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Elastic Deformation due to Polygonal Dislocations

in a Transversely Isotropic Half-Space

by E. Pan, J. H. Yuan,* W. Q. Chen, and W. A. Griffith

Abstract Based upon the fundamental solution to a single straight dislocation seg-
ment, a complete set of exact closed-form solutions is presented in a unified manner
for elastic displacements and strains due to general polygonal dislocations in a trans-
versely isotropic half-space. These solutions are systematically composed of two
parts: one representing the solution in an infinite transversely isotropic medium and
the other accounting for the influence of the free surface of the half-space. Numerical
examples are provided to illustrate the effect of material anisotropy on the elastic dis-
placement and strain fields associated with dislocations. It is shown that if the rock
mass is strongly anisotropic, surface displacements calculated using an isotropic
model may result in errors greater than 20%, and some of the strain components near
the fault tip may vary by over 200% compared with the transversely isotropic model.
Even for rocks with weak anisotropy, the strains based on the isotropic model can also
result in significant errors. Our analytical solutions along with the corresponding
MATLAB source codes can be used to predict the static displacement and strain fields
due to earthquakes, particularly when the rock mass in the half-space is best approxi-
mated as transversely isotropic, as is the case for most sedimentary basins.

Online Material: MATLAB scripts to calculate rectangular and triangular dislo-
cations in a transversely isotropic half-space.

Introduction

Analytical solutions for dislocations of simple geom-
etries provide a useful means for inferring the behavior of
faults and intrusions at depth using remotely sensed data
on the Earth’s surface (Segall, 2007, and references therein).
Early approaches were limited to two dimensions, utilizing
analytical solutions for screw dislocations to study strike-slip
faults (e.g., Thatcher, 1975), edge dislocations as models of
dip-slip faults (e.g., Freund and Barnett, 1976), as well as
pressurized crack models of intrusive processes (e.g., Dela-
ney and Pollard, 1981). Extending the approach to three di-
mensions, Okada’s analytical solutions (Okada, 1985, 1992)
for rectangular faults received substantial applications in
geophysics due to their analytical nature. Applications of the
rectangular fault model in the field of geodesy are also very
diverse and vary from inferring dike propagation history
(e.g., Yun et al., 2006; Amelung et al., 2007) to spatial and
temporal reconstructions of earthquake slip (e.g., Johnsson
et al., 2002; Segall, 2007, and references therein) from sur-
face displacements measured using Interferometric Synthetic
Aperture Radar and Global Positioning System data. King

et al. (1994) showed that static Coulomb stress changes
calculated using rectangular dislocation models can be used
as a triggering predictor, as positive Coulomb stress changes
are typically associated with regions of large aftershock den-
sities. Following an approach similar to King et al. (1994),
Micklethwaite and Cox (2004) showed that static stress
changes calculated using the rectangular dislocation model
can be utilized to pinpoint potential locations of hydrother-
mal mineral deposits and related precious metals.

Although rectangular dislocations (or displacement dis-
continuities) are useful in fault deformation analysis, polygo-
nal elements (such as triangular dislocations) allow a greater
flexibility when the model surfaces (faults, joints, intrusions,
and bedding discontinuities) are complex in three dimen-
sions (Maerten et al., 2014). Jeyakumaran et al. (1992) de-
rived the triangular dislocation solution by superposing the
solution for angular dislocations in an isotropic half-space
(Yoffe, 1960, 1961; Comninou and Dunders, 1975). Thomas
(1993) utilized the triangular dislocation solution in an iso-
tropic linear elastic half-space to develop the code Poly3D.
Poly3D has now been used by dozens of researchers on stud-
ies of complex geological discontinuities ranging from earth-
quake hazards (Griffith and Cooke, 2004; Maerten et al.,
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2005) to reservoir geomechanics (Maerten et al., 2002; Chan
and Zoback, 2007). A detailed and reliable algorithm for the cal-
culation of triangular dislocation-induced displacement, strain,
and stress fields was presented byMeade (2007), who also made
the source code available for convenient implementation. Very
recently, Maerten et al. (2014) presented a review of the develop-
ment and applications of Poly3D, which later became known as
iBem3D. Together, Poly3D and iBem3D found applications in
over 130 published papers (Maerten et al., 2014). Many of these
studies focused on deformation induced by faults in sedimentary
basins where the assumption of isotropy presents some limita-
tions (e.g., Griffith and Cooke, 2004; Muller et al., 2006).

Although the assumption of material isotropy is often ap-
propriate in crystalline basement rocks, sedimentary rock
masses are best described as transversely isotropic with the sedi-
mentary bedding parallel to the plane of isotropy (Amadei,
1996; Wang and Liao, 1998; Gercek, 2007). Furthermore, a
dislocation of polygonal shape is more convenient to approxi-
mate the shapes of real discontinuities, particularly when the
discontinuities are represented by meshes of multiple connected
polygonal elements. Therefore, it would bemore desirable if the
half-space can be transversely isotropic and the dislocation can
be of a general polygonal shape, which motivates the present
study. This article is organized as follows. In the Problem De-
scription section, the problems to be solved will be defined,
along with a brief introduction of the linear elastic material con-
stants used to characterize the transversely isotropic solid. In the
Point-Source Solutions in a Transversely Isotropic Half-Space
section, we summarize the point-force and point-dislocation
solutions in a transversely isotropic half-space. In the Finite-
Dislocation Solutions in a Transversely Isotropic Half-Space
section, we derive the finite-dislocation solution in a trans-
versely isotropic half-space; and, in the Polygonal-Source Sol-
utions in a Transversely Isotropic Half-Space section, based on
the fundamental solution to a straight dislocation segment, the
elastic displacements and strains due to polygonal strike-slip
faults, dip-slip faults, and tensile fractures are obtained in exact
closed forms. Finally, in the Numerical Examples section, we
provide numerical examples to verify the correctness of the de-
rived solutions and to illustrate the influence of material
anisotropy on the elastic displacement and strain fields around
simple rectangular and triangular dislocations. We summarize
our work in the Conclusions section. Ⓔ Solutions provided
here are also available in the electronic supplement to this article
in the form of four individual MATLAB codes. Exact closed-
form expressions for the displacement and distortion fields due
to a straight segment of the dislocation loop are given in Ap-
pendix A. These expressions are written in terms of the func-
tions directly used in the MATLAB programs. The function
relations between those defined in this article and those in
the MATLAB codes are listed in Appendix B.

Problem Description

Figure 1 shows a transversely isotropic half-space with
an embedded dislocation of polygonal shape. A global

Cartesian coordinate system is drawn such that the x1–x2
plane is the free surface of the half-space, and x3 ≤ 0 is
the problem domain. We assume the symmetry axis of the
transversely isotropic material is parallel to the x3 axis (i.e.,
the plane of isotropy of the transversely isotropic material is
parallel to the x1–x2 plane). The strike-slip, dip-slip, and
tensile components of the dislocation are denoted by Us, Ud,
and Ut, respectively, and each component represents the
movement of the hanging-wall-side block relative to the foot-
wall-side block. The strike direction of the fault relative to
the x1 axis is characterized by the rotation angle ϕ, and the
dip angle of the fault is characterized by the inclined angle δ.
The main goal of this article is to derive the expressions of
the displacements and strains at any field point x�x1; x2; x3�
due to a general polygonal dislocation arbitrarily embedded
in the transversely isotropic half-space.

In this article, summation over a repeated (or multiple-
repeated) index is assumed unless this index occurs on both
sides of an equation. Also, the range of values of Roman
indexes (i, j, k, etc.) is 1, 2, 3, whereas the range of values
for Greek letters (α, β, γ, etc.) is 1, 2, unless otherwise
specified. For example, in the equation Dij � AαBiαCiα,
i�� 1; 2; 3� is a free index without summation because it oc-
curs on both sides of this equation, whereas α is a dummy
index that should be summed from 1 to 2 because it occurs
only on the right side of this equation and repeats itself
three times. The single index j�� 1; 2; 3� on the left side
of the above equation is also a free index that indicates
Di1 � Di2 � Di3.

For a transversely isotropic material, if the plane of isot-
ropy is parallel to the x1–x2 plane, then the elastic stiffness
tensor cijkl can be expressed as

Figure 1. Geometry of a polygonal dislocation ABCDE with
three types of discontinuities Us, Ud, and Ut in a transversely iso-
tropic half-space (with x1–x2 being the plane of isotropy and x3 � 0
being the free surface). In this figure, Us > 0, Ud > 0, Ut > 0,
δ > 0, and ϕ < 0. The color version of this figure is available only
in the electronic edition.
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cijkl � �c11 − 2c66�δijδkl � c66�δikδjl � δilδjk�
� �c11 � c33 − 2c13 − 4c44�δi3δj3δk3δl3
� �c13 − c11 � 2c66��δi3δj3δkl � δk3δl3δij�
� �c44 − c66��δj3δk3δil � δi3δl3δjk � δj3δl3δik

� δi3δk3δjl� �1�

(Pan and Chou, 1976), in which δij is the Kronecker delta;
c11, c13, c33, c44, and c66 are the five independent elastic stiff-
ness constants.

