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This paper presents the exact closed-form solutions for the stress fields induced by a two-
dimensional (2D) non-uniform displacement discontinuity (DD) of finite length in an iso-
tropic elastic half plane. The relative displacement across the DD varies quadratically.
We employ the complex potential-function method to first determine the Green’s stress
fields induced by a concentrated force and then apply Betti’s reciprocal theorem to obtain
the Green’s displacement fields due to concentrated DD. By taking the derivative of the
Green’s functions and integrating along the DD, we derive the exact closed-form solutions
of the stress fields for a quadratic DD. The solutions are applied to analyze the stress fields
near a horizontal DD in the half plane with three different profiles: uniform (constant), lin-
ear, and quadratic. The same methodology is applied to an inclined normal fault to inves-
tigate the effect of different DD profiles on the maximum shear stress in the half plane as
well as on the normal and shear stresses along the fault. Numerical results demonstrate
considerable influence of the DD profile on the stress distribution around the discontinuity.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Scientists and engineers study cracks for many reasons. Two key reasons are to (1) understand the associated stress con-
centrations or singularity features, and (2) accurately predict the life span of cracked structures or media.

Numerical methods such as the finite element method (FEM) and boundary element method (BEM) have been utilized by
many researchers to solve crack problems. The BEM based on displacement discontinuity (DD) has been proved to be par-
ticularly efficient [1–3]. The indirect BEM also has been used to treat single and multiple displacement discontinuities (DDs)
in 2D finite and infinite regions [4] and to calculate stress intensity factors at crack tips in 2D anisotropic elastic solids [5]. An
accurate single-domain BEM for 2D infinite, finite, and semi-infinite anisotropic solids [6] has been extended to three-
dimensional (3D) anisotropic media [7]. The Riemann–Hilbert method can be adopted to solve 2D crack problems in an infi-
nite, homogeneous, anisotropic plate [8]. A general higher-order DD method coupled with an indirect BEM has been applied
to the quasi-static analyses of radial cracks produced by blasting [9]. Complex crack problems such as multiple branched and
intersecting cracks also have been investigated using the numerical manifold method [10], which also has been applied to 2D
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Nomenclature

Latin
aj, bj, cj constants to determine the relative displacement discontinuity profile in j-direction
A, B complex constants
f1(), f2(), f3() function of
Fx, Fy line force component along x- and y-direction respectively
i imaginary unit
k1, k2, . . ., k15 complex variables
L length of displacement discontinuity
n normal vector
np p-component of normal vector
p, q, r, s, w dummy complex variables
t parameter that varies between 0 and 1 along the displacement discontinuity
tm location along displacement discontinuity between 0 and 1 at which relative displacement is known;

0 < tm < 1
uk displacement component in k-direction
uk, j derivative of k-component of displacement with respect to coordinate j
Du relative displacement discontinuity vector
Duj1, Duj2 relative displacement discontinuities along j-direction at starting and ending points of displacement

discontinuity
Dujm relative displacement discontinuities along j-direction at t = tm

Duq relative displacement discontinuities along q-direction
x, y coordinates of the field point of the line force
x1, x2; y1, y2 coordinates of starting and ending points of displacement discontinuity
xs, ys coordinates of the source point of the line force
z, zs complex variable to define a field point and source point of the line force
z1, z2 complex variables to define starting and ending points of displacement discontinuity

Greek
aj, bj, cj constants related to the profile of displacement discontinuity
C1, C2 complex functions
C1p, C2p complex functions corresponding to particular solution
C1c, C2c complex functions corresponding to complementary solution
exx, eyy, cxy strain components
l shear modulus
m Poisson’s ratio
rk

pq pq component of stress induced by a line force in k-direction
rk

pq;j derivative of pq-component of stress induced by a line force in k-direction with respect to coordinate j
rxx, ryy, rxy stress components
/(), w() complex functions
/p(), wp() complex functions which describe the particular solution in an infinite plane
/c(), wc() complex functions which describe the complementary solution of the half plane
X1, X2 complex functions
X1p, X2p complex functions corresponding to particular solution
X1c, X2c complex functions corresponding to complementary solution

Acronyms
2D two-dimensional
3D three-dimensional
BEM boundary element method
DD displacement discontinuity
FEM finite element method
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crack propagation [11]. Moreover, the growth of short fatigue cracks has been studied by 2D DD BEM [12]. Axisymmetric
crack problems have been analyzed with the axisymmetric DD method [13].

