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1. Introduction

Green’s functions or fundamental solutions are very useful in constructing analytical solutions and further play important
roles in boundary integral equation method and boundary element method. Research on fundamental solutions of conven-
tional elastic material problems and structures has been attracting much attention [1-6]. With the rapid development of
modern technology and owing to the coupling effect between the mechanical and electric properties, piezoelectric materials
are now used in many important technologic fields. The extensive study of mechanical-electric behaviors for this kind of
materials and structures under the combined mechanical-electric loads has been carried out. For two-dimensional (2D) pie-
zoelectric media, Pan [7] derived the Green’s functions in the full, half, and bimaterial planes. For 3D piezoelectric media,
Ding et al. [8], Dunn and Wienecke [9], and Chen et al. [10] obtained the Green’s functions in the full, half, and bimaterial
spaces of transverse isotropy. While Pan and Tonon [11] derived the Green'’s functions in a general anisotropic piezoelectric
infinite space, Gao and Wang [12] obtained the Green’s functions in a bimaterial piezoelectric plane with a permeable inter-
facial crack. Ding et al. [13] summarized the Green’s function solutions for both 2D and 3D transversely isotropic piezoelec-
tric materials. For fracture mechanic of piezoelectric media, Zhao et al. [14] derived the extended displacement discontinuity
fundamental solutions for 3D piezoelectric media, where the extended displacement discontinuities include the elastic dis-
placement discontinuities and the electric potential discontinuity.
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In engineering applications, a solid could be subjected to an arbitrary load over an arbitrarily shaped area. Thus, solutions
for uniformly distributed loads over a given area in the shape of circle, rectangle or triangle are particularly appealing since
these solutions can be applied as the fundamental solutions to the general load case. For crack analysis, Crouch [1] presented
a 2D fundamental solution for conventional elastic materials, where the uniform displacement discontinuities are applied on
a line element. Fan et al. [15] and Zhao et al. [16] obtained the extended Crouch fundamental solutions of linear elements in
piezoelectric media and studied the finite and infinite, linear and nonlinear fracture problems in piezoelectric media. Zhao
et al. [17,18] also studied the fundamental solutions of rectangular element in the corresponding 3D media.

For fundamental solutions induced by forces, the polynomial load problem over a triangular area on the surface of an iso-
tropic elastic half space was solved by Svec and Gladwell [19]. A linear normal load over a triangular and rectangular area on
the isotropic elastic half space was attacked, respectively, by Kalker and van Randen [20] and Dydo and Busby [21]. Wang
and Liao [22] proposed the elastic solution for arbitrarily shaped and arbitrarily distributed loads in a transversely isotropic
half space using the triangulating technique. The surface deflection due to constant and linear (normal and tangential) loads
over a triangular area on the surface of the isotropic elastic half space was solved by Li and Berger [23]. Recently Xiao and Yue
[24] solved the elastic fields in two joined transversely isotropic media of infinite extent due to rectangular loading.

So far, however, there is no exact closed-form solution for the displacement and stress fields in a 3D piezoelectric medium
due to force loads over a circular, rectangular or triangular element, even for the common symmetric structures of transverse
isotropy [25]. Thus, in this paper, we derive the fundamental solutions in a transversely isotropic piezoelectric full space due
to uniformly distributed loads over a triangle by integrating the corresponding point-force Green’s functions. The element
can be a triangle which is either parallel or vertical to the material plane of isotropy, with the uniform load being oriented
arbitrarily, including also the electric load. The correctness of the exact closed-form solutions is further validated by three
different methods of superposition discussed in the paper. Numerical results are presented on the distribution of the electric
potential and electric field as well as the displacement and stress fields.

2. Basic equations

We consider a linear and transversely isotropic piezoelectric infinite space with its isotropic plane parallel to the oxy
plane in the Cartesian oxyz (0x;x,x3) system. The poling direction is along the positive z-axis. In this paper, summation over
repeated subscripts is assumed from 1 to 3 (1 to 4) for lowercase (uppercase) letters. We first define the following extended
quantities:

Extended displacements: u; (u;; ug = ¢), where u; are the elastic displacements and ¢ the electric potential;
Extended stresses: oy (0y; 0is = D;), where ¢y; are the elastic stresses and D; the electric displacements;

Extended tractions with outward normal n: P; (P; = oyn;; P4 = @ = Djn;), where P; are the elastic tractions and w is the
boundary value of the normal electric displacement.