Two basic sets of material constants (see Fabrikant, 2004),
which will be used frequently in this article, are defined as

m1;2�−1� 1

2c44�c13�c44�

×
�
�c11c33−c213��

�����������������������
c11c33−c213

q �����������������������������������������
c11c33−�c13�2c44�2

q �
�2�

and

γα≡
1

sα
�

������������������������������������������
c44 �mα�c13 � c44�

c11

s
�

������������������������������������������
mαc33

mαc44 � �c13 � c44�
r

;

γ3≡
1

s3
�

�������
c44
c66

r
; �3�

with

m1m2 � 1;

m1 −m2 � Θ�γ1 − γ2�; and

Θ � c11�γ1 � γ2�=�c13 � c44�: �4�
In equation (2),m1 andm2 correspond to the result on the right
side of the equation with plus and minus signs, respectively.
We point out that these expressions and the solutions derived
below are based on the assumption that the material is a non-
degenerate transversely isotropic material. In other words, for
this material, γ1 ≠ γ2 (i.e., m1 ≠ m2). Should the material be
degenerate with isotropy being a special case, one only needs
to slightly perturb the material properties to distinguish γ1 and
γ2 (and thus m1 and m2) (Pan, 1997). The solutions thus ob-
tained for a nearly isotropic material can still be verified against
the isotropic solutions of Okada (1985, 1992), as will be shown
below in the Numerical Examples section.

Point-Source Solutions in a Transversely Isotropic
Half-Space

We first derive the point-force Green’s tensor uij�y; x�,
which denotes the ith component of the displacement vector
at y�y1; y2; y3� due to a unit point force in the jth direction
applied at x�x1; x2; x3� in a transversely isotropic half-space.
Using the image method, this Green’s tensor can be expressed

in terms of a simple superposition of two individual
parts as

uij�y; x� � u∞ij �y; x� � ucij�y; x�; �5�
in which u∞ij �y; x� is the point-force Green’s tensor of a trans-
versely isotropic full-space, whereas ucij�y; x� is the comple-
mentary part from the image source due to the free surface of
the half-space. They can be expressed in a new, simple, and
unified way as�

u∞ij �y; x�
ucij�y; x�

�
� 1

4πc44

∂2

∂yi∂xj
�
Ψ∞

ij �y; x�
Ψc

ij�y; x�
�

� δij
4πc44

∂2

∂x23
�
Φ∞

i �y; x�
Φc

i �y; x�
�

�6�

(see Yuan, Pan, and Chen, 2013), in which

(
Ψ∞

ξη �y; x�
Ψc

ξη�y; x�

)
�

(
ψ∞
1 �y; x� − γ3χ3�y; x�

ψ c
1�y; x� − γ3χ33�y; x�

)
;

(
Ψ∞

3η�y; x�
Ψc

3η�y; x�

)
�

(
ψ∞
2 �y; x�
ψc
2�y; x�

)
;

(
Ψ∞

ξ3�y; x�
Ψc

ξ3�y; x�

)
�

(
ψ∞
3 �y; x�
ψc
3�y; x�

)
;

(
Ψ∞

33�y; x�
Ψc

33�y; x�

)
�

(
ψ∞
4 �y; x�
ψc
4�y; x�

)
; �7a�

and�Φ∞
ξ �y; x�

Φc
ξ�y; x�

�
�

�
γ33χ3�y; x�
γ33χ33�y; x�

�
;

�Φ∞
3 �y; x�

Φc
3�y; x�

�
�

�
0

0

�
:

�7b�
The functions in equations (6), (7a), and (7b) are defined as

ψ∞
q �y;x� � 1

Θ
�−1�β
γ1 − γ2

Tq
βχβ�y;x�;

ψc
q�y;x� �

1

Θ
�−1�α�β�1Pαβ
�γ1 − γ2�2Λ

Tq
αβχαβ�y;x� �q� 1;2;3;4�

�8�
(see Ding et al., 2006; Yuan, Pan, and Chen, 2013), in which

T1
β � γβ=mβ; T2

β � T3
β � γβ; T4

β � mβγβ;

T1
αβ � γβ=mβ; T2

αβ � mαγβ=mβ; T3
αβ � γβ;

T4
αβ � mαγβ; �9�

and

Λ � s1s2�m1 �m2 � 2�;
Pαβ � −�m3−α � 1��mβ � 1��s3−α � sβ�: �10�
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The potential functions χj and χij in equations (7a), (7b),
and (8) are defined as

χj�y; x�≡χj �
��zj ln�Rj � zj� − Rj if Rj � zj ≠ 0

−zj ln�Rj − zj� − Rj if Rj � zj � 0

χij�y; x�≡χij � −zij ln�Rij − zij� − Rij �11�

(see Fabrikant, 2004; Ding et al., 2006), in which

Rj � Rj�y; x� �
����������������������������������������������������������������
�y1 − x1�2 � �y2 − x2�2 � �zj�2

q
;

Rij � Rij�y; x� �
�����������������������������������������������������������������
�y1 − x1�2 � �y2 − x2�2 � �zij�2

q
;

�12�
and

zj � zj�y; x� � sj�y3 − x3�;
zij � zij�y; x� � siy3 � sjx3: �13�

We point out that the above point-force solutions are
extremely simple, involving only the scaled distances be-
tween the source and field points Rj and Rij and the natural
logarithmic function ln� �, as defined in equation (11).

Based on these point-force solutions, we now present
the corresponding point-dislocation solution. We consider an
infinitesimal surface of area dA with an arbitrary orientation
in a transversely isotropic half-space. An infinitesimal dislo-
cation is created by displacing the lower surface of dA by the
Burgers vector b�b1; b2; b3� relative to its upper surface and
then rejoining the lower and upper surfaces together. We de-
fine the positive normal n�n1; n2; n3� of the infinitesimal sur-
face as the outward normal of the lower surface (Pan, 1991);
then the positive direction of the closed dislocation curve
surrounding the infinitesimal surface is determined by the
positive normal n according to the right-hand rule (Yuan,
Chen, and Pan, 2013). Using Betti’s reciprocal theorem (see
Pan, 1989), the point-dislocation solution in a transversely
isotropic half-space can be found simply as

uijm�x; y� � −cijkl
∂
∂yl ukm�y; x�; �14�

in which uijm�x; y� is the mth component of the displacement
vector at x�x1; x2; x3� due to an infinitesimal dislocation of
unit area located at y�y1; y2; y3� with positive normal compo-
nent along ei and Burgers vector component along ej. Here,
ei�i � 1; 2; 3� is the unit base vector of the global Cartesian
coordinate system. It is noted that, except for the minus sign,
the right side of equation (14) is actually the Green’s stress
tensor with components (ij) at y�y1; y2; y3� due to a unit point
force in the mth direction applied at x�x1; x2; x3� (Pan, 1991).

Finite-Dislocation Solutions in a Transversely
Isotropic Half-Space

We now assume a three-dimensional dislocation loop C
of arbitrary shape with Burgers vector b�b1; b2; b3�, which
bounds a curved surface A in a transversely isotropic half-
space. We point out that the polygonal dislocation surface
ABCDE shown in Figure 1 is a simple example. By integrat-
ing the point-dislocation solution in equation (14) over the
curved surface A, the elastic displacement field induced
by the loop C can be expressed as

um�x� �
Z
A
dAibju

ij
m�x; y� �15�

(see Hirth and Lothe, 1982; Yuan, Chen, and Pan, 2013;
Yuan, Pan, and Chen, 2013), in which um�x� is the mth com-
ponent of the displacement vector at x�x1; x2; x3� due to the
dislocation loop in the half-space, and dAi�� nidA� is the ith
component of the area element vector dA at y�y1; y2; y3�.

The area integral in equation (15) can be transformed into
a line integral form as follows (see Yuan, Pan, and Chen, 2013):

um�x� � u∞m �x� � ucm�x�; �16�

in which

(
u∞m �x�
ucm�x�

)
�−

bm
4π

(
Ω∞

3 �x�
Ωc

m;33�x�

)
−

1

4π
∮Cbjεmjkdyk

(
W∞

m;j�y;x�
Wc

m;j�y;x�

)

−
1

4π

∂
∂xm ∮Cbjεijkdyk

∂
∂yi

(
W∞

m;ij�y;x�
Wc

m;ij�y;x�

)
: �17�

In equation (17), the subscript semicolon is used to separate the
subscript groups, and εijk is the permutation symbol. Also in
equation (17), we define

Ω∞
3 �x� �

Z
A

�
dAξ

∂
∂yξ � γ23dA3

∂
∂y3

�
1

γ3R3

;

Ωc
β;33�x� � ∮ Cεi3kdyk ∂2

∂yi∂y3 γ3χ33;

Ωc
3;33�x� � −∮ Cεi3kdyk ∂2

∂yi∂y3 γ3χ33; �18a�

(
W∞

β;ξ�y; x�
Wc

β;ξ�y; x�

)
� ∂2

∂y23
�
γ3χ3

γ3χ33

�
;

(
W∞

β;3�y; x�
Wc

β;3�y; x�

)
� γ23

∂2

∂y23
�
γ3χ3

γ3χ33

�
;

(
W∞

3;ξ�y; x�
Wc

3;ξ�y; x�

)
� −

∂2

∂x3∂y3
�
γ3χ3

γ3χ33

�
;