DD-based BEM analyses have been applied to a variety of problems in geology, especially those involving faults. These
models have been used to simulate the behavior and interaction of intersecting faults in both 2D and 3D [14,15], and the
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development of secondary fractures near faults [16]. These models also have been used to study mixed-mode fracture prop-
agation in an isotropic 3D medium [17], elastic stresses in long ridges [18], and stresses associated with the initial stages of
landsliding [19,20]. DD-based BEM can also be used to investigate the role of static friction on fracture orientation along
strike-slip faults [21]. These investigations confirm that the DD method is flexible and particularly attractive in solving geo-
logical problems.

Motivated by the important applications of the DD method in the earth sciences as well as in the oil and gas industries
where faults and hydraulic fractures are important, we present here the exact closed-form solution for a non-uniform DD in
an isotropic elastic half plane. In Section 2, the problem is described and the exact closed-form solution is derived. Using
numerical examples, the stress fields arising from three DD profiles (uniform, linear, and quadratic) are presented and com-
pared in Section 3. The key conclusions are summarized in Section 4.

2. Solution to a non-uniform displacement discontinuity in a half plane

We consider first a DD vector Du at a point z = x + iy in the complex isotropic elastic half plane with the DD line plane
normal being n. The induced displacement uk in the k-direction at zs = xs + iys can be expressed using a relationship based
on Betti’s reciprocal theorem [22].
ukðzsÞ ¼
Z

L
rk

pqðzs; zÞDuqðzÞnpðzÞdLðzÞ ð1Þ
where the summation convention is implied for repeated indices p and q. In other words, they both take summations from 1
to 2 (i.e., from x to y). Also in Eq. (1), L is the length of DD, and rk

pqðzs; zÞ is the stress with component pq at z induced by a line
force (per unit length) in k-direction applied at zs; rk

pqðzs; zÞ thus has dimensions of 1/length.
In order to find the DD-induced stress field, one needs to take the derivative of Eq. (1) with respect to the line-force loca-

tion zs.
uk;jðzsÞ ¼
Z

L
rk

pq;jðzs; zÞDuqðzÞnpðzÞdLðzÞ ð2Þ
where the derivative for index j is with respect to xs or ys.
The constitutive relation in 2D plane-strain deformation can be applied to find the stresses as follows:
rxx

ryy

rxy

2
64

3
75 ¼ 2l
ð1� 2mÞ

1� m m 0
m 1� m 0
0 0 ð1� 2mÞ=2

2
64

3
75

exx

eyy

cxy

2
64

3
75 ð3Þ
where l and m are the shear modulus and Poisson’s ratio, respectively [23].
In order to find the DD Du-induced displacement, strain, and stress fields, one first needs to find the line-force-induced

stress field rk
pq as it appears in Eq. (1). We adopt the complex variable function method of Muskhelishvili [24] to derive the

solution. We assume a concentrated line force (Fx + iFy) located at zs = xs + iys in an isotropic elastic and homogeneous half
plane y > 0. The surface of the half plane is assumed to be traction-free. From Muskhelishvili [24], the plane stresses can
be expressed in terms of two complex functions / and w of the complex variable z = x + iy.
rxx þ ryy ¼ 2½/0ðzÞ þ /0ðzÞ�
ryy � rxx þ 2irxy ¼ 2½�z/00ðzÞ þ w0ðzÞ�

ð4Þ
where the overbar denotes the conjugate of a complex variable or function, and the prime indicates the derivative of the
function with respect to z. For the half plane case, these complex functions can be separated into two parts: a particular solu-
tion with subscript ‘‘p’’ for the infinite plane, and a complementary part with subscript ‘‘c’’ that is introduced to satisfy the
traction-free boundary condition on the surface of the half plane.
/ðzÞ ¼ /pðzÞ þ /cðzÞ
wðzÞ ¼ wpðzÞ þ wcðzÞ

