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1. Introduction

Since the discovery of quasicrystals (QCs) around
1982 [1], structural, electronic, magnetic, thermal and
mechanical properties of the QC matter have been inves-
tigated intensively. In QCs, there is not only a phonon
field which is related to the translations of atoms (stan-
dard elasticity), but also a phason field which is related
to rearrangements of atomic configurations. The elastic-
ity of QCs is described by the generalized elastic theory
established by Ding et al. [2] that has been proved to be a
powerful and important tool to study the mechanical be-
havior of QCs. Expressions of physical properties of QCs,
such as elasticity, thermal expansion, and piezoelectricity
tensors have been obtained in [3] and [4].

Studies of dislocations in QCs have attracted exten-
sive attention because of their importance not only in QC
structural studies but also in understanding many of their
physical and mechanical properties. So far, analytical
expressions for dislocation-induced elastic fields in many
QCs have been derived by methods including Green’s
function method [5], Stroh eigenvalue method [6], Es-
helby method [7], and displacement function method [8].
Up to now, however, analytical solutions of dislocations
in piezoelectric QCs have not been reported in literature.

This paper utilizes the generalized Stroh formalism to
obtain the electric-elastic field induced by a straight dis-
location which is parallel to a periodic axis of a one-
-dimensional (1D) hexagonal QC. As an illustration, nu-
merical results of the induced electric-elastic field are pre-
sented and analyzed.

2. Basic equations
A 1D QC is defined as a three-dimensional body where

its atom arrangement is quasi-periodic in the x3-axis and
periodic in the x1—z5 plane referred to a coordinate sys-
tem (x1,x9,x3). The polarized direction in the QC is
assumed along the xs-axis.
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Within the theory of elasticity of 1D QCs [2], displace-
ments are denoted as u; (i = 1,2,3) in the phonon field
and ws in the phason field, both of which depend on
the coordinate in real space. The linear electric-elastic
coupled constitutive equations [4] of the 1D QCs can be
written as

(1)
0ij = Cijrierl + dijrwi — €, E,
_ (2)
ng = dkljfk’l + Kjkwk — 63jkEk’

1 2
D; = 6,(,913‘%1 + eég?jwk + KBy, (2.1)
where
€ij = (Ui’j + Uj’i) /27 Wj = W3, j, Ej ==, (2.2)

4.k, = 1,23, repeated indices imply summation and
a comma stands for differentiation. Cjji and Kjj de-
note the elastic constants in phonon and phason fields,
respectively, d;j; — the phonon—phason coupling elastic
constants, eg;ll and eéz)k — the piezoelectric constants in
phonon and phason ﬁ]elds, respectively, x;; — the per-
mittivity constants, and ¢ — the electric potential. In
the following formulation, lowercase subscripts will al-
ways range from 1 to 3, and uppercase subscripts from 1
to 5.

In the absence of body sources, the equilibrium equa-
tions in the piezoelectric QC materials are
Jij,j - 0, H3j,j S 0, Dj,j == 0, (23)
where 0,5, Hz; and D; denote, respectively, the phonon
stresses, phason stresses, and electric displacements.

Following the same approach as in magneto-electro-
-elastic media [9], the basic Eqgs. (2.1) to (2.3) can be
combined by using the generalized field quantities. First,
we introduce the generalized displacement vector as

u = {uy, uz, uz, w3, o}, (24)
where the superscript “I” stands for the matrix trans-
pose. Then, we defined the 5 x 3 generalized stress tensor
Orj (I = 1,2,3,475) as

015 = 045 (I == 1,2,3)7 045 = ng, 055 = Dj. (25)
Finally, the generalized material properties are defined
as:

(467)
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().
Eijr = Cijr,  Bija = diji, Eijs = e(ijﬁ’
5
Eyjm = dé@l{y Eyja = f((j)u Eyjsi = ey
1 2
Esjii = €5, Esju = €35, Esjsi = —kji. (2.6)

With these generalized quantities, Eqgs. (2.1) and (2.3)

can be rewritten uniformly as

(2.7)
Uij,j = 0 (28)
3. Generalized Stroh formalism for 1D QCs

It is well known that the Stroh formalism [10-12] is
powerful and convenient in dealing with plane deforma-
tions of anisotropic elastic materials. In this section, the
Stroh formalism for elastic/piezoelectric solids will be ex-
tended to 1D QC solids.