(
W∞

3;3�y; x�
Wc

3;3�y; x�

)
� −γ23

∂2

∂x3∂y3
�
γ3χ3

γ3χ33

�
; �18b�
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(
W∞

β;ξη�y; x�
Wc

β;ξη�y; x�

)
� 2s23

�
ψ∞
1 − γ3χ3

ψc
1 − γ3χ33

�
;

(
W∞

β;j3�y; x�
Wc

β;j3�y; x�

)
�

(
W∞

β;3j�y; x�
Wc

β;3j�y; x�

)
�

�
ψ∞
1 � ψ∞

2 − γ3χ3

ψc
1 � ψ c

2 − γ3χ33

�
;

(
W∞

3;ξη�y; x�
Wc

3;ξη�y; x�

)
� 2s23

�
ψ∞
3

ψc
3

�
;

�W∞
3;j3�y; x�

Wc
3;j3�y; x�

�
�

(
W∞

3;3j�y; x�
Wc

3;3j�y; x�

�
�

�
ψ∞
3 � ψ∞

4 � γ3χ3

ψ c
3 � ψc

4 � γ3χ33

�
:

�18c�

The line integrals in equation (17) are along the positive
direction of the closed dislocation loop C. The area integral
Ω∞

3 �x� shown in equation (18a) is the quasi-solid angle sub-
tended by the cut surface of the dislocation loop at point x in
the transversely isotropic full-space, which can also be trans-
formed into a line integral (see Yuan, Chen, and Pan, 2013).

We now let Uij�x� denote the ith component of the dis-
placement vector at x�x1; x2; x3� due to a dislocation loop in
the half-space with unit Burgers vector in the jth direction.
Then Uij�x� can be expressed as

Uij�x� � U∞
ij �x� �Uc

ij�x�; �19�

in which U∞
ij �x� denotes the ith component of the displace-

ment vector at x�x1; x2; x3� due to a dislocation loop in
the corresponding full-space with the unit Burgers vector in
the jth direction, and Uc

ij�x� accounts for the influence of the
free surface of the half-space. Although all components in
Uij�x� can be directly obtained from equation (17), we
modify Uβ3�x� slightly for the benefit of further simplifica-
tions. From equation (17) we have

4π

�U∞
β3�x�

Uc
β3�x�

�
� −∮Cεβ3ξdyξγ23 ∂2

∂y23
�
ψ∞
0

ψ c
0

�

−
∂
∂xβ ∮Cεα3ηdyη

∂
∂yα

�
ψ∞
1 � ψ∞

2 − ψ∞
0

ψc
1 � ψc

2 − ψc
0

�
:

�20�

Then, by utilizing the following relation

∮Cεα3ηdyη ∂2

∂yβ∂yα
�
ψ∞
1 � ψ∞

2 − ψ∞
0

ψ c
1 � ψc

2 − ψ c
0

�

� ∮Cεαβ3dy3 ∂2

∂y3∂yα
�
ψ∞
1 � ψ∞

2 − ψ∞
0

ψ c
1 � ψc

2 − ψc
0

�

� ∮Cεβ3ξdyξ ∂2

∂y2α
�
ψ∞
1 � ψ∞

2 − ψ∞
0

ψc
1 � ψ c

2 − ψc
0

�
; �21�

equation (20) can be transformed into

4π

�U∞
β3�x�

Uc
β3�x�

�
� ∮Cεβ3ξdyξ ∂2

∂y2α
�
ψ∞
1 � ψ∞

2

ψ c
1 � ψc

2

�

� ∮Cεαβ3dy3 ∂
∂y3

∂
∂yα

�
ψ∞
1 � ψ∞

2 − ψ∞
0

ψc
1 � ψc

2 − ψc
0

�
:

�22�
With these preparations, we can now express the dislo-

cation-loop-induced fields in terms of simple line integrals
along the loop with the integrands being elementary func-
tions. We point out that, in this article, the dislocation loop
C is called simple if one of the following conditions is sat-
isfied: (I) the dislocation surface A is described by a single-
valued function x3 � S�x1; x2� or (II) the dislocation surface
A coincides with a certain cylindrical surface perpendicular
to the x1–x2 plane. Actually, condition (II) can be considered
as a limiting case of condition (I), and a general loop can
always be divided into certain simple ones (see Yuan, Chen,
and Pan, 2013). Because of the above facts and without loss
of generality, we now express Uij�x� explicitly for a simple
dislocation loop C under condition (I). Furthermore, we or-
der them first by the full-space solution and then followed by
the complementary part.

4π�−1�ξU∞
ξξ �x� � �−1�ξ�−Ω∞

3 � − gisiI
ξ3
2;i;�3−ξ�

− 2s23fiγiC
12
i ; �23a�

4π�−1�ξU∞
ξ�3−ξ��x� � s3I∼0;3;3 � gisiI

ξ3
2;i;ξ − 2s23fiγiCi

� 2s23fiγiC
ξξ
i ; �23b�

4π�−1�ξU∞
3�3−ξ��x��−mβsβ�2s23fβIξ32;β;3�gβI∼0;β;ξ�; �23c�

4π�−1�ξU∞
�3−ξ�3�x� � −gisiI

ξ3
2;i;3 − gαγαI∼0;α;ξ; �23d�

4πU∞
33�x� � sgnhS�x1; x2� − x3i �C�mβgβsβC−

β ; �23e�

4π�−1�ξUc
ξξ�x� � �−1�ξ�− �C� s3C−

33� − gijsiI
ξ3
2;ij;�3−ξ�

− 2s23fijγiC
12
ij − 4s23fijL

123
4;ij;3; �24a�

4π�−1�ξUc
ξ�3−ξ��x� � s3I∼0;33;3 � gijsiI

ξ3
2;ij;ξ − 2s23fijγiCij

� 2s23fijγiC
ξξ
ij � 2s23fij �C

ξ
ij; �24b�

4π�−1�ξUc
3�3−ξ��x� � mβsβ�2s23fαβIξ32;αβ;3 � gαβI∼0;αβ;ξ�

� 2s23FL
ξ
2;∼;3; �24c�
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4π�−1�ξUc
�3−ξ�3�x� � −gijsiI

ξ3
2;ij;3 − gαβγαI∼0;αβ;ξ; �24d�

4πUc
33�x� � − �C −mβgαβsβC−

αβ: �24e�

In equations (23) and (24), sgnhxi is the sign function, and

Cηξ
i �x� � 2s2i I

ηξ33
4;i;3�x� � Iηξ2;i;3�x�;

Cηξ
i �x� � 2s2i I

ηξ33
4;ij;3�x� � Iηξ2;ij;3�x�; �25a�

C−
i �x� � I232;i;1�x� − I132;i;2�x�;

C−
ij�x� � I232;ij;1�x� − I132;ij;2�x�; �25b�

Ci�x� � s2i I
33
2;i;3�x� � I∼0;i;3�x�;

Cij�x� � s2i I
33
2;ij;3�x� � I∼0;ij;3�x�; �25c�

�C�x� � L1
2;∼;2�x� − L2

2;∼;1�x�;
�Cξ
ij�x� � 2Lξξ3

4;ij;3�x� − L3
2;ij;3�x�;

Ω∞
3 �x� � −sgnhS�x1; x2� − x3i �C�x� − s3C−

3 �x�: �25d�

We point out that the difference between the three function

pairs Cηξ
i �x� and Cηξ

ij �x� in equation (25a), C−
i �x� and C−

ij�x�
in equation (25b), and Ci�x� and Cij�x� in equation (25c) is
that the latter expression in each pair can be obtained directly
from the former one by replacing the subscript i in the former
function I�;I;��x� by subscripts ij to become I�;ij;��x�. This is
equivalent to replacing x3 by x

ij
3 defined in equation (27) be-

low. In other words, once we have the exact closed-form ex-
pressions for the former functions, we can obtain the exact
closed-form expressions for the latter functions by simply
replacing x3 by xij3 in the former expressions. This becomes
apparent by looking at the definitions of the involved func-
tions I�x�, L�x�, and J�x� below.

I∼0;i;k�x1; x2; x3� � ∮C 1

Ri
dyk;

I∼0;ij;k�x1; x2; x3�≡I∼0;∼;k�x1; x2; xij3 � � ∮C 1

Rij
dyk; �26a�

Iξ3���N;i;k�x1; x2; x3� � ∮C �yξ − xξ��y3 − x3� � � �
�RNRi

dyk;

Iξ3���N;ij;k�x1; x2; x3�≡Iξ3���N;∼;k�x1; x2; xij3 �

� ∮C �yξ − xξ��γizij� � � �
�RNRij

dyk; �26b�

Lξ3���
N;∼;k�x1; x2; x3� � ∮C �yξ − xξ��y3 − x3� � � �

�RN dyk;

Lξ3���
N;ij;k�x1; x2; x3�≡Lξ3���

N;∼;k�x1; x2; xij3 �

� ∮C �yξ − xξ��γizij� � � �
�RN dyk; �26c�

Jξ3���N;i;k�x1; x2; x3� � ∮C �yξ − xξ��y3 − x3� � � �
�RNR3

i

dyk;

Jξ3���N;ij;k�x1; x2; x3�≡Jξ3���N;∼;k�x1; x2; xij3 �

� ∮C �yξ − xξ��γizij� � � �
�RNR3

ij

dyk; �26d�

in which N is an even number and

�R �
������������������������������������������������
�y1 − x1�2 � �y2 − x2�2

q
; xij3 � −γisjx3: �27�

Again, the paired function relation discussed above can
be clearly observed from equations (26a), (26b), and (26d), in
which Ri is involved in the integrand. We point out that the
function J�x� defined in equation (26d) will occur in later der-
ivations (e.g., in equations 30a–h and 31a–h).We also remark,
in some special cases, the line integrals in equation (26)
become divergent so that they should be integrated in the
finite-part sense.