ð5Þ
For a line force located at zs, these complex functions are
/pðzÞ ¼ A lnðz� zsÞ; wpðzÞ ¼ B lnðz� zsÞ � A
�zs

z� zs
ð6aÞ

/cðzÞ ¼ � A z�zs
z��zs
þ B lnðz� �zsÞ

h i
wcðzÞ ¼ �A lnðz� �zsÞ þ z AþB

z��zs
� A z�zs

ðz��zsÞ2

h i ð6bÞ
where again z = x + iy is the field point in the complex plane and A and B are two complex constants:
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A ¼ �ðFx þ iFyÞ
8pð1� mÞ ; B ¼ ð3� 4mÞðFx � iFyÞ

8pð1� mÞ ð7Þ
Substituting Eqs. (6) into Eq. (4), the stress field induced by the concentrated line force at zs can be obtained.
X1 � ½rxx þ ryy�=2 ¼ X1p þX1c

X2 � ½ryy � rxx þ 2irxy�=2 ¼ X2p þX2c
ð8Þ
with the particular part being the solution for the full plane. The particular and complementary parts of the stress fields due
to the concentrated line force in the half plane can be expressed as follows:
X1p � ½rxx þ ryy�p=2 ¼ A
z�zs
þ A

�z��zs

X2p � ½ryy � rxx þ 2irxy�p=2 ¼ B
z�zs
þ Að�zs��zÞ
ðz�zsÞ2

ð9Þ

X1c � ½rxx þ ryy�c=2 ¼ � AþB
z��zs
� AþB

�z�zs
þ Aðz�zsÞ
ðz��zsÞ2

þ Að�z��zsÞ
ð�z�zsÞ2

X2c � ½ryy � rxx þ 2irxy�c=2 ¼ B
ðz��zsÞ �

Aðz�zsÞ
ðz��zsÞ2

þ ðz� �zÞ � 2AþB
ðz��zsÞ2

þ 2Aðz�zsÞ
ðz��zsÞ3

h i ð10Þ
We point out that with the line-force induced stresses in Eqs. (9) and (10), one can find the DD-induced displacement field
via Eq. (1). In order to find the DD-induced stress field, the derivatives of the line-force induced stress field with respect to (xs,
ys) are required which are presented below.
@X1p

@xs
� @X1p

@zs
þ @X1p

@�zs
¼ A
ðz�zsÞ2

þ A
ð�z��zsÞ2

@X1p

@ys
� i @X1p

@zs
� @X1p

@�zs

h i
¼ i A

ðz�zsÞ2
� A
ð�z��zsÞ2

h i ð11Þ

@X2p

@xs
� @X2p

@zs
þ @X2p

@�zs
¼ 2Að�zs��zÞ
ðz�zsÞ3

þ BþA
ðz�zsÞ2

@X2p

@ys
� i @X2p

@zs
� @X2p

@�zs

h i
¼ i 2Að�zs��zÞ

ðz�zsÞ3
þ B�A
ðz�zsÞ2

h i ð12Þ

@X1c
@xs
� @X1c

@zs
þ @X1c

@�zs
¼ � 2AþB

ðz��zsÞ2
� 2AþB
ð�z�zsÞ2

þ 2Að�z��zsÞ
ð�z�zsÞ3

þ 2Aðz�zsÞ
ðz��zsÞ3

@X1c
@ys
� i @X1c

@zs
� @X1c

@�zs

h i
¼ i B

ðz��zsÞ2
� B
ð�z�zsÞ2

þ 2Að�z��zsÞ
ð�z�zsÞ3

� 2Aðz�zsÞ
ðz��zsÞ3

h i ð13Þ

@X2c
@xs
� @X2c

@zs
þ @X2c

@�zs
¼ ðz� �zÞ 6Aðz�zsÞ

ðz��zsÞ4
� 2ð3AþBÞ
ðz��zsÞ3

h i
� 2Aðz�zsÞ
ðz��zsÞ3

þ AþB
ðz��zsÞ2

@X2c
@ys
� i @X2c

@zs
� @X2c

@�zs

h i
¼ i ðz� �zÞ � 6Aðz�zsÞ

ðz��zsÞ4
þ 2ðAþBÞ
ðz��zsÞ3

h i
þ 2Aðz�zsÞ
ðz��zsÞ3

� A�B
ðz��zsÞ2

h i ð14Þ
We assume now a DD distribution of quadratic form along a straight line segment from z1 to z2 in the half plane. Our goal
is to find the analytical expressions of the stress field induced by this general form of DD in the half plane. To achieve this, we
first express the straight line segment in the parametric form.
(a) Schematics of a non-uniform DD in the half plane. (b) Three special cases when the maximum value of Du occurs in the middle of the DD: a
(constant) DD (top), a linear DD (middle), and a parabolic DD (bottom).
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x ¼ x1 þ ðx2 � x1Þt
y ¼ y1 þ ðy2 � y1Þt