We assume that the dislocation is infinite long along
x9 direction so that the generalized stresses and displace-
ments are independent of the xo-axis. Since all field vari-
ables are only dependent on z; and z3, Eq. (2.8) can be
rewritten as

0ij = Fijriug,1,

ona+orss=0. (3.1)
From Eq. (3.1) it can be seen that there exists a gen-
eralized stress function vector ¢ representing the stress
components o1 and o3 as

o1 =—9¢13, 013=09¢r,1. (3.2)
By virtue of the constitutive relation Eq. (2.7), Eq. (3.2)
can be transformed into

Q’U,,l + R’uyg = —¢,3, RT’LLJ + T’LL’3 = (25’1. (33)
where @, R, and T are 5 x 5 real matrices defined by the
material constants as

Qrx = Enk1, Rixk = Enks, Trx = Epks. (3.4)

The general solutions for v and ¢ can be assumed as
where z = x1 + pr3, f is an arbitrary complex function
of z, a and b are unknown vectors and p is the eigenvalue,
to be given below. Inserting Eq. (3.5) into Eq. (3.3), the
relation between b and a is found to be

b= (R" +pR)a=—p ' (Q+pR)a. (3.6)
Then, using Eq. (3.6), Eq. (3.1) can be recast into a
10 x 10 linear eigensystem

N¢=pe, €={a,b}", (3.7)
where
No | TR r (3.8)

~ | —Q+ RT'R™ —RT! |

A nontrivial solution for ¢ exists if the determinate of the
characteristic matrix in Eq. (3.7) is zero. In other words,
det(N —pI) =0, (3.9
where [ is a 5 X 5 unit matrix. The ten eigenvalues p and
the corresponding eigenvectors £ in Eq. (3.7) are deter-
mined by Eq. (3.9). The fact that the generalized strain
energy should always be positive requires that the eigen-
values p should be complex [10]. Since the coefficients
of Eq. (3.7) are real, there are five pairs of p, complex
conjugate to each other. If p; denotes the eigenvalues,
ar and by are the eigenvectors of Eq. (3.7), we can let

brs = br,

(3.10)
where “Im” represents the imaginary part and the overbar
denotes the conjugate of the quantity. Assuming that all
eigenvalues are distinct the general solution for the dis-
placement and stress function vectors in Eq. (3.5) are
derived as

pr+s = pr, Im(pr) >0, arys = ar,

u A Al
(¢> A <f> .11
where
A =la1,a9,a3,a4,a5], B =[b1,bs,bs,byg,bs],
F2)=1f (1), f(22), f(23). f(2a), F (25)]" . (3.12)

The eigenvector matrices A and B satisfy the following
normalization relation:
BTA+ATB=1. (3.13)
Up to this point, the dislocation problem in 1D QCs
reduces to the determination of the complex vector func-
tion f under certain given boundary conditions. This is
done below for the given dislocation problem. However,
before presenting our numerical example, we introduce
the following three important matrices:
S=i(24BT - 1), H=2iAA", L =-2iBB".
(3.14)
We remark that, by following the same approach in elas-
tic and piezoelectric media [12, 13|, these three matrices
are all real.
4. Generalized solution for a straight dislocation
in a 1D QC
The Burgers vector in 1D QC is defined as bl @ bt =
{b!, b!, b;!, by }. To analyze the electric-elastic field in the
1D QC, we extend the Burgers vector definition as

b= {bﬂ,b!,b!,b§,b¢}. (4.1)
Considering a dislocation along xs-axis with the Burgers
vector b in a 1D QC with the core at the origin far from

the boundary of an infinite space, the boundary condi-
tions of this problem can be written as

7{ d¢ = 0 for any closed curve I,
r

j{ du = b for any closed I" enclosing the origin, (4.2)
r

o — 0 at infinity. (43)

Extending the solutions for dislocation problems in
elastic and piezoelectric materials [12, 13] to 1D QC, the
closed-form solutions for the displacement vector, stress
function vector can then be found as

w=—2[(nr)S+r(S(0)S — H(O)L) b,

¢= [(Inr)L+7 (LO)L - ST(0)S)] b, (4.4)
in which r = 22 + 23, 0 is the angle so that x; = rcos6
and x3 = rsinf. The matrices S, H, L in Eq. (3.14) can
now be expressed as functions of 6, as S(0), H(0), L(9)
which are defined as:

S(0) = 2Re [A(In (cos 0 + p,sind)) BT],

_7\'
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H(0) = 2Re [A {In (cosf + p, sin 0)) A”] |

( ) = 2Re [B (In(cosf + p, sinf)) BT] . (4.5)
q- (4.5) p, is defined as:
px = (pcos —sinf) / (psin @ + cos ) . (4.6)
We introduce five direction vectors as
T = {cos6,0,sin6,0,0},
T ={—sin6,0,c0s0,0,0}, i3 ={0,1,0,0,0},
iy ={0,0,0,1,0}, i ={0,0,0,0,1}. (4.7)

Then, the stresses and electric displacement in the polar
coordinate system due to the concentrated dislocation
can be expressed as

orr=2m" (N3(0)S — NF(0)L) b, oge=51-n"Lb,

27r
ora=2i3 (N3(0)S — N (0)L) b,

Hy,=3-i] (N3(6)S — N{(6)L) b,

T, 7
Orpg=— QMm Lb,

_ 1 .Tr}
O’QQ—W/L'?’LI),

Hsp=5-i1Lb, D,=%il (N3(0)S — N{()L)b,
Dy=,1iT Lb, (4.8)
where

Ni(9) = —T1(0) R (6),

N3(0) = —R(OT'(O)R* () — Q(0), (4.9)
Q(0) = Qcos®> 0 + (R+ R") sinf cos 6 + T'sin 6,
R(#) = Rcos?0 + (T — Q) sinfcos§ — R* sin” 6,
T(0)=T cos® 0— (R+R") sin 6 cos +Q sin” 0.  (4.10)