We further point out that, in equations (23) and (24),
although equations (23d) and (24d) are derived from
equation (22), equations (23a)–(23c), (23e), (24a)–(24c),
and (24e) are all derived from equation (17). Also in
equations (23) and (24), the coefficients are defined as

fα �
�−1�α�1m3−α

m1 −m2

; gα � �mα � 1�fα; f3 � g3 � 1;

fαβ �
�−1�α�β�1�m3−α � 1��m3−β � 1��γ3−α � γβ�

Θ�m1 �m2 � 2��γ1 − γ2�2
;

gαβ � �mα � 1�fαβ; f33 � g33 � 1; fα3 � gα3 � 0;

f3β � g3β � 0; F � Θ�γ1 � γ2�
�m1 �m2 � 2� − 1: �28�

Note that when deriving equations (23) and (24), use has
been made of the following relations:

X
i

fi � 0;
X
i

gi � 0; 1�
X
α

X
β

gαβ � 0;

X
α

X
β

�mβ�1�gαβ � 0; 1�
X
α

X
β

�mβ�1�sβγαfαβ � 0:

�29�
We remark that, instead of taking derivatives of the dis-

placement solutions, the distortions can also be calculated
directly from equations (17) and (22) as follows:
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4π�−1�ξ
∂U∞

η�3−ξ��x�
∂xτ � εηξ3�−1�τs3�J30;3;�3−τ� − J�3−τ�0;3;3 �

� δηξs3Jτ0;3;3 � gisiC
ητ
i;ξ � 2s23fiγiC

ηξτ
i ;

�30a�

4π�−1�ξ
∂U∞

η�3−ξ��x�
∂x3 � δηξs33J

3
0;3;3 − s3J

ξ
0;3;η − gβsβJ

η
0;β;ξ

− 2s23fjsjC
ηξ
j;3; �30b�

4π�−1�ξ
∂U∞

3�3−ξ��x�
∂xτ � −mβgβsβJτ0;β;ξ − 2s23mβfβsβC

ξτ
β;3;

�30c�

4π�−1�ξ
∂U∞

3�3−ξ��x�
∂x3 � −mβs2β�gβsβJ30;β;ξ − 2s23fβγβJ

ξ
0;β;3�;

�30d�

4π�−1�ξ
∂U∞

�3−ξ�3�x�
∂xτ � −gβγβJτ0;β;ξ − gisiC

ξτ
i;3; �30e�

4π�−1�ξ
∂U∞

�3−ξ�3�x�
∂x3 � −gβsβJ30;β;ξ � gisiJ

ξ
0;i;3; �30f�

4π
∂U∞

33�x�
∂xτ � −�−1�τmβgβsβ�J�3−τ�0;β;3 − J30;β;�3−τ��; �30g�

4π
∂U∞

33�x�
∂x3 � mβgβsβ�J10;β;2 − J20;β;1�; �30h�

4π�−1�ξ
∂Uc

η�3−ξ��x�
∂xτ � εηξ3�−1�τs3�J30;33;�3−τ� − J�3−τ�0;33;3�

� δηξs3Jτ0;33;3 � gijsiC
ητ
ij;ξ

� 2s23fijγi�Cηξτ
ij � 2si �C

ηξτ
ij �; �31a�

4π�−1�ξ
∂Uc

η�3−ξ��x�
∂x3 � −δηξs33J30;33;3 � s3J

ξ
0;33;η

� gαβsβJ
η
0;αβ;ξ

� 2s23�fijsjCηξ
ij;3 − F �Cηξ�; �31b�

4π�−1�ξ
∂Uc

3�3−ξ��x�
∂xτ �mβgαβsβJτ0;αβ;ξ

�2s23�mβfαβsβC
ξτ
αβ;3�F �Cξτ�; �31c�

4π�−1�ξ
∂Uc

3�3−ξ��x�
∂x3 � −mβs2β�gαβsαJ30;αβ;ξ

− 2s23fαβγαJ
ξ
0;αβ;3�; �31d�

4π�−1�ξ
∂Uc

�3−ξ�3�x�
∂xτ � −gαβγαJτ0;αβ;ξ − gijsiC

ξτ
ij;3; �31e�

4π�−1�ξ
∂Uc

�3−ξ�3�x�
∂x3 � gαβsβJ30;αβ;ξ − gijsjJ

ξ
0;ij;3; �31f�

4π
∂Uc

33�x�
∂xτ � �−1�τmβgαβsβ�J�3−τ�0;αβ;3 − J30;αβ;�3−τ��; �31g�

4π
∂Uc

33�x�
∂x3 � mβgαβsβsβγα�J10;αβ;2 − J20;αβ;1�; �31h�

in which

�Cηξ�x� � 2Lηξ
4;∼;3�x� − δηξL∼

2;∼;3�x�
�Cηξτ
ij �x� � 4Lηξτ3

6;ij;3�x� − δητL
ξ3
4;ij;3�x�

− δξτL
η3
4;ij;3�x� − δηξLτ3

4;ij;3�x�; �32a�

Cηξ
i;k�x� � 2Iηξ34;i;k�x� � Jηξ32;i;k�x� − δηξI32;i;k�x�

Cηξ
ij;k�x� � 2Iηξ34;ij;k�x� � Jηξ32;ij;k�x� − δηξI32;ij;k�x�; �32b�

Cηξτ
i �x� � 8s2i I

ηξτ33
6;i;3 �x� � 4Iηξτ4;i;3�x� − Jηξτ2;i;3�x�

− δξτ	2s2i Iη334;i;3�x� � Iη2;i;3�x�

− δηξ	2s2i Iτ334;i;3�x� � Iτ2;i;3�x�

− δητ	2s2i Iξ334;i;3�x� � Iξ2;i;3�x�
;

Cηξτ
ij �x� � 8s2i I

ηξτ33
6;ij;3�x� � 4Iηξτ4;ij;3�x� − Jηξτ2;ij;3�x�

− δξτ	2s2i Iη334;ij;3�x� � Iη2;ij;3�x�

− δηξ	2s2i Iτ334;ij;3�x� � Iτ2;ij;3�x�

− δητ	2s2i Iξ334;ij;3�x� � Iξ2;ij;3�x�
: �32c�

One observes that the functions defined in equations (32b)
and (32c) are function pairs between their indexes i and ij, as
discussed previously.We further note that while equations (30e),
(30f), (31e), and (31f) are derived from equation (22), other dis-
tortion components in equations (30) and (31) are obtained from
equation (17).

We also remark that when deriving the components in-
volving the solid angle (referring to equations 18a and 23a),
use has been made of the following relations (see Yuan,
Chen, and Pan, 2013; Yuan, Pan, and Chen, 2013):
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∂Ω∞
3 �x�
∂xτ � ∮C

�
εταk

∂
∂yα�γ23ετ3k

∂
∂y3

�
1

γ3R3

dyk;

∂Ωc
1;33�x�
∂xτ �∂Ωc

2;33�x�
∂xτ � ∮C

�
εταk

∂
∂yα�γ23ετ3k

∂
∂y3

�
1

γ3R33

dyk;

∂Ωc
3;33�x�
∂xτ �−∮C

�
εταk

∂
∂yα�γ23ετ3k

∂
∂y3

�
1

γ3R33

dyk: �33�

When deriving equations (30b) and (31b), use has been made
of the following identity:

δαηεξ3β � δαξε3ηβ � −δαβεξη3: �34�

We finally point out that equations (23), (24), (30), and (31)
are still applicable to a simple dislocation loop corresponding
to condition (II), provided that we set the hS�x1; x2� − x3i
term in equations (23a) and (23e) to be zero.

