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In this paper, we derive the Green’s functions of constant extended interfacial displacement discontinu-
ities within a rectangular element and of point extended interfacial displacement discontinuities in
three-dimensional transversely isotropic magneto-electro-elastic (MEE) bi-materials. The derived
Green’s functions along with the extended displacement discontinuity method are applied to analyze
the electrically and magnetically impermeable interfacial cracks in the three-dimensional MEE bi-mate-
rials. To deal with