ð15Þ
where t = 0 and 1 corresponds to (x,y) = (x1,y1) and (x2,y2), respectively. The length of the DD segment is
L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ

2
q

ð16Þ
In terms of the parameter t, the quadratic DD Duj can be assumed as
Duj ¼ 2ðajt2 þ bjt þ cjÞ; j ¼ x; y ð17Þ
where aj, bj, and cj are constants which can be determined from values of Duj at three arbitrary points along the discontinu-
ity. In this paper, we consider the start and end points of the discontinuity and a point in between, so that
aj ¼
Dujm�tmDuj2þtmDuj1�Duj1

2tmðtm�1Þ

bj ¼
Duj2�Duj1

2 � Dujm�tmDuj2þtmDuj1�Duj1
2tmðtm�1Þ j ¼ x; y

cj ¼
Duj1

2

ð18Þ
where Duj1, Dujm, and Duj2 are the magnitudes of the relative displacement at the start (t = 0), at an intermediate point
(t = tm), and at the end point (t = 1) of the DD line, respectively. Note that tm varies between 0 and 1, and it does not need
to correspond to the point with the maximum value of Duj. One special choice is tm = 0.5 which means that the relative dis-
placement Dujm is at the midpoint. Equation (17) represents a general quadratic DD profile as illustrated in Fig. 1a while
Fig. 1b shows three special cases where the maximum DD occurs at tm = 0.5 for the uniform (constant), linear, and quadratic
distributions of DD profiles.

Therefore, in terms of parameter t, the DD-induced displacement derivatives can be expressed as follows.
@uk
@xs
¼ 2npL

R 1
0

@rk
pq

@zs
þ @rk

pq

@�zs

h i
ðaqt2 þ bqt þ cqÞdt

@uk
@ys
¼ 2npL

R 1
0 i

@rk
pq

@zs
� i

@rk
pq

@�zs

h i
ðaqt2 þ bqt þ cqÞdt

k ¼ x; y

p or q ¼ x; y

�
ð19Þ
Normalized horizontal stress rxx/l along the horizontal line segment x0 (0.5 m above the crack) calculated by the constant DD element solution of
and Starfield [2], as compared to the present exact closed-form solution. The crack opening shape is quadratic and the crack length is 4 m. It is
tally located at y = 1000 m below the surface of the half plane.

m relative error for the horizontal stress rxx calculated by the constant DD element solution of Crouch and Starfield [2], as compared to the present
osed-form solution of the quadratic DD profile. N represents the number of the discretized constant elements along the crack length.

1 2 4 8 16 32 64 128 256 512

imum relative error (%) 897.00 647.75 192.68 54.10 12.35 3.01 0.75 0.19 0.05 0.01
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Note that for k = x, we set Fx = 1 and Fy = 0 while for k = y, Fx = 0 and Fy = 1. Thus, in terms of the components, the following
integrals are needed in order to find the displacement derivatives in Eq. (19).
Fig. 3.
The sur
Cmp;xs ¼ 2L
R 1

0
@Xmp

@xs
ðajt2 þ bjt þ cjÞdt ¼ 2L

R 1
0

@Xmp

@zs
þ @Xmp

@�zs

h i
ðajt2 þ bjt þ cjÞdt

Cmp;ys
¼ 2L

R 1
0

@Xmp

@ys
ðajt2 þ bjt þ cjÞdt ¼ 2iL

R 1
0

@Xmp

@zs
� @Xmp

@�zs

h i
ðajt2 þ bjt þ cjÞdt

ð20Þ
Cmc;xs ¼ 2L
R 1

0
@Xmc
@xs
ðajt2 þ bjt þ cjÞdt ¼ 2L

R 1
0 ½

@Xmc
@zs
þ @Xmc

@�zs
�ðajt2 þ bjt þ cjÞdt

Cmc;ys
¼ 2L

R 1
0

@Xmc
@ys
ðajt2 þ bjt þ cjÞdt ¼ 2iL

R 1
0

@Xmc
@zs
� @Xmc

@�zs

h i
ðajt2 þ bjt þ cjÞdt

ð21Þ
The exact closed-form expressions for the functions Cmp,xs, Cmp,ys, Cmc,xs, and Cmc,ys are given in the Appendix. Using the
constitutive relation in Eq. (3), we can find the corresponding stress field. Note that the particular solution is the full-plane
solution and the complementary solution approaches zero far from the surface. As a result, far from the surface the total
solution approaches the full-plane solution.
3. Numerical examples