Polygonal-Source Solutions in a Transversely
Isotropic Half-Space

We now consider a dislocation of polygonal shape lying
within a general flat plane characterized by the two orienta-
tion angles ϕ and δ (Fig. 1). The strike-slip, dip-slip, and
tensile components of the dislocation are denoted by Us,
Ud, and Ut, respectively (Fig. 1). Using the coordinate trans-
formations, we can derive the induced (global) displace-
ments and distortions as follows:

For a strike-slip fault,

ui�x� � −Us cosϕ	U∞
i1 �x� �Uc

i1�x�

− Us sinϕ	U∞

i2 �x� � Uc
i2�x�
;

∂ui�x�
∂xj � −Us cosϕ

�∂U∞
i1 �x�
∂xj � ∂Uc

i1�x�
∂xj

�

− Us sinϕ
�∂U∞

i2 �x�
∂xj � ∂Uc

i2�x�
∂xj

�
: �35a�

For a dip-slip fault,

ui�x� � Ud sinϕ cos δ	U∞
i1 �x� �Uc

i1�x�

− Ud cosϕ cos δ	U∞

i2 �x� �Uc
i2�x�


− Ud sin δ	U∞
i3 �x� � Uc

i3�x�
;
∂ui�x�
∂xj � Ud sinϕ cos δ

�∂U∞
i1 �x�
∂xj � ∂Uc

i1�x�
∂xj

�

− Ud cosϕ cos δ
�∂U∞

i2 �x�
∂xj � ∂Uc

i2�x�
∂xj

�

− Ud sin δ
�∂U∞

i3 �x�
∂xj � ∂Uc

i3�x�
∂xj

�
: �35b�

For a tensile fracture,

ui�x� � −Ut sinϕ sin δ	U∞
i1 �x� �Uc

i1�x�

� Ut cosϕ sin δ	U∞

i2 �x� �Uc
i2�x�


− Ut cos δ	U∞
i3 �x� �Uc

i3�x�
;
∂ui�x�
∂xj � −Ut sinϕ sin δ

�∂U∞
i1 �x�
∂xj � ∂Uc

i1�x�
∂xj

�

� Ut cosϕ sin δ
�∂U∞

i2 �x�
∂xj � ∂Uc

i2�x�
∂xj

�

− Ut cos δ
�∂U∞

i3 �x�
∂xj � ∂Uc

i3�x�
∂xj

�
: �35c�

Because the polygonal dislocation is composed of a
finite number of end-to-end straight segments, the elastic
fields of a polygonal dislocation can be found by simply
superposing all the solutions corresponding to the straight
segments of the polygon. For a directional straight segment
AB, beginning at point xA and ending at point xB, the induced
displacements ui�x� and their derivatives (or distortions)
∂ui�x�=∂xj are still given by equation (35), with U∞

ij �x�,
Uc

ij�x�, ∂U∞
ij �x�=∂xk, and ∂Uc

ij�x�=∂xk also defined in equa-
tions (23), (24), (30), and (31), respectively. In equations (23),
(24), (30), and (31), however, the line integrals over the
straight segment AB can be expressed analytically in terms of
elementary functions as listed in detail in Appendix A and
coded in Ⓔ MATLAB (four MATLAB codes are available
in the electronic supplement: one for a rectangular dislocation,
one for a triangular dislocation, and the other two for compari-
son of displacements between the present and Okada codes).

Numerical Examples

Before applying our solutions to a general polygonal
dislocation embedded in a transversely isotropic half-space,
we should point out that by taking the proper limits, our ana-
lytical solutions will reduce to those in Okada (1992). Fur-
thermore, as we mentioned earlier and will show below, our
formulations can be directly compared with the Okada
(1992) problem of a rectangular dislocation in an isotropic
half-space. A rectangular dislocation having a dimension of
12 km × 8 km with ϕ � 0° and δ � 40° and its lower edge
located 10 km below the free surface is shown in
Figure 2. Results are shown for three different displacement
discontinuity cases (i.e., Us � 50 cm, or Ud � 50 cm, or
Ut � 50 cm), representing an earthquake source of approx-
imately Mw 6. We assume that λ � μ, in which λ and μ are
the two Lamé constants of the isotropic material. To directly
use our transversely isotropic formulations for the isotropic
case, the five elastic constants are selected to be close to the
isotropic case by, for instance, letting c44 � μ�1� 0:00001�,
c66 � μ�1� 0:00003�, c13 � λ�1� 0:00005�, c11 � �λ�
2μ��1� 0:00007�, and c33 � �λ� 2μ��1� 0:00009�. If the
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second proportional factors in these constants (cij) all equal
1, the material becomes isotropic. Therefore, an arbitrary
small value (e.g., 10−5–10−6) is added to make the propor-
tional factors slightly different from 1 but very close to the
isotropic case so that the solutions presented in this article
can still be directly compared with the isotropic case
(Pan, 1997). The strains (referring generally to strains, tilts,
and deformation gradients) beneath the observation point
�x1; x2� � �25; 15� km along a vertical observation line
ranging from 0 to 20 km depth are evaluated for the
strike-slip fault with Us � 50 cm, the dip-slip fault with
Ud � 50 cm, and the tensile fracture with Ut � 50 cm, re-
spectively. One can observe from Figure 3 that our results are
exactly the same as those in Okada (1992), which verifies
that our formulations for the transversely isotropic rocks
are correct in this limit and that they can be further directly
compared with the isotropic half-space case. Comparison of
displacements between our solution and the solution by
Okada (1992) for the same problem, as described in Figure 2,
is provided in the Ⓔ electronic supplement, along with the
corresponding MATLAB codes.

A Rectangular Dislocation in a Transversely Isotropic
Half-Space

As the first numerical example, we investigate the effect
of rock anisotropy on strains due to rectangular dislocations
(or faults). Rock anisotropy has been well documented, and
the source of anisotropy may be intrinsic (due to bedding or
laminations in sedimentary rocks or aligned minerals form-
ing foliations in metamorphic rocks) or extrinsic (formed by
stress-induced cracking of intrinsically isotropic rocks). In
this article, two representative examples of intrinsic, trans-

O x1 

x2 
x3 

  40  

12km  

8km  
10km  Ud 50cm 

Us 

Ut 

15km  

25km  

Observation 
point  

Free surface  

Figure 2. A rectangular dislocation of dimension 12 km ×
8 km with Us � 50 cm (or Ud � 50 cm, or Ut � 50 cm) in an iso-
tropic half-space. The lower edge of the rectangle is 10 km below
the surface. The strike direction of the fault is parallel to the x1 axis
and the dip angle is δ � 40°. The field points are along the depth
direction with fixed horizontal coordinates �x1; x2� � �25; 15� km.
The color version of this figure is available only in the electronic
edition.

Figure 3. Variation of strains (general names for strains, tilts,
and deformation gradients) beneath the observation point �x1; x2� �
�25; 15� km for (a) strike-slip fault with Us � 50 cm, (b) dip-slip
fault with Ud � 50 cm, and (c) tensile fracture with Ut � 50 cm in
an isotropic half-space. The geometry of the rectangular dislocation
is shown in Figure 2. The color version of this figure is available
only in the electronic edition.
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versely isotropic rock are selected, with one being strongly
anisotropic and the other only weakly anisotropic. Both rep-
resentative datasets are obtained from measurements of rock
velocities in multiple directions with respect to the dominant
rock fabric. The first set with strong anisotropy is the average
of the rock properties in the garnet-oligoclase zone of the
Haast schist, a prominent metamorphic belt south of the Al-
pine fault in New Zealand, where foliation is approximately
vertical (Godfrey et al., 2000). The second set with weak
anisotropy is the average of the rock properties in North
Sea shale, with ∼20% P-wave anisotropy (Wang, 2002).
In the numerical calculations, we assume the dislocation
model is exactly the same as in Figure 2 (but with transverse
isotropy) and that the plane of isotropy of the material is par-
allel to the free surface of the half-space (i.e., the x1–x2
plane). The five independent stiffness constants are listed
in Table 1. For comparison, their corresponding Voigt aver-
ages are also used to calculate the induced strains in the
equivalent isotropic rock half-space. The Voigt average
assumes �cijij�aniso: � �cijij�iso: and �ciijj�aniso: � �ciijj�iso:.
For transversely isotropic materials, the Voigt average is
defined as λ � �c11 � c33 � 5c12 � 8c13 − 4c44�=15 and
μ � �7c11 − 5c12 � 2c33 � 12c44 − 4c13�=30, in which λ
and μ are the equivalent Lamé constants (Hirth and Lothe,
1982). Again, the isotropic material property is slightly per-
turbed (as described above) so that we can directly make use
of our solutions for transverse isotropy.

Once again, the strains beneath the observation point
�x1; x2� � �25; 15� km with depth ranging from 0 to 20 km
are evaluated for the strike-slip fault with Us � 50 cm, the
dip-slip fault with Ud � 50 cm, and the tensile fracture with
Ut � 50 cm, respectively, and for materials 1 (strongly
anisotropic) and 2 (weakly anisotropic) and their isotropic
equivalents. For this case, although all the strains are influ-
enced by the rock anisotropy, the strain component ∂u1=∂x3
is strikingly affected, as compared to the isotropic one
(Figs. 4 and 5). The relative difference between the trans-
versely isotropic and isotropic solutions for this component
can be over 200% for material 1 with strong anisotropy and
over 100% for material 2 with weak anisotropy. Thus, the
elastic anisotropy of rocks should be considered to accurately
predict the static field of dislocations in transversely iso-
tropic rocks.

