) are deter-
mined by Eq. (3.9). The fact that the generalized strain
energy should always be positive requires that the eigen-
values p should be complex [10]. Since the coe�cients
of Eq. (3.7) are real, there are �ve pairs of p, complex
conjugate to each other. If pI denotes the eigenvalues,
aI and bI are the eigenvectors of Eq. (3.7), we can let

pI+5 = p̄I , Im(pI) > 0, aI+5 = āI , bI+5 = b̄I ,

(3.10)

where �Im� represents the imaginary part and the overbar
denotes the conjugate of the quantity. Assuming that all
eigenvalues are distinct the general solution for the dis-
placement and stress function vectors in Eq. (3.5) are
derived as(

u

φ

)
=

[
A Ā

B B̄

](
f

f̄

)
, (3.11)

where

A = [a1, a2, a3, a4, a5] , B = [b1, b2, b3, b4, b5] ,

f(z) = [f (z1) , f (z2) , f (z3) , f (z4) , f (z5)]
T
. (3.12)

The eigenvector matrices A and B satisfy the following
normalization relation:

BTA+ATB = I. (3.13)

Up to this point, the dislocation problem in 1D QCs
reduces to the determination of the complex vector func-
tion f under certain given boundary conditions. This is
done below for the given dislocation problem. However,
before presenting our numerical example, we introduce
the following three important matrices:

S = i(2ABT − I), H = 2iAAT, L = −2iBBT.

(3.14)

We remark that, by following the same approach in elas-
tic and piezoelectric media [12, 13], these three matrices
are all real.
4. Generalized solution for a straight dislocation

in a 1D QC

The Burgers vector in 1D QC is de�ned as b̂‖ ⊕ b̂⊥ =

{b‖1, b
‖
2, b
‖
3, b
⊥
3 }. To analyze the electric-elastic �eld in the

1D QC, we extend the Burgers vector de�nition as

b̂ =
{
b
‖
1, b
‖
2, b
‖
3, b
⊥
3 , b

ϕ
}
. (4.1)

Considering a dislocation along x2-axis with the Burgers

vector b̂ in a 1D QC with the core at the origin far from
the boundary of an in�nite space, the boundary condi-
tions of this problem can be written as∮

Γ

dφ = 0 for any closed curve Γ ,∮
Γ

du = b̂ for any closed Γ enclosing the origin, (4.2)

σIj → 0 at in�nity. (4.3)

Extending the solutions for dislocation problems in
elastic and piezoelectric materials [12, 13] to 1D QC, the
closed-form solutions for the displacement vector, stress
function vector can then be found as

u = − 1
2π

[(ln r)S + π (S(θ)S −H(θ)L)] b̂,

φ = 1
2π

[
(ln r)L+ π

(
L(θ)L− ST(θ)S

)]
b̂, (4.4)

in which r = x21 + x23, θ is the angle so that x1 = r cos θ
and x3 = r sin θ. The matrices S, H, L in Eq. (3.14) can
now be expressed as functions of θ, as S(θ), H(θ), L(θ)
which are de�ned as:

S(θ) = 2
π

Re
[
A 〈ln (cos θ + p∗ sin θ)〉BT

]
,
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H(θ) = 2
π

Re
[
A 〈ln (cos θ + p∗ sin θ)〉AT

]
,

L(θ) = 2
π

Re
[
B 〈ln (cos θ + p∗ sin θ)〉BT

]
. (4.5)

In Eq. (4.5) p∗ is de�ned as:

p∗ = (p cos θ − sin θ) / (p sin θ + cos θ) . (4.6)

We introduce �ve direction vectors as

mT = {cos θ, 0, sin θ, 0, 0} ,
nT = {− sin θ, 0, cos θ, 0, 0} , iT3 = {0, 1, 0, 0, 0} ,
iT4 = {0, 0, 0, 1, 0} , iT5 = {0, 0, 0, 0, 1} . (4.7)

Then, the stresses and electric displacement in the polar
coordinate system due to the concentrated dislocation
can be expressed as

σrr=
1
2r
mT

(
N3(θ)S −NT

1 (θ)L
)
b̂, σθθ=

1
2πr

nTLb,

σrθ=
1

2πr
mTLb̂, σr2= 1

2r
iT3
(
N3(θ)S −NT

1 (θ)L
)
b̂,

σθ2= 1
2πr

iT3 Lb̂, H3r=
1
2r
iT4
(
N3(θ)S −NT

1 (θ)L
)
b̂,

H3θ=
1

2πr
iT4 Lb̂, Dr=

1
2r
iT5
(
N3(θ)S −NT

1 (θ)L
)
b̂,

Dθ=
1

2πr
iT5 Lb̂, (4.8)

where

N1(θ) = −T−1(θ)RT(θ),

N3(θ) = −R(θ)T−1(θ)RT(θ)−Q(θ), (4.9)

Q(θ) = Q cos2 θ +
(
R+RT

)
sin θ cos θ + T sin2 θ,

R(θ) = R cos2 θ + (T −Q) sin θ cos θ −RT sin2 θ,

T (θ)=T cos2 θ−
(
R+RT

)
sin θ cos θ+Q sin2 θ. (4.10)

The expressions for the remaining stress components σ22,
H32, and D2 can be found from the following three con-
ditions:

ε22 = 0, ω2 = 0, E2 = 0. (4.11)