For a straight crack in a linear elastic medium, the relative opening displacements generally are non-uniform. Thus, using
a quadratic DD would in many cases yield satisfactory solutions with less discretization and shorter computer runtimes. To
investigate the utility of the quadratic DD, we apply our exact closed-form solutions to three DD cases in an isotropic elastic
half plane.

In the first numerical example, we calculate the normal stress field rxx induced by a quadratic DD. Similar to the work by
Maerten et al. [25] and Crouch and Starfield [2], in order to approximate the quadratic DD profile, certain numbers of
constant DD elements are needed. The results illustrated in Fig. 2 consider a horizontal opening-mode DD of length 4 m
Contours of rxx/l for a horizontal DD, with length L = 1 m, located at y/L = 1.0 in the half plane for (a) uniform DD, (b) linear DD, and (c) quadratic DD.
face of the half plane is located at y = 0. In all three cases, the maximum value of Duy is 0.005 m.
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in a half plane. The material properties for the half plane are l = 2 GPa and m = 0.25. The crack is 1000 m below the surface so
that the Crouch and Starfield [2] solution for the constant DD in the full plane can be applied. The DD profile is assumed to be
quadratic, with the maximum opening being Duy = 0.005 m at the crack center and zero at its left and right tips. For simplic-
ity, the horizontal component of the DD is assumed to be zero along the crack. For this case, our exact closed-form solutions
of the quadratic DD can be directly applied without requiring any discretization. To see the effect of discretization, we have
also applied the constant DD solution of Crouch and Starfield [2] to discretize the quadratic DD profile. Fig. 2 compares the
values of rxx/l along a line which is 0.5 m above the crack (x0 line). In this figure, the dashed, dotted and thin solid curves
correspond to the results using the Crouch and Starfield solution [2] with N = 1, 8 and 32 constant DD elements along the
whole length of the crack; the thick solid curve represents the exact closed-form solution of the quadratic DD presented
in this paper. In order to accurately predict the stress field induced by a quadratic DD, 32 constant DD elements are required
for a maximum relative error of 3% (Table 1). Table 1 further shows the relative error percentage of using different numbers
of elements, as compared to the exact closed-form solutions of quadratic DD profile. For a maximum error less than 1%, 64
constant elements are needed, indicating more computational times as compared to the exact closed-form solution pre-
sented in this paper.

In the second example, we compare the stress fields of opening-mode DDs with uniform, linear, and quadratic relative
displacement profiles, respectively. In this example, each horizontal DD line has a length of 1 m located 1 m below the sur-
face. Along the DD line, we assume only the relative opening displacements and there is no tangential displacement discon-
tinuity (i.e., Dux = 0). Fig. 3a illustrates the contours of the horizontal normal stress rxx induced by the DD where Duy is
uniform and equals 0.005 m. Fig. 3b and c shows the contours of the stresses due to the linear and quadratic variations in
Duy, with the maximum relative discontinuity being 0.005 m at the crack center and zero at its left and right tips. The mate-
rial properties are set to l = 2 GPa and m = 0.25 in each case. The vertical normal stress ryy and shear stress rxy for these three
DD profiles are shown in Figs. 4 and 5, respectively. While Figs. 3–5 each show gross similarities, including a stress singu-
larity at the tips of the DD, they differ in detail, especially along the DD. For instance, the stress singularity at the tips is stron-
ger for constant DD than for the linear and quadratic ones, and the sign of the near-tip stress perturbation is more
heterogeneous as well. In addition, Fig. 5 demonstrates considerable difference between the shear stress rxy fields induced
Fig. 4. Contours of ryy/l for a horizontal DD, with length L = 1 m, located at y/L = 1.0 in the half plane for (a) uniform DD, (b) linear DD, and (c) quadratic DD.
The surface of the half plane is located at y = 0.
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by the uniform and non-uniform DDs. In particular, although the distribution of rxy is anti-symmetric on both sides of the
DD, the stress gradients are less severe near the DD tips in the non-uniform cases (Fig. 5b and c) as compared to the uniform
case (Fig. 5a). These figures further indicate that, except for the tips of the DD, at which discrepancies cannot be resolved due
to singularity, the peak stress magnitudes due to the uniform DD are about twice the linear one, with those due to the qua-
dratic one in between. This mirrors the relative difference between the average values of Duy in the three cases. Moreover,
the effect of the traction-free surface located at y = 0 on the stress distributions can also be observed in these figures. While
there are stress concentrations near the traction-free surface for the case of the normalized stress rxx (Fig. 3), the fields for
the normalized stresses ryy and rxy approach zero near the free surface (Figs. 4 and 5), which partially verifies the correct-
ness of the present formulations.