Table 1
Elastic Coefficients (cij) of Two Typical Transversely
Isotropic Rock Materials and Their Voigt Averages

(λ and μ) in GPa

c11 c33 c44 c66 c13

Material 1 113 87 30 41.5 22
Voigt average of material 1 λ � 27:1, μ � 36:2
Material 2 25 19 5 7 10
Voigt average of material 2 λ � 10:6, μ � 5:9

Figure 4. Variation of strains beneath the observation point
�x1; x2� � �25; 15� km for (a) strike-slip fault with Us � 50 cm,
(b) dip-slip fault with Ud � 50 cm, and (c) tensile fracture with
Ut � 50 cm in a half-space occupied by the transversely isotropic
material 1 (or an isotropic material equivalent to material 1 by Voigt
average). The geometry of the rectangular dislocation is the same as
in Figure 2. The color version of this figure is available only in the
electronic edition.
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A Triangular Dislocation in a Transversely Isotropic
Half-Space

As the second example, we consider a buried triangular
dislocation in the half-space occupied by transversely iso-
tropic material 1 (see Table 1). It is well known that both
the Northridge and Puente Hills thrust faults of the Los An-
geles basins attributed to Mw >5:9 earthquakes in the last
three decades (e.g., Yeats and Huftile, 1995; Shaw and
Shearer, 1999). Both faults are blind in the sense that their
upper tip lines are below the surface of the Earth. For thrust
faults, representative of those ruptured in the Los Angeles
basin as discussed above, we use a representative fault size
of about 30 km × 20 km and dip angle of about 30°.
We thus investigate a representative triangular dislocation
ABC with the following three vertices: A�30; 10 ���

3
p

;−3� km,
B�0; 10 ���

3
p

;−3� km, and C�15; 0;−13� km, as shown in
Figure 6. In the following calculations, the displacement dis-
continuity over the fault plane is assumed to be Us � 50 cm
(orUd � 50 cm, orUt � 50 cm, separately). We also assume
the plane of isotropy of material 1 is parallel to the free surface
of the half-space (i.e., the x1–x2 plane). Numerical results are
shown in Figures 7 and 8 for the transversely isotropic material
1 and are comparedwith the results based on the isotropicVoigt
average.

Figure 7 shows the strains beneath the observation point
�x1; x2� � �45;−15� km with depth ranging from 0 to 25 km
for the strike-slip fault with Us � 50 cm (Fig. 7a), the dip-
slip fault with Ud � 50 cm (Fig. 7b), and the tensile fracture
with Ut � 50 cm (Fig. 7c), respectively. The strain ∂u1=∂x3
is much more sensitive to material anisotropy than the tilt
∂u3=∂x1 and the areal dilatation ∂u1=∂x1 � ∂u2=∂x2, re-
gardless of the fault model (Fig. 7).

Figure 5. Variation of strains beneath the observation point
�x1; x2� � �25; 15� km for (a) strike-slip fault with Us � 50 cm,
(b) dip-slip fault with Ud � 50 cm, and (c) tensile fracture with
Ut � 50 cm in a half-space occupied by the transversely isotropic
material 2 (or an isotropic material equivalent to material 2 by Voigt
average). The geometry of the rectangular dislocation is the same as
in Figure 2. The color version of this figure is available only in the
electronic edition.

O x1 

x2 

x3 

  30  

13km  

Ud 50cm 

Us 

Ut 

The free surface &  
the plane of isotropy 

3km  

20km

15km  15km  

A B 

C 

Figure 6. A triangular dislocation with Us � 50 cm (or
Ud � 50 cm, orUt � 50 cm) in a transversely isotropic half-space.
The upper side AB of the triangle is parallel to the x1 axis and it is
3 km below the free surface. The side BC and CA are of the same
length. The strike direction of the fault is parallel to the x1 axis and
the dip angle is δ � 30°. The color version of this figure is available
only in the electronic edition.
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Figure 8 shows the variation of surface strains (x3 � 0)
with the location of the observation point for the strike-slip
fault withUs � 50 cm (Fig. 8a), the dip-slip fault withUd �
50 cm (Fig. 8b), and the tensile fracture with Ut � 50 cm
(Fig. 8c), respectively, in which x1 is fixed at 20 km and
x2 ranges from −15 to 30 km. Along this line, the material

anisotropy has a considerable effect on both the surface strain
(∂u1=∂x3) and the surface area-dilatation (∂u1=∂x1 �
∂u2=∂x2), with the maximum differences of over 40%
between the isotropic and anisotropic models.

Figure 7. Variation of strains beneath the observation point
�x1; x2� � �45;−15� km for (a) strike-slip fault with Us � 50 cm,
(b) dip-slip fault with Ud � 50 cm, and (c) tensile fracture with
Ut � 50 cm in a half-space occupied by transversely isotropic
material 1 (or an isotropic material equivalent to material 1 by Voigt
average). The geometry of the triangular dislocation is shown in
Figure 6. The color version of this figure is available only in the
electronic edition.

Figure 8. Surface strains as functions of x2 (with fixed
�x1; x3� � �20; 0� km) for (a) strike-slip fault with Us � 50 cm,
(b) dip-slip fault with Ud � 50 cm, and (c) tensile fracture with
Ut � 50 cm in a half-space occupied by the transversely isotropic
material 1 and by an isotropic material equivalent to material 1 by
Voigt average, as listed in Table 1. The geometry of the triangular
dislocation is shown in Figure 6. The color version of this figure is
available only in the electronic edition.
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To examine the spatial differences of surface displace-
ments, we plot the horizontal displacement vector �u1; u2� in
terms of its magnitude u �

����������������
u21 � u22

p
and orientation in the

x1–x2 plane as shown in Figure 9. The fault is of triangular
shape with Ud � 50 cm (Fig. 6), and both material 1 and its
Voigt average are considered (Table 1). Although the surface
displacement fields are similar for both material 1 and its
Voigt average, the discrepancies in magnitude and direc-
tion of the displacements are heterogeneously distributed
throughout the surface domain over the fault (Fig. 9). For
example, the difference in the surface displacement magni-
tude Δu between material 1 and its Voigt average, defined as

Δu � uVoigt − umaterial 1

uVoigt
; �36�

can be over 20% and the discrepancy in the orientation can
be as large as �4°.

Conclusions

Based on the concepts of the dislocation loop and dis-
location segment, we derived a complete set of analytical sol-
utions for displacements and strains due to a dislocation of
general polygonal shape in a three-dimensional transversely
isotropic half-space. Our solutions reproduce the well-known
results of Okada (1992) for a rectangular dislocation in an
isotropic half-space as a special case. We also point out that
our solutions are applicable to both blind faults and faults
that intersect the free surface. Because our solutions are in
exact closed forms for any polygonal dislocation, one can
simply superpose these solutions to find the elastic fields of
an arbitrary dislocation. Our numerical examples reveal the
important effect of material anisotropy on the internal and
surface strains and surface deformations due to polygonal

dislocations. Our solutions should be particularly appealing
for researchers who are interested in the static displacement
or strain fields due to a dislocation of arbitrary shape with
nonuniform Burgers vector in transversely isotropic rock
half-spaces.

Data and Resources

All data used in this article came from published sources
listed in the references. The second numerical example
was based on the approximate geometry and size of the
Northridge fault as defined in the Southern California Earth-
quake Center community fault model at http://structure.rc.fas
.harvard.edu/cfm/modelaccess.html (last accessed March
2013).
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Appendix A

Analytical Integration of the Displacement and
Distortion Fields due to a Straight Segment AB of

the Dislocation Loop

The line integrals involved in equations (23a–e), (24a–e),
(30a–h), and (31a–h) for the displacement and distortion fields
of the dislocation loop can be carried out exactly over the
straight segment AB in terms of elementary functions. We
now list the analytical results below.

4π�−1�ξU∞
ξξ �x� � −�−1�ξΩ∞

3 − gisiI22� � − 2s23fiγiCj2� �
Ω∞

3 �x� � −sgnhS�x1; x2� − x3iCbar� � − s3CjN� �;
�A1a�

4π�−1�ξU∞
ξ�3−ξ��x� � s3I00� � � gisiI22� � − 2s23fiγiCj� �

� 2s23fiγiCj2� �; �A1b�

4π�−1�ξU∞
3�3−ξ��x� � −mβsβ	2s23fβI22� � � gβI00� �
;

�A1c�

4π�−1�ξU∞
�3−ξ�3�x� � −gisiI22� � − gαγαI00� �; �A1d�

4πU∞
33�x� � sgnhS�x1; x2� − x3iCbar� � �mβgβsβCjN� �;

�A1e�

4π�−1�ξUc
ξξ�x� � �−1�ξ	−Cbar� � � s3CjN� �
 − gijsiI22� �

− 2s23fijγiCj2� � − 4s23fijL43� �; �A2a�

Elastic Deformation due to Polygonal Dislocations in a Transversely Isotropic Half-Space 2711



4π�−1�ξUc
ξ�3−ξ��x� � s3I00� � � gijsiI22� � − 2s23fijγiCj� �

� 2s23fijγiCj2� � � 2s23fijCbar1� �;
�A2b�

4π�−1�ξUc
3�3−ξ��x� � mβsβ	2s23fαβI22� � � gαβI00� �


� 2s23FL21� �; �A2c�

4π�−1�ξUc
�3−ξ�3�x� � −gijsiI22� � − gαβγαI00� �; �A2d�

4πUc
33�x� � −Cbar� � −mβgαβsβCjN� �; �A2e�

4π�−1�ξ
∂U∞

η�3−ξ��x�
∂xτ � εηξ3�−1�τs3	J01�3; 3 − τ�

− J01�3 − τ; 3�
 � δηξs3J01�τ; 3�
� gisiCjk2� � � 2s23fiγiCj3� �;