We now assume that there is a distributed extended (traction) load P;(x) over an internal surface S(x) with outward
normal n in the space. Then, the induced extended displacements u; and stresses ¢j can be obtained by surface integrals

W) = / Pr(X)u (& 2)dS(x), (1)

ay(¥) = /S Pr(X) (¥ X)dS(X), )

where u]*,((xf; x) are the extended displacement in J-direction at field point ¥ due to a point load in K-direction at source point
x, and O'i*],((xf :X) are the extended stresses with components iJ at field point #” due to a point load in K-direction at source
point x. The detailed expressions of these Green’s function solutions can be found in Zhao et al. [18,26].

3. Fundamental solutions for triangular elements in the isotropic plane (i.e., oxy plane)

We first assume that the internal surface S is made of a triangle ABC in the isotropic oxy plane over which the uniform load
Py is applied. We denote by A(x1, y1), B(X2, ¥2) and C(xs, ¥3), the three vertices of the triangle, as shown in Fig. 1. Then the three
lines or sides of the triangle (AB, BC, CA) defined by LN;(x), LN,(x) and LN5(x) can be expressed as

LNy () =1 + 225 (x =),

LNy (X) =y, + 2293 (x - x,), 3)
X2 — X3

LN () = 5 + 221 (x — x3).

X3 —Xq
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Fig. 1. Triangle ABC in the oxy or oyz plane and the functions for the three lines AB, BC and AC.

If we further define the following parameters k; and q;
_Yah kzz}’z*}’a k _Ys=W
Xy — X1 Xy — X3’ X3 — X1’
a =y, —Xiki, =y, —Xky, a3=y;—x3ks, (4)

ki

then the three line functions in Eq. (3) can be expressed as
LN;(X) = k1x +a;, LNa(x) =kox +a;, LN3(X) = ksx + as. (5)

When a uniform load P, is applied to the arbitrary triangle ABC in the oxy plane, we can first divide the triangle into two sub-
triangles as shown in Fig. 1. Then we apply Egs. (1) and (2) to these two sub-triangles to obtain

k3x+as kyx-+a;
W) PK/ dx/ U (¥:x,y,0 dy+PK/ dx/ U (¥ x,y,0)dy, (6a)
kyx+a; kix+ay
k3x+as kyx+a
ay(x) PK/ dx/ T ( (*:xy,0 dy+P1</ dx/ O (*;x,y,0)dy. (6b)
kyx+a kyx+aq

Two load cases of the triangular element fundamental solutions will be presented in the following subsections.
3.1. Uniform load density Ps (or P,) applied over a triangle in oxy plane
When the uniform load P, over the triangle is along z-direction, we denote by uf (uf; uj = ¢*) and o7 G (05,00 = D7) the

induced extended displacements and stresses, with the superscript z denoting the direction of the applled load. Based on
Eq. (6), the exact solutions of the extended displacements and stresses at any point (x, y, z) can be obtained as

3 .
u; =P,> AQ),
i=1
3 .
ll; = PzzAinz(zy (7&)
i=1

3 )
w = — PZZ[OCLK—ZAI'Q;(Z)]'
i—1

In the last equation of Eq. (7a), K = 3, 4. When K equals 3, the left-hand side of this equation corresponds to uZ; when K equals
4, it corresponds to ¢°. The functions Qf(z) in Eq. (7a) and in Egs. (7b) and (7c) below depend on various parameters as well as
variables x, y and z, and their exact closed-form expressions are given in Eq. (A1) of Appendix A. The coefficients A; and oy,
(m=1, 2) are material-related coefficients given in Ding et al. [8].
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The corresponding extended stresses can be expressed as

O-ix = Pz(cll - CIZ)ZAI'QZ(Z) + PZZAiéng(z)7
i=1 i=1
3 ) 3 )
J;y = PZ(CH - Clz)z;AiQis(z) + PZZI:Aifng(Z): (7b)