In the third example, the maximum shear stress field is calculated around an inclined normal fault represented by a
shearing DD with either a uniform, linear, or quadratic relative tangential displacements. The opening component is zero
along the line in each case. The normal stress perpendicular to and the shear stress parallel to the fault line are also calcu-
lated since these components control the conditions favoring slip ahead of the fault tip. The fault is a buried normal fault of
length L [26] in the half plane. The lower tip is fixed at y = 1000 m (y/L = 1.34) and its upper tip is located at y = 300 m (y/
L = 0.4) below the traction-free surface. The fault dips 70� and projects to intersect the surface at the origin. The average
dip slip is assumed to be 0.06 m and the material parameters are l = 2 GPa and m = 0.25. We consider three cases: (a) uniform
dip slip along the fault; (b) dip slip that varies linearly from a maximum at the midpoint of the fault to zero at both the upper
and lower tips; and (c) dip slip of a quadratic nature, with its maximum at midpoint of the fault and slip tapering to zero at
both the upper and lower tips. Again, zero normal DD is prescribed along the fault walls, i.e., the walls are required to remain
in contact and neither open nor interpenetrate. The contours of the maximum shear stress around the fault for these three
cases are shown in Fig. 6. In the uniform case, the stresses are strongly concentrated at the DD tip and diminish sharply
towards its center (Fig. 6a). This is a result of the constant displacement discontinuity Du terminating abruptly at the fault
tips. In the case where the slip varies linearly from a peak value to zero at the model fault tips (Fig. 6b), the maximum shear
stress is singular at the tip, but not as strongly singular as where the slip is constant [27]. This reflects the linear taper of the
slip to zero towards the model fault tip. Additionally, an even stronger stress singularity occurs where the peak slip occurs;
this reflects the discontinuity in the rate of change of the slip distribution there [27]. If the point of peak slip is close to the tip
of a model fault, then the associated singularity shifts closer to the tip too. For the quadratic slip distribution (Fig. 6c), the
Fig. 5. Contours of rxy/l for a horizontal DD, with length L = 1 m, located at y/L = 1.0 in the half plane for (a) uniform DD, (b) linear DD, and (c) quadratic DD.
The surface of the half plane is located at y = 0.



Fig. 6. Maximum shear stress induced by the dip-slip DD along an inclined normal fault with a dip of 70� (measured from the positive horizontal x-axis) in
the half plane: (a) uniform DD, (b) linear DD, and (c) quadratic DD. The lower tip of the fault is at y = 1000 m (y/L = 1.34) and its upper tip is at y = 300 m,
(y/L = 0.4).

Fig. 7. Normal stress perpendicular to and along a model fault with a dip of 70� in the half plane. The lower tip of the fault is at y = 1000 m (y/L = 1.34) and
its upper tip is at y = 300 m (y/L = 0.4). U-DD stands for uniform DD, L-DD for linear DD, and Q-DD for quadratic DD.
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maximum shear stress distribution along the fault has an intermediate character. The stresses are more strongly concen-
trated near the model fault tips than where the slip varies linearly (Fig. 6b), but not as strongly concentrated as where
the slip is constant (Fig. 6a). The maximum shear stress distribution along the model fault with the quadratic slip distribu-
tion (Fig. 6c) is much more uniform than where the slip is constant (Fig. 6a) or varies linearly from the slip maximum
towards the model fault tips (Fig. 6b). These results imply that the secondary shear fracturing around a fault could be highly
sensitive to the slip distribution. On a separate but related point, in other cases where both the slip distribution and its rate of



Fig. 8. Shear stress parallel to and along a model fault with a dip of 70� in the half plane. The lower tip of the fault is at y = 1000 m (y/L = 1.34) and its upper
tip is at y = 300 m (y/L = 0.4). U-DD stands for uniform DD, L-DD for linear DD, and Q-DD for quadratic DD.
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change taper to zero at the model fault tips, as in a so-called cohesive end zone [28], quadratic DD elements could be applied
to model near-tip stresses more precisely than constant-slip elements would allow.