�A3a�

4π�−1�ξ
∂U∞

η�3−ξ��x�
∂x3 � δηξs33J01�3; 3� − s3J01�ξ; η�

− gβsβJ01�η; ξ� − 2s23fjsjCjk2� �;
�A3b�

4π�−1�ξ
∂U∞

3�3−ξ��x�
∂xτ � −mβgβsβJ01�τ; ξ�

− 2s23mβfβsβCjk2� �; �A3c�

4π�−1�ξ
∂U∞

3�3−ξ��x�
∂x3 � −mβs2β	gβsβJ01�3; ξ�

− 2s23fβγβJ01�ξ; 3�
; �A3d�

4π�−1�ξ
∂U∞

�3−ξ�3�x�
∂xτ � −gβγβJ01�τ; ξ� − gisiCjk2� �;

�A3e�

4π�−1�ξ
∂U∞

�3−ξ�3�x�
∂x3 � −gβsβJ01�3; ξ� � gisiJ01�ξ; 3�;

�A3f�

4π
∂U∞

33�x�
∂xτ � −�−1�τmβgβsβ	J01�3 − τ; 3�

− J01�3; 3 − τ�
; �A3g�

4π
∂U∞

33�x�
∂x3 � mβgβsβ	J01�1; 2� − J01�2; 1�
; �A3h�

4π�−1�ξ
∂Uc

η�3−ξ��x�
∂xτ � εηξ3�−1�τs3	J01�3; 3 − τ�

− J01�3 − τ; 3�
 � δηξs3J01�τ; 3�
� gijsiCjk2� �
� 2s23fijγi	Cj3� � � 2siCbar3� �
;

�A4a�

4π�−1�ξ
∂Uc

η�3−ξ��x�
∂x3 � −δηξs33J01�3; 3� � s3J01�ξ; η�

� gαβsβJ01�η; ξ�
� 2s23	fijsjCjk2� � − FCbar2� �
;

�A4b�

4π�−1�ξ
∂Uc

3�3−ξ��x�
∂xτ � mβgαβsβJ01�τ; ξ�

� 2s23	mβfαβsβCjk2� �
� FCbar2� �
; �A4c�

4π�−1�ξ
∂Uc

3�3−ξ��x�
∂x3 � −mβs2β	gαβsαJ01�3; ξ�

− 2s23fαβγαJ01�ξ; 3�
; �A4d�

4π�−1�ξ
∂Uc

�3−ξ�3�x�
∂xτ � −gαβγαJ01�τ; ξ� − gijsiCjk2� �;

�A4e�
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4π�−1�ξ
∂Uc

�3−ξ�3�x�
∂x3 � gαβsβJ01�3; ξ� − gijsjJ01�ξ; 3�;

�A4f�

4π
∂Uc

33�x�
∂xτ � �−1�τmβgαβsβ	J01�3 − τ; 3� − J01�3; 3 − τ�
;

�A4g�

and

4π
∂Uc

33�x�
∂x3 � mβgαβsβsβγα	J01�1; 2� − J01�2; 1�
: �A4h�

Functions Cbar( ), I22( ), etc., in equations (A1)–(A4),
are those defined exactly in the Ⓔ MATLAB codes in the
electronic supplement and are listed below in their exact
closed forms in equations (A5)–(A18). The involved param-
eters and functions in equations (A5)–(A18) are listed in
equations (A19)–(A27).

Cbar( ):

�C�x� � arctan
�TB

V3

− arctan
�TA

V3

; �A5�

Cbar1( ):

�Cξ
∼�x� � �−1�ξ l

2
3

�L4
�l22 − l21� ln

�RB

�RA

� �−1�ξ l1l2l3
�L4

�l1V1 � l2V2 − l3V3�
�C�x�
V3

� �−1�ξ l3V3

�L6
	2l1l2W3 � �l22 − l21�l3V3


× 	� �RB�−2 − � �RA�−2


� �−1�ξ l3
�L4

�
l1V2 � l2V1 �

4l1l2l3V3

�L2

�
× 	 �TB� �RB�−2 − �TA� �RA�−2
; �A6a�

�Cξ
ij�x1; x2; x3� � �Cξ

∼�x1; x2; xij3 �: �A6b�

Remark: Equation (A6b) indicates that to obtain the ex-
act closed-form expression for �Cξ

ij�x1; x2; x3�, one needs only
to replace x3 in �Cξ

∼�x� by xij3 . This is also discussed in the
main text.

Cbar2( ):

�Cξη�x��−
l3V3

�L4
	�−1�ξl3−ξlη��−1�ηlξl3−η
	� �RB�−2− � �RA�−2


−
l3
�L4
	�−1�ξ�ηl3−ξl3−η− lξlη
	 �TB� �RB�−2− �TA� �RA�−2
;

�A7�

Cbar3( ):

�Cξξη
∼ �x�� l3

2 �L6

n
4l2ξlηW3��−1�η�2δξη�1� �L4V3−η�2	2εξη3 �L2

−3�−1�ξ�η�l22−l21�
l3−ηl3V3

o
	� �RB�−2−� �RA�−2


��−1�ξ l3V
2
3

�L8

h
�l2η−2l23−η�l2ηV3−η�3l1l2l23−ηVη

��4l2η−l23−η�l3−ηl3V3

i
	� �RB�−4−� �RA�−4


−
lηl23
�L6

	�2δξη�1� �L2−4l2ξ 
	 �TB� �RB�−2− �TA� �RA�−2


��−1�ξ�η l3V3

�L8

h
4l1l2�l2ηV3−η�l3−ηl3V3

��l22−l21�2Vη�
i
	 �TB� �RB�−4− �TA� �RA�−4
; �A8a�

�Cξξη
ij �x1; x2; x3� � �Cξξη

∼ �x1; x2; xij3 �
�Cηξξ
ij �x� � �Cξηξ

ij �x� � �Cξξη
ij �x�: �A8b�

Remark: Equation (A8b) is similar to equation (A6b).
Namely, to find the expression for the functions with double
indexes ij, one just replaces x3 in the functions by xij3 .

Cj( ):

Ci�x� �
L2
i
�L2

I∼0;i;3�x� −
l23
�L2

siBi�x� −
l3W3

�L2
si
Ai�x�
V3

: �A9�

Remark: Function I∼0;i;k�x� and its pair function I∼0;ij;k�x�
are defined as function I00� � in equation (A14) below. It is
further noted that if we replace x3 in Ci�x� by xij3 , we then
obtain its pair function Cij�x�.
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Cj2( ):

Cξη
i �x� �

lξlη
�L4

�2L2
i − �L2�I∼0;i;3�x� −

2silξlηl23
�L4

Bi�x�

−
l3V3

�L2 �V ~Vi

	lξVη − �−1�ξ�ηl3−ξV3−η
Ni�x�

−
sil3
�L2

�
�−1�ξl3−ξVη � �−1�ηlξV3−η

� 2lξlηW3

�L2

�
Ai�x�
V3

−
l3
�L2 �V

	�−1�ξl3−ξVη � �−1�ηlξV3−η
Pi�x�:
�A10�

Remark: Replacing x3 in Cξη
i �x� by xij3 , we then obtain

its pair function Cξη
ij �x�.

Cj3( ):

Cξξη
i �x� � l2ξlηl3

�L2L2
i

�
1

RB
i
−

1

RA
i

�

� �−1�ξlξl3
�L4L2

i
~V2
i

f	�−1�ξ�ηlξl3−η � l3−ξlη
 �L2V3

� �L2
i � δξηs2i l

2
3�l3−ξlηV3

− s2i l3	�−1�ξ�ηl3ξV3−η � l23−ξlηV3−ξ
g
�
TB
i

RB
i
−
TA
i

RA
i

�

� l3V3−η
�V3 ~Vi

�
�−1�ξ V2

3

s2i �V
2
�V2

3−η − 3V2
η�

� �−1�η	4V2
3−ξ − �2δξη � 1� �V2


�
Ni�x�

− �−1�ξ 2l3V
2
3V3−η

�V3 ~V3
i

�V2
3−η − 3V2

η� ~Ni�x�

−
�−1�ξl3V2

3

�V3 ~Vi

�
V3−η

s2i �V
2
�V2

3−η − 3V2
η�

−
l23
�L4

	�−1�ηV3−η�l22 − l21� � 2l1l2Vη

�
Mi�x�

� �−1�ξ�η
l3V3Vη

s2i �V
5

�V2
η − 3V2

3−η�	3Pi�x�

− 2 ~Pi�x�


− �−1�ξ�η l3V2
3

�V3 ~V2
i

�
l3
�L4

	l3η�2V2
3−η − V2

η�

� 3l3−η� �L2V1V2 − l1l2V2
η�

� V3Vη

s2i �V
2
�V2

η − 3V2
3−η�


�
Qi�x�;

�A11a�

Cηξξ
i �x� � Cξηξ

i �x� � Cξξη
i �x�; �A11b�

CjN( ):

C−
i �x� � γiAi�x�: �A12�

Remark: Replacing x3 in C−
i �x� by xij3 , we then obtain

its pair function C−
ij�x�.