3
T)Z(y = *ZPZCGGZAiQ;(zy

i=1

3
O-)Z(K = Pzzwi,K—ZAiQ}g(z)v

i=1

3
O-;K = Pzzwi,K—ZAing(zp (7C)
i=1

3
O-;( = PZZ'&LK—ZAI'QE(Z)-
i=1

In Eq. (7D), ¢;; are the elastic constants. In Eq. (7c), K= 3, 4. When K equals 3, the left-hand side of Eq. (7c) corresponds to
0%,,0%,,0%,; when K equals 4, it corresponds to Dj, D}, D;. Also in Egs. (7b) and (7¢), &, Wim,9im (m =1, 2) are all material
related constants given in Ding et al. [8].

We further remark that the material-related coefficients A; (i = 1-3) in Eq. (7) can be solved from the following equations
(8,18]:

3 3 3
> Ai=0, 4n) vnAi=-1, 4n) VpAi =0. (8)
i=1 i=1

i=1

It should be pointed out that, when the uniform load density P4 (the normal electric displacement ) is applied over the
triangle in the oxy plane, the induced extended displacements and stresses at any internal point (x, y, z) have the same
expressions as Eq. (7), except that we should replace the material-related coefficients A; by the material-related coefficients
B;, with B; (i = 1-3) being solved from the following equations

3 3 3
> Bi=0, 4m) 9qBi=0, 4m» ¥pBi=1. 9)
i=1 i=1 i=1

3.2. Uniform load density P; (Py) along x-direction over a triangle in oxy plane

If the extended load P; = P; over the triangle is along x-direction, we denote by uj (uf; u} = ¢*) and o (0%; 0}y = Df) the
extended displacements and the extended stresses, with the superscript x denoting the direction of the applied load. Using
Eq. (6), the exact closed-form solutions of the extended displacements and stresses at any internal point (x, y, z) can be
obtained as

3 :
e = —PyDaQq ) + szl:Dinz(x)a
i=
3 :
Uy = ~PuDaQs — Py _DiQ3, (102)
i=1

3 )
Uy = PXXZ [O(i.K—ZDiQil(x)] .

i=1

In the last equation of Eq. (10a), K=3, 4. When K equals 3, the left-hand side of this equation corresponds to u}; when K
equals 4, it corresponds to ¢*. The functions Q;(X) in Eq. (10a) and in Egs. (10b) and (10c), which depend on variables x, y
and z are given in Eq. (A2) of Appendix A,

3
O = Px(C11 = €12)D4Qs() + PxZDi [éine(x) —(c11— C12)Q'7(x)]7

i=1

3 . .
0ty = Pa(ctn = €12)DaQsy + Py Di[EQG — (011 — €12)Q . (10b)

i=1

3 .
Gy, = PxC6Da(Qsx) — Qo)) — 2C66szDing(x)7
p
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3
T = —Px@4x 2D4Quop) + P> _ ik 2DiQ1 v,
i1

3
0';,( = *wa4,K—2D4Q12(x) - szwi.l(—2Din]2(x)7 (10¢)
i—1

3
Oy = szﬁi.K—2DiQ'5(x) .
i1

In Eq. (10c¢), w4, (m =1, 2) is a material related constants corresponding to eigenvalue s, (Ding et al. [8]), and K = 3, 4. When K
equals 3, the left-hand side of Eq. (10c) corresponds to a7, 7}, 0%,; when K equals 4, it corresponds to D}, D’y‘., D7. The material-
related coefficient D; (J = 1-4) are given in Ding et al. [8] are determined by (m=1, 2)

3 3 3
> timDi =0, saDs+> siDi=0, 2MC4asaDs — 27y nDi = -1, (10d)
i=1 i-1 i=1
where s; (J = 1-4) are the roots of the material characteristic equation, which depend on the elastic constants c;, the piezo-
electric constants e; and the dielectric constants &; [8,18].