Along the fault, Figs. 7 and 8 show partial profiles for the normal stress ry0y0 perpendicular to the fault and for the shear stress
ry0x0 parallel to the fault. Since the normal and shear stresses at the tips are singular, they have been excluded from the diagram.
The normal and shear stresses are normalized with respect to one-thousandth the shear modulus. Fig. 7 shows that the distri-
butions of normal stress ry0y0 along the faults are similar for all three cases but of different magnitudes. The largest absolute
magnitude occurs where the slip is uniform and the smallest where the slip varies linearly from a peak at the fault center.
The shear stresses in Fig. 8 are comparable near the middle of the fault for the uniform and quadratic slip distributions but sin-
gular for the linear case at midpoint due to discontinuity in the rate of change of the slip [27]. These variations in the slip dis-
tribution lead to non-negligible differences in the stress distributions for all stress tensor components. Therefore, the ability to
accurately represent the appropriate slip distribution should help predict secondary natural or induced fractures along faults.

4. Conclusions

The exact closed-form Green’s functions for a concentrated DD are utilized to derive the analytical expressions for the
stress fields in the half plane induced by the quadratic relative displacement (Du) distribution. The solution can be used
to simulate a general DD by approximating the distribution with piecewise uniform, linear, or quadratic segments. Four
key points emerge from our examples:

� The magnitude and shape of the stress contours near the DD depend highly on the relative displacement distribution. For
an opening-mode DD, except for the tips of the DD which discrepancies cannot be resolved due to singularity, the mag-
nitude of the stress components due to a uniform value of Du is about twice the linear case; the magnitude of stress com-
ponents due to the DD of quadratic profile lies in between.
� The distribution of the maximum shear stress around a fault modeled as a DD is different for uniform and non-uniform

(linear and quadratic) slip distributions. Furthermore, along the fault, the local shear and normal stresses near the DD are
also different for the three different slip distributions.
� For a model fault in a half plane, the maximum shear stress is shifted toward the surface due to the effect of the free

surface.
� In cases where the slip distribution has a zero slope near the crack tips, quadratic DD elements can avoid stress singular-

ities and hence can be used to model cohesive end zones more precisely than elements with constant displacement
discontinuities.

The obtained results for an arbitrary, non-uniform distribution of relative displacement using non-linear elements may
lead to more efficient numerical formulations. The methodology presented in this paper is in the exact form for a second
degree, linear or uniform profile of the relative displacement. The exact closed-form solution for a non-uniform DD in the
elastic isotropic half plane is unique, can be easily applied to simulate the realistic DD profile along a fracture, and can be
used to calculate the stress field around a fault, hydraulic fracturing cracks, and other types of DD.

Appendix A

In order to evaluate the C functions in Eq. (20), we first make use of Eq. (15) so that the complex variables z and �z along
the straight line segment can be expressed as
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z ¼ x1 þ iy1 þ ½ðx2 � x1Þ þ iðy2 � y1Þ�t
�z ¼ x1 � iy1 þ ½ðx2 � x1Þ � iðy2 � y1Þ�t

ðA1Þ
Then the exact closed-form expressions for the C functions can be found as follows.
C1p;xs ¼ 2L Af1ðk1; k2Þ þ Af 1ðk3; k4Þ
n o

C1p;ys
¼ 2iL Af1ðk1; k2Þ � Af 1ðk3; k4Þ

n o ðA2Þ

C1c;xs ¼ 2Lf2Af2ðk3; k4; k6; k4Þ � ð2Aþ BÞf 1ðk6; k4Þ � ð2Aþ BÞf 1ðk5; k2Þ þ 2Af 2ðk1; k2; k5; k2Þg
C1c;ys