Cjk2( ):

Cξη
i;k�x� � −

lklξlηl3
�L2L2

i

�
1

RB
i
−

1

RA
i

�

−
lk

�L4L2
i
~V2
i

�
	�−1�ξl3−ξlη � �−1�ηlξl3−η
L2

i l3V3

− �l3ξlη � l3ηlξ�W3 � δξη	l4ξW3

− �−1�ξl1l2�l2ξl3V3 � �L2lξVξ�

��

TB
i

RB
i
−
TA
i

RA
i

�

−
lkV3

s2i �V
3 ~Vi

	�−1�ξV3−ξVη � �−1�ηVξV3−η
Ni�x�

� lkV3

�V ~Vi

�
1

s2i �V
2
	�−1�ξV3−ξVη � �−1�ηVξV3−η


� l23
�L4

	�−1�ξl3−ξlη � �−1�ηlξl3−η

�
Mi�x�

� lk
s2i �V

3
	VξVη − �−1�ξ�ηV3−ξV3−η
Pi�x�

� lkV3

�V ~V2
i

�
−

V3

s2i �V
2
	VξVη − �−1�ξ�ηV3−ξV3−η


� l3
�L4

	�−1�ξ�ηl2ξ�lξVη − 3l3−ηV3−ξ�

− l23−ξ�l3−ξV3−η − 3lηVξ�

�
Qi�x�; �A13�

I00( ):

I∼0;i;k�x� �
lk
Li

ln
LiRB

i − TB
i

LiRA
i − TA

i
: �A14�

Remark: Replacing x3 in I∼0;i;k�x� by xij3 , we then obtain
its pair function I∼0;ij;k�x�.

I22( ):

Iξ32;i;k�x� �
lξl3
�L2

I∼0;i;k�x� −
lξlk
�L2

γiBi�x� �
�−1�ξl3−ξlk

�L2
γiAi�x�:
�A15�
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Remark: Function I∼0;i;k�x� is given in equation (A14);
replacing x3 in Iξ32;i;k�x� by xij3 , we then obtain its pair func-

tion Iξ32;ij;k�x�.
J01( ): Listed below are J01 ξ; k� � and J01 3; k� �,

Jξ0;i;k�x� � −
lξlk
L2
i

�
1

RB
i
−

1

RA
i

�

� lk
L2
i
~V2
i

	�−1�ξ�s2i l3V3−ξ − l3−ξV3�

�
TB
i

RB
i
−
TA
i

RA
i

�

J30;i;k�x� � −
l3lk
L2
i

�
1

RB
i
−

1

RA
i

�
� lk

L2
i
~V2
i

W3

�
TB
i

RB
i
−
TA
i

RA
i

�
:

�A16�

Remark: Replacing x3 in Jm0;i;k�x� by xij3 (m � 1, 2, 3),
we then obtain its pair function Jm0;ij;k�x�.

L21( ):

Lξ
2;∼k�x� �

lξlk
�L2

ln
�RB

�RA −
�−1�ξl3−ξlk

�L2
�C�x�; �A17�

L43( ):

L123
4;∼;3�x��

l1l2l23
�L4

ln
�RB

�RA�
l23
2 �L4

�l22−l21� �C�x�

�l3V3

2 �L6
�l31V2�l32V1�3l1l2l3V3�	� �RB�−2−� �RA�−2


−
l3
2 �L6

	2l1l2W3�l3V3�l22−l21�
	 �TB� �RB�−2− �TA� �RA�−2
;

�A18a�

L123
4;ij;3�x1; x2; x3� � L123

4;∼3�x1; x2; xij3 �: �A18b�

Remark: It is noted that the superscripts 123 in this L-
function correspond to the subscripts in l and V.

In equations (A1)–(A18), the involved functions and
parameters are defined as

Ai�x� � arctan
si �VMB

3

V3

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q

− arctan
si �VMA

3

V3

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q ; �A19�

Bi�x� � ln

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q

− si �VdB3�������������������������������������
�V3dB3 �2 � �MB

3 �2
p

− ln

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q

− si �VdA3������������������������������������
�V3dA3 �2 � �MA

3 �2
p

� ln

�������������������������������������
�V3dB3 �2 � �MB

3 �2
p

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q

� si �VdB3

− ln

������������������������������������
�V3dA3 �2 � �MA

3 �2
p

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q

� si �VdA3

; �A20�

Mi�x� �
~VidB3������������������������������������

� ~VidB3 �2 � �MB
3 �2

q −
~VidA3������������������������������������

� ~VidA3 �2 � �MA
3 �2

q ;

�A21�

Ni�x� �
� ~VidB3 �

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q

�V3dB3 �2 � �MB
3 �2

−
� ~VidA3 �

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q

�V3dA3 �2 � �MA
3 �2

; �A22�

~Ni�x� �
� ~VidB3 �3

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q

	�V3dB3 �2 � �MB
3 �2
2

−
� ~VidA3 �3

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q

	�V3dA3 �2 � �MA
3 �2
2

; �A23�

Pi�x� �
MB

3

������������������������������������
� ~VidB3 �2 � �MB

3 �2
q
�V3dB3 �2 � �MB

3 �2
−
MA

3

������������������������������������
� ~VidA3 �2 � �MA

3 �2
q
�V3dA3 �2 � �MA

3 �2
;

�A24�

~Pi�x� �
MB

3 	
������������������������������������
� ~VidB3 �2 � �MB

3 �2
q


3
	�V3dB3 �2 � �MB

3 �2
2

−
MA

3 	
������������������������������������
� ~VidA3 �2 � �MA

3 �2
q


3
	�V3dA3 �2 � �MA

3 �2
2
; �A25�
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Qi�x� �
MB

3������������������������������������
� ~VidB3 �2 � �MB

3 �2
q −

MA
3������������������������������������

� ~VidA3 �2 � �MA
3 �2

q ;

�A26�
in which

xA��xA1 ;xA2 ;xA3 �; xB��xB1 ;xB2 ;xB3 �; x��x1;x2;x3�;
dA�x−xA��dA1 ;dA2 ;dA3 �; dB�x−xB��dB1 ;dB2 ;dB3 �;
l�xB−xA��l1;l2;l3�;
�L�

�������������
l21�l22

q
; Li�

�������������������
�L2�s2i l

2
3

q
;

MA�dA×�dA× l���MA
1 ;M

A
2 ;M

A
3 �;

MB�dB×�dB× l���MB
1 ;M

B
2 ;M

B
3 �;

�RA�
����������������������������
�dA1 �2��dA2 �2

q
; �RB�

����������������������������
�dB1 �2��dB2 �2

q
;

RA
i �

������������������������������������������������
�dA1 �2��dA2 �2�s2i �dA3 �2

q
;

RB
i �

������������������������������������������������
�dB1 �2��dB2 �2�s2i �dB3 �2

q
;

�TA� l1dA1 �l2dA2 ; �TB� l1dB1 �l2dB2 ;

TA
i � �TA�s2i l3d

A
3 ; TB

i � �TB�s2i l3d
B
3 ;

V�dA× l�dB× l��V1;V2;V3�;
�V�

�����������������
V2
1�V2

2

q
; ~Vi�

���������������������
s2i �V

2�V2
3

q
;

W� l×�dA× l�� l×�dB× l���W1;W2;W3�: �A27�

Appendix B

Detailed Function Relations Between Those Defined
in this Article and Those in the Supplemental

MATLAB Codes

Cbar( ) ≡ Cbar(TbarA,TbarB,V);
Cbar1( ) ≡ Cbar1(ks,l,d33A,d33B,V33,W33,Lbar,Rbar33A,

Rbar33B,Tbar33A,Tbar33B);
Cbar2( ) ≡ Cbar2(it,ks,l,d33A,d33B,V33,Lbar,Rbar33A,

Rbar33B,Tbar33A,Tbar33B);
Cbar3( ) ≡ Cbar3(it,ks,t,l,d33A,d33B,V33,W33,Lbar,

Rbar33A,Rbar33B,Tbar33A,Tbar33B);

Cj( ) ≡ Cj(gamaj,l,dA,dB,V,W,MA,MB,Vbar,Vj,Lbar,Lj,RjA,
RjB,TjA,TjB);

Cj2( ) ≡ Cj2(1,2,gamaj,l,dA,dB,V,W,MA,MB,Vbar,Vj,Lbar,
Lj,RjA,RjB,TjA,TjB);

Cj3( ) ≡ Cj3(it,ks,t,gamaj,l,dA,dB,V,MA,MB,Vbar,Vj,Lbar,
Lj,RjA,RjB,TjA,TjB);

CjN( ) ≡ CjN(gama3,dA,dB,V,MA,MB,Vbar,V3);
Cjk2( ) ≡ Cjk2(it,t,gamaj,ks,l,dA,dB,V,W,MA,MB,Vbar,Vj,

Lbar,Lj,RjA,RjB,TjA,TjB);
I00( ) ≡ I00(3,l,L3,R3A,R3B,T3A,T3B);
I22( ) ≡ I22(ks,gamaj,3-ks,l,dA,dB,V,MA,MB,Vbar,Vj,Lbar,

Lj,RjA,RjB,TjA,TjB);
J01(3-t;l) ≡ J01(3,gama3,3-t,l,V,W,V3,L3,R3A,R3B,

T3A,T3B);
L21( ) ≡ L21(ks,l,d33A,d33B,V33,Lbar,Rbar33A,Rbar33B,

Tbar33A,Tbar33B);
L43( ) ≡ L43(l,d33A,d33B,V33,W33,Lbar,Rbar33A,

Rbar33B,Tbar33A,Tbar33B).
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