The expressions for the remaining stress components o2,
Hjo, and D4y can be found from the following three con-
ditions:

€922 = 0, Wwo = 0, E2 =0. (4.11)

5. Electric-elastic field for a straight dislocation

in a 1D hexagonal QC

For 1D hexagonal QCs, the linear constitutive equa-
tions take the following form [3]:

o11 = Crie11 + Cr2e22 + Cr3e33 + Riwss — egll)E3’
022 = Cr2e11 + Cr1€22 + Ci3e33 + Riwss — ei(”ll)E3’
o33 = C13e11 + Cl3eas + C33e33 + Rowss — e%)E:S’
093 = 032 = 2C 44623 + Rawsa — e%)E?’

031 = 013 = 2Cu€13 + R3wsy — 6515)E17

012 = 091 = 2Cg6€12,

Hs3 = 2R1e19 + Roezz + Kiwsz — eg?E%

H3zo = 2R3e903 + Kowss — €§25)E2’

H3y = 2R3e13 + Kowsy — 6§25)E1v

D5 = 26531)512 + e§3)533 + e( )

Dy = 2655)523 + 655)

w33 + K333,
w3z + K11E2,

D, = 26§5)513 + 655)11131 + k11 Ey. (5.1)

According to Egs. (2.1), (2.6), (3.4) and (5.1), the ma-
trices @, R, and T in the Stroh formalism can be deter-
mined as

(i 0 0 0 0
0 Ces 0 0 0
Q: 0 0 044 Rg 6515) s
0 0 Ry Ky €2
| 00 6515) 655) —K11
[0 0 Cis Ry €y
000 0 O
R=|Cy0 0 0 0|,
Ry 0 0 0 0
D0 0 0 0
[(Cuy 0 0 0 0
0 Cuu 0 0 O
T = 0 0 033 R2 61%) (52)
0 0 Ry Ky e
0 0 ei%) eg23) —K33

According to the material constants in QCs [14] and
piezoelectric crystals [15], the material constants in
Eq. (5.2) for a 1D hexagonal QC are assumed as C;; =
23.433 x 10'° N/m?, Cj5 = 5.741 x 10*° N/m?, Cy3 =
6.663 x 1010 N/m?, C33 = 23.222 x 10 N/m?, Cyy =
7.019 x 1010 N/Hl2, 066 = (011 — 012)/2 = 8.846
101 N/m2, Ry = Ry = R3; = 8846 x 108 N/m?
Ky =122 x 101° N/m?, K, = 2.4 x 101 N/m?, e{}) =
11.6 C/m?, 631) = —4.4 C/m?, 63? =18.6 C/m?, 615) =
1.16 C/m2, el = 1.86 C/m?, k13 = 5x10~° C2/(N m?),
]ﬂ33 =10 x 10~ 9 02/(N m2).

The electric-elastic field induced by a straight disloca-
tion along x5 axis of a 1D hexagonal QC is investigated.
The Burgers vector is assumed as V= {a,0,0,0,0}. The
contours of the generalized displacements around the dis-
location in the z;—x3 plane are shown in Fig. 1. It is
clearly observed that these contours are either symmet-
ric or antisymmetric about the coordinate axes, which is
consistent with the hexagonal feature of the 1D QCs.

Figure 2 presents the contours of the generalized
stresses around the dislocation in x1—x3 plane. It is obvi-
ous that these stresses decrease with increasing distance
from the origin of the dislocation. Compared to Fig. 1
for the generalized displacements, we also observe that
while the stresses are also either symmetric or antisym-
metric about the coordinate axes, the contour curves in
the stresses are more complicated than those in the dis-
placements.

From Figs. 1 and 2, it can be seen that the disloca-
tion in phonon field has great influences on the displace-
ments and stresses in the phason field and electric field.
The phonon, phason, and electric fields are all coupled
together. We also mention that many other cases of dis-
locations in 1D QC can be calculated by simply chang-
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6. Conclusions

Based on the generalized Stroh formalism, the electric-
-elastic field induced by the straight dislocation parallel
to a periodic axis of a 1D QC is given in this paper.
The derivation is simple and straightforward so that the
generalized displacements and stresses can be easily cal-
culated. As a numerical example, the electric-elastic field
in a 1D hexagonal QC due to a straight dislocation is in-
vestigated. The results show clearly the coupling effects
among the phonon, phason and electric fields. We also
mention that the Stroh formalism can also be extended to
the more complicated dislocation problems in other QCs.
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Fig. 1. The generalized displcements induced by a

straight dislocation with Burgers vector 0': (a) u1/a,
(b) ws/a, (c) p/a (unit: 10% N/C).

Fig. 2. The generalized stresses induced by a straight
dislocation with Burgers vector b (unit: 1/m):

(a) ovr/(aC11), (b) Hsp/(aRy), (c) Dr/(aely).

ing the components of the Burgers vector b in Egs. (4.4)
and (4.8).
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