¼ 2iLf2Af2ðk3; k4; k6; k4Þ � Bf1ðk6; k4Þ þ Bf 1ðk5; k2Þ � 2Af 2ðk1; k2; k5; k2Þg
ðA3Þ

C2p;xs ¼ 2Lf�2Af2ðk3; k4; k1; k2Þ þ ðAþ BÞf 1ðk5; k2Þg
C2p;ys

¼ 2iLf�2Af2ðk3; k4; k1; k2Þ þ ðA� BÞf 1ðk5; k2Þg
ðA4Þ

C2c;xs ¼ 2L ðAþ BÞf 1ðk1; k2Þ � 6Af 3ðk8; k9; k10; k5; k2Þ þ ð6Aþ 2BÞf 2ðk7; k4; k5; k2Þ þ 6Af 3ðk13; k14; k15; k5; k2Þ
n
�2Af 2ðk11;2k2; k5; k2Þ � ð4Aþ 2BÞf 2ðk12; k2; k5; k2Þ

o
C2c;ys

¼ 2iL ðB� AÞf 1ðk1; k2Þ þ 6Af 3ðk8; k9; k10; k5; k2Þ � 2ðAþ BÞf 2ðk7; k4; k5; k2Þ � 6Af 3ðk13; k14; k15; k5; k2Þ
n
þ2Af 2ðk11;2k2; k5; k2Þ þ 2Bf 2ðk12; k2; k5; k2Þ

o
ðA5Þ
where functions f1, f2 and f3 can be expressed as follows.
f 1ðp; qÞ ¼
Z 1

0

at2 þ bt þ c
ðpþ qtÞ2

dt ¼ a
ð2pþ qÞ
q2ðpþ qÞ þ

2p
q3 ln

p
pþ q

� �� �
� b

1
qðpþ qÞ þ

1
q2 ln

p
pþ q

� �� �
þ c

pðpþ qÞ ðA6Þ

f 2ðr; s; p; qÞ ¼
Z 1

0

ðr þ stÞðat2 þ bt þ cÞ
ðpþ qtÞ3

dt

¼ a
�rqð2pþ 3qÞ þ sð6p2 þ 9pqþ 2q2Þ

2q3ðpþ qÞ2
þ 2ð3sp� rqÞ

2q4 ln
p

pþ q

� �( )

þ b
rq2 � spð2pþ 3qÞ

2pq2ðpþ qÞ2
þ s

q3 ln
pþ q

p

� �( )
þ cð2rpþ spþ rqÞ

2p2ðpþ qÞ2
ðA7Þ

f 3ðr;s;w;p;qÞ¼
Z 1

0

ðrþ stþwt2Þðat2þbtþcÞ
ðpþqtÞ4

dt

¼a
r

3pðpþqÞ3
� s

q3ðpþqÞ�
sð3pþ5qÞ
6q2ðpþqÞ3

þ 4p3w

q4ðpþqÞ3
þwð30p2þ22pqþ3q2Þ

3q3ðpþqÞ3
þðsq�4pwÞ

q5 ln
pþq

p

� �( )

þb
2spþ rð3pþqÞ

6p2ðpþqÞ3
�qwð6p2þ15pqþ11q2Þ

6q4ðpþqÞ3
þw

q4 ln
pþq

p

� �( )
þc

rð3p2þ3pqþq2Þ
3p3ðpþqÞ3

þ sð3pþqÞþ2pw

6p2ðpþqÞ3

( )

ðA8Þ
with
a ¼ ðax þ ayÞ; b ¼ ðbx þ byÞ; c ¼ ðcx þ cyÞ ðA9Þ
and k1–k15 being the complex variables defined as follows.
k1 ¼ x1 þ iy1 � zs; k2 ¼ ðx2 � x1Þ þ iðy2 � y1Þ;
k3 ¼ x1 � iy1 � �zs; k4 ¼ ðx2 � x1Þ � iðy2 � y1Þ;
k5 ¼ x1 þ iy1 � �zs; k6 ¼ x1 � iy1 � zs;

k7 ¼ x1 � iy1; k8 ¼ k1k7;

k9 ¼ k1k4 þ k2k7; k10 ¼ k2k4;

k11 ¼ 2x1 þ 2iy1 � zs; k12 ¼ x1 þ iy1;

k13 ¼ k1k12; k14 ¼ k12k2 þ k2k1;

k15 ¼ k2
2

ðA10Þ
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