Itis pointed out that by simply switching xand y in Eq. (10), one can then obtain the exact closed-form solutions correspond-
ing to the uniform load P; = P, which is parallel to the y-axis. In other words, the relationship between these two solutions is

w=uy, W=y, w=uj

Y — X A Y — X
ol =0, O, =0% 0% =0, (1)
-y X Yy X y X
Txy - _Txy7 T = Tyzv Tyz =Ty

4. Fundamental solutions for triangle elements in the oyz plane

We now consider the case where the triangle element is in the oyz plane, i.e., perpendicular to the isotropic plane, as
shown in Fig. 1. We denote the three triangle vertices by A(y1, z1), B(y2, z2) and C(ys, z3), and the three straight-lines by
LN;(y), LN,(y) and LN3(y) which are expressed as

Zy — 21
LN =2Z1 + - V1),
W) =2+ EE )
Z3—Z
Ny (y) =22 + 22 (y - y,), (12)
Y3 =Y
3 =71
LN =273+ —¥3).
3() =2 Y3*Y1(y V3)

Defining also

Z -2 Z—Z Z3— 2
ki :yj 7y11 ky :yz *)’337 ks =yz 7y1] , @G =21 =Y.k, =2z —y:ky, a3 =2z3—Yy;ks, (13)

then the functions LN;(y) can be expressed as
LNi(y) =kiy + a1, LN2(y) =koy + a2, LN3(y) = ksy +as. (14)

The extended displacement and stress fields at any point (x, y, z) under uniformly distributed load P; over this triangle ABC
can be expressed in terms of the following integrals (by dividing this triangle into two sub-triangles):

V3 ksy-+as Y2 koy-+a;
w) =P [y [ wioyadzep [Cdy [ oy (152)
N kiy+aq y3 kiy+a;
V3 ksy-+az Y2 kay-+ay
o) =P [ dy oy 0.y.2)dz+ P [ dy 03, (¥:0.9,2)dz. (15b)
I kiy+aq Jy3 kyy+aq

Similarly, we derive the exact closed-form solutions for the following two load cases.
4.1. Uniform load density P; (Py) along x-direction over a triangle in the oyz plane

For the extended load P, along x-axis and uniformly distributed over the triangle, we can obtain, from Eq. (15), the
extended displacements and the extended stresses at any point (x, ¥, z) in the infinite body. The results can be also expressed
by Eq. (10), but with different Q,,, and Q}@ as given in Eq. (A3) of Appendix A.

We also mention that the solution corresponding to the uniform load P; = P, along y-axis in the oyz plane can be obtained
by a simple switch between x and y as shown in Eq. (11).
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4.2. Uniform load density P, along z-direction over a triangle in the oyz plane

If the uniform load P, is along z-direction in the oyz plane, then, according to Eq. (15), the extended displacements and
stresses at any point (x, y, z) can be also expressed as in Eq. (7). The difference is just that the functions Q;(Z) are different,
which are given in Eq. (A4) of Appendix A.

Similarly, when the uniform load density P, is applied over a triangle in the oyz plane, the exact closed-form solutions of
the extended displacements and stresses at any point (x, y, z) have the same expressions as Eq. (7), with A; being replaced by
B;, and the functions Qfm being given in Eq. (A4) of Appendix A.

5. Numerical results
5.1. Validation of the solution

In this section, we first verify the correctness of the obtained solutions by using the piezoelectric material PZT-6B, with
the material constants listed in Table 1.

Fig. 2 show an inner square ABCD (10 m x 10 m) in the transversely isotropic oxy plane, with its four corners at A(-5, -5,
0), B(5, -5, 0), ((—5, 5,0) and D(5, 5, 0). A uniform force P, = 1.0 Pa along z-direction is applied over this square. The extended
displacements and stresses are calculated by the following three methods of superposition:

Method of superposition 1. Using the Green’s function in Zhao et al. [18,26], the extended displacements and stresses at an
arbitrary point are calculated by direct integration over the square ABCD;

Method of superposition 2: Using the present solutions in this paper, the extended displacements and stresses at an arbi-
trary point are obtained by adding those corresponding to the two triangles ABC and CDA (Fig. 2);

Method of superposition 3: Similar to the method of superposition 2, the square is divided into four triangles as labeled by
1, 2, 3, and 4 in Fig. 2. The extended displacements and stresses are obtained by adding these from the four triangles.