5. Electric-elastic �eld for a straight dislocation

in a 1D hexagonal QC

For 1D hexagonal QCs, the linear constitutive equa-
tions take the following form [3]:

σ11 = C11ε11 + C12ε22 + C13ε33 +R1w33 − e(1)31 E3,

σ22 = C12ε11 + C11ε22 + C13ε33 +R1w33 − e(1)31 E3,

σ33 = C13ε11 + C13ε22 + C33ε33 +R2w33 − e(1)33 E3,

σ23 = σ32 = 2C44ε23 +R3w32 − e(1)15 E2,

σ31 = σ13 = 2C44ε13 +R3w31 − e(1)15 E1,

σ12 = σ21 = 2C66ε12,

H33 = 2R1ε12 +R2ε33 +K1w33 − e(2)33 E3,

H32 = 2R3ε23 +K2w32 − e(2)15 E2,

H31 = 2R3ε13 +K2w31 − e(2)15 E1,

D3 = 2e
(1)
31 ε12 + e

(1)
33 ε33 + e

(2)
33 w33 + κ33E3,

D2 = 2e
(1)
15 ε23 + e

(2)
15 w32 + κ11E2,

D1 = 2e
(1)
15 ε13 + e

(2)
15 w31 + κ11E1. (5.1)

According to Eqs. (2.1), (2.6), (3.4) and (5.1), the ma-
trices Q, R, and T in the Stroh formalism can be deter-
mined as

Q =


C11 0 0 0 0

0 C66 0 0 0

0 0 C44 R3 e
(1)
15

0 0 R3 K2 e
(2)
15

0 0 e
(1)
15 e

(2)
15 −κ11

 ,

R =


0 0 C13 R1 e

(1)
31

0 0 0 0 0

C44 0 0 0 0

R3 0 0 0 0

e
(1)
15 0 0 0 0

 ,

T =


C44 0 0 0 0

0 C44 0 0 0

0 0 C33 R2 e
(1)
33

0 0 R2 K1 e
(2)
33

0 0 e
(1)
33 e

(2)
33 −κ33

 . (5.2)

According to the material constants in QCs [14] and
piezoelectric crystals [15], the material constants in
Eq. (5.2) for a 1D hexagonal QC are assumed as C11 =
23.433 × 1010 N/m2, C12 = 5.741 × 1010 N/m2, C13 =
6.663 × 1010 N/m2, C33 = 23.222 × 1010 N/m2, C44 =
7.019 × 1010 N/m2, C66 = (C11 − C12)/2 = 8.846 ×
1010 N/m2, R1 = R2 = R3 = 8.846 × 108 N/m2,

K1 = 12.2 × 1010 N/m2, K2 = 2.4 × 1010 N/m2, e
(1)
15 =

11.6 C/m2, e
(1)
31 = −4.4 C/m2, e

(1)
33 = 18.6 C/m2, e

(2)
15 =

1.16 C/m2, e
(2)
33 = 1.86 C/m2, κ11 = 5×10−9 C2/(N m2),

k33 = 10× 10−9 C2/(N m2).
The electric-elastic �eld induced by a straight disloca-

tion along x2 axis of a 1D hexagonal QC is investigated.

The Burgers vector is assumed as b̂′ = {a, 0, 0, 0, 0}. The
contours of the generalized displacements around the dis-
location in the x1�x3 plane are shown in Fig. 1. It is
clearly observed that these contours are either symmet-
ric or antisymmetric about the coordinate axes, which is
consistent with the hexagonal feature of the 1D QCs.
Figure 2 presents the contours of the generalized

stresses around the dislocation in x1�x3 plane. It is obvi-
ous that these stresses decrease with increasing distance
from the origin of the dislocation. Compared to Fig. 1
for the generalized displacements, we also observe that
while the stresses are also either symmetric or antisym-
metric about the coordinate axes, the contour curves in
the stresses are more complicated than those in the dis-
placements.
From Figs. 1 and 2, it can be seen that the disloca-

tion in phonon �eld has great in�uences on the displace-
ments and stresses in the phason �eld and electric �eld.
The phonon, phason, and electric �elds are all coupled
together. We also mention that many other cases of dis-
locations in 1D QC can be calculated by simply chang-
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Fig. 1. The generalized displcements induced by a

straight dislocation with Burgers vector b̂′: (a) u1/a,
(b) w3/a, (c) ϕ/a (unit: 108 N/C).

Fig. 2. The generalized stresses induced by a straight

dislocation with Burgers vector b̂′ (unit: 1/m):

(a) σrr/(aC11), (b) H3r/(aR1), (c) Dr/(ae
(1)
15 ).

ing the components of the Burgers vector b̂ in Eqs. (4.4)
and (4.8).

6. Conclusions

Based on the generalized Stroh formalism, the electric-
-elastic �eld induced by the straight dislocation parallel
to a periodic axis of a 1D QC is given in this paper.
The derivation is simple and straightforward so that the
generalized displacements and stresses can be easily cal-
culated. As a numerical example, the electric-elastic �eld
in a 1D hexagonal QC due to a straight dislocation is in-
vestigated. The results show clearly the coupling e�ects
among the phonon, phason and electric �elds. We also
mention that the Stroh formalism can also be extended to
the more complicated dislocation problems in other QCs.
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