Based on the above three methods of superposition, we have calculated the extended displacements and stresses from
(=2,0,-1)to (2, 0, —1). It is found that the three methods of superposition give exactly the same results as those shown
in Fig. 3(a) and (b) using method of superposition 2. Therefore, our exact closed-form solution is correct.

5.2. Solutions due to loads over a right triangle

Assume that there is a right triangle AOB in the transverse isotropic oxy plane or a right triangle BOC vertical to that, as
shown in Fig. 4. Uniform loads P, = 1.0 Pa and P, = 1.0 Pa are respectively applied to these two triangles. Here, we present the
variation of the following five quantities as in Wang et al. [27]: the whole elastic displacement u, the electric potential ¢, the
hydrostatic stress oy, the effective stress ., the whole electric displacement D

O+ 0Oy +0
u= 12+ 2, g, = 2ot It 0= 3yy+ =,
1 2 2 2 12 2 2 2
e = <§[(°—xx*0yy) + (O — Oyy)" + (O — Oyy) ]+3(a§y+0§z+aﬁz>> » D=/Dy + Dy +D;. (16)

Case 1 (Uniform load P,=1.0Pa over the right triangle AOB). Based on our exact closed-form solutions, the extended
displacements and stresses within the square domain of —5 m < (x, y) < 5 m are calculated. The results show that u, > u, > u,
with the magnitude of the whole elastic displacement being almost the same as that of u,. Also the contours of the whole elastic
displacement u and electric potential ¢ are very similar to each other, so we just show the contour of the whole elastic
displacement, as in Fig. 5a. It can be seen that both of u and ¢ reach their maximum values at the centre of the triangle, with their
values being 3.0 x 10~'> m and 3.0 x 103V, respectively. Fig. 5b presents the whole electric displacement D in the oxy plane
with its maximum being at the edge of the triangle, whilst Fig. 5c¢ plots the distribution of the effective stress g, and the
hydrostatic stress g}, along the line from (-1, 0.5, —1) to (1, 0.5, —1) m.

Case 2 (Uniform load P, = 1.0 Pa over the right triangle AOB). Under uniform load P, = 1.0 Pa over the right triangle AOB, we
find that the magnitude of the elastic displacement components satisfies uy > u, > u,. The whole elastic displacement u
reaches its maximum value 4.25 x 10~'2 m at the centre of the triangle, which is larger than that under the corresponding
vertical load, as shown in Fig. 6a. Meanwhile, Fig. 6b shows that, when compared to the vertical load case (the same shape as

Table 1

Material coefficients of piezoelectric PZT-6B.
c11 (10° N/m?) 12 (10° N/m?) c13 (10° N/m?) ¢33 (10° N/m?) Ca4 (10°N/m?)
168 60 60 163 271
e3 (C/m?) es3 (C/m?) e1s (C/m?) &11 (107°C/(V m)) £33 (107°C/(V m))

-0.9 7.1 4.6 3.6 34
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A(-5,-5) B(5.-5)

Fig. 2. A uniform load P,=1.0Pa over the rectangle ABCD (10 m x 10 m) on the oxy plane. This problem is solved by three different methods of
superposition discussed in detail in the text to validate the exact closed-form solutions presented in this paper.
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Fig. 3. (a) The elastic displacements u,, u,, and u, along the line from (-2, 0, —1) to (2, 0, —1) m due to the uniform load P, = 1.0 Pa over the rectangle ABCD
as shown in Fig. 2, using Method of superposition 2. (b) The elastic stresses along the line from (-2, 0, —1) to (2, 0, —1) m due to the uniform load P,= 1.0 Pa
over the rectangle ABCD as shown in Fig. 2, using Method of superposition 2.



Fig. 4. A horizontal right triangle AOB and a vertical right triangle BOC over which uniform load P, = 1.0 Pa or P, = 1.0 Pa is applied.
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m) in (a), and the electric displacement D (C/m?) in (b) in the oxy plane, induced by a uniform
vertical load P, = 1.0 Pa within the right triangle AOB, as shown in Fig. 4 (also shown here by the dashed straight lines).

Fig. 5c. The effective stress o, (Pa) and hydrostatic stress o}, (Pa) along the line from (-1, 0.5, —1) to (1, 0.5, —1) m due to the uniform load P, = 1.0 Pa over

the right triangle AOB shown in Fig. 4.
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u in Fig. 6a), not only the contour shape but also the sign of the electric potential are completely different. It can be seen that
at some points the electric potential are negative. While not showing here, we noticed that the shape of the hydrostatic
stress gy, is very similar to the electric potential ¢ with a maximum value of ¢, being 0.53 Pa at the edge of the triangle.
Fig. 6¢ displays the contours of the effective stress g., which reach a maximum value of 0.965 Pa at the edge of the right
triangle. Fig. 6d shows the electric displacement D and the hydrostatic stress oy, along the line from (-1, 0.5, —1) to (1,
0.5, -1) m.

Case 3 (Uniform load P, = 1.0 Pa over the right triangle BOC). Fig. 7(a)-(d) show the whole displacement u, hydrostatic stress
on, effective stress g. and the electric displacement D in the oyz plane within the domain of -2 m < (x, y)<2m. It is
observed that at the centre of the right triangle BOC, the elastic displacement u reaches its maximum value of
4.05 x 1072 m, and the contour of the electric potential ¢ is also similar to the whole elastic displacement u, with a

6(10%)
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Fig. 6a,b,c. Contours of the elastic displacement u (10~'2 m) in (a), electric potential ¢ (10-°V) in (b), the effective stress o. (Pa) in (c) in the oxy plane,
induced by the uniform shear load P, = 1.0 Pa within the right triangle AOB, as shown in Fig. 4 (also shown here by the dashed straight lines).
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Fig. 6d. The electric displacement D (C/m?) and hydrostatic stress oy, (Pa) along the line from (-1, 0.5, —1) to (1, 0.5, —1) m due to the uniform load
P, =1.0 Pa over the right triangle AOB as shown in Fig. 4.



Q. Zhang et al./Applied Mathematical Modelling 38 (2014) 4778-4795 4787

2.0
u {10*m}
. 30
. 55
- 50 10
. 10.5
. 130 5
155 |
. 150 E
205 <= 00
230 M
- 255 5
250 :
305
330 -1.0
. 355
. 35.0 15
- 40.5 o
: -2.0
20 15 -10 -5 00 5 10 15 20 220 415 -0 -5 00 5 10 15 20

y (m) y (m)

z (m)
z (m)

.030

..2,0 15 10 -5 00 5 10 15 20 -20 -15 10 -5 00 &5 10 15 20
y (m) y (m)

Fig. 7. Contours of the elastic displacement u (10~'> m) in (a), hydrostatic stress oy, (Pa) in (b), effective stress a. (Pa) in (c), and the electric displacement D
(C/m?)in (d) in the oyz plane, induced by a uniform vertical load P, = 1.0 Pa within the right triangle BOC as shown in Fig. 4 (also shown here by the dashed
straight lines).
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Fig. 8a,b,c. Contours of the elastic displacement u (1072 m) in (a), the electric potential ¢ (10~° V) in (b), and the electric displacement D (C/m?) in (c) in
the oyz plane, induced by a uniform shear load P, = 1.0 Pa within the right triangle BOC, as shown in Fig. 4 (also shown here by the dashed straight lines).
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Fig. 8d. The effective stress g. (Pa) and hydrostatic stress oy, (Pa) along the line from (-1, 0.5, —1) to (-1, 0.5, 1) m due to the uniform load Py = 1.0 Pa over
the right triangle BOC as shown in Fig. 4.

maximum value of 5.4 x 107 V at the centre of BOC. Also, a1, 6. and D all reach their maximum (absolute) values at the edge
of the right triangle BOC, which are, respectively, 0.46 Pa, 0.96 Pa and 0.03 C/m?. Compared to the same load over the right
triangle AOB, we have here the elastic displacement magnitude relation u, > u, > u,.

Case 4 (Uniform load P, = 1.0 Pa over the right triangle BOC). Fig. 8a shows, under this load, that the whole elastic displace-
ment reaches its maximum value of 2.8 x 107!2 m at the centre of the triangle, which is smaller than that under a vertical
load. In this case, we have the magnitude relation as u, > u, > u,. The contours of the electric potential ¢ are plotted in Fig. 8b,
whilst Fig. 8c presents those of the electric displacement D with a maximum value of 0.096 C/m? at the edge of the triangle
BOC. Fig. 8d shows the distribution of the hydrostatic stress o}, and the effective stress g, from (-1, 0.5, —1) to (-1, 0.5, 1) m.
It can be seen that the hydrostatic stress is far larger than the effective stress in this domain.

6. Concluding remarks

In this paper, the fundamental solutions for uniformly distributed extended loads over a triangle in transversely isotropic
piezoelectric materials are obtained. Three methods of superposition are used to validate the derived exact closed-form solu-
tion. Numerical results show that the maximum values of the extended stresses all occur at the edge of the triangle.

The method proposed in the present paper is versatile and can be utilized to derive the fundamental solutions for other
kinds of elements, such as circle, rectangle, etc. applied by arbitrarily distributed loads.

When a transversely isotropic infinite body is subjected to an arbitrarily shaped load over a finite region, solutions to this
general case can be obtained by the method of superposition where one divides the load area into many triangles or other
kinds of elements. Therefore, the exact closed-form solution presented in the paper should be very useful in analyzing the
behavior of transversely isotropic materials under general distributed loads over an arbitrarily shaped area.
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Appendix A. Functions and parameters involved in Eqs. (7) and (10)
A.1. A triangle on the oxy plane

We consider an infinite piezoelectric body under a uniformly distributed load over a triangle ABC, which is located on
plane of transverse isotropy. We denote the vertex coordinates of the triangle as A(x1, y1), A(x2, ¥>) and C(x3, y3). The displace-
ments and the stresses at any point (x, ¥, z) induced by this uniform load over the triangle can be expressed by Eq. (7), with
the related functions being defined as below:

(@) The uniform load is along z-direction in the oxy plane
For this case, the functions Qj,, in Eq. (7) can be expressed as:



Q. Zhang et al./Applied Mathematical Modelling 38 (2014) 4778-4795 4789

Q) 126: 2(=1)"(Gim + lom Gam + Gy) + (—1)"Ham 7
@ 24| +252kam (<1)"Hy, + (L, + Do)
1< 4 : .
52 [2 )"Gam + (=1)" (lgmH1m — 28;zH5 , + Hy,) + LJZm} ,
m=1
1¢ )
50 *52[2 ~ Hj )+L’3m],
1 mg] : )
Q4(Z) 752[2 GZm+I{2m( ) Hlm +Lj4m+l‘15m:|7 (A])
] mgl ; s ] ] -
QS(Z) = EZ]% = EZ[ )" Gom + (=)™ kpmHim + L,y |
m=1 m=1
18 B
Q) = 22 [2(—1)msz +(=1)™ " Hyp + lL’Sm],
= | i |
3<Z) 22[ 2m H3m +L ] ng(z) = Z(—1)mHH]3m.
m=1
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For this case, the induced extended displacements and stresses are given by Eq. (10) with the functions being
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A.2. A triangle on the oyz plane

We now assume that the infinite elastic body is under a uniform load over a triangle which is perpendicular to the plane
of transverse isotropy (actually located in the oyz plane). The triangle is named as ABC with its vertex coordinates being at
A(y1, z1), B(y2, z2) and C(y3, z3). The induced displacements and the stresses at any point (x, y, z) can be expressed by Eq. (8),

with the involved functions being listed below.

(a) The uniform load is along x-direction in the oyz plane
For this case the functions ka(x) (Qi) in Eq. (10) can be found as:

3
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(b) The uniform load is along z-direction in the oyz plane

For this case, the involved functions QJ,;(Z) in Eq. (7) can be expressed as:
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(Ad)

In Egs. (A1)-(A4), G, M, H and L are functions of the coordinates x, y and z, as well as other parameters. Before we present the
expressions for functions G, M, H and L, we first define the following symbols, parameters, and some simple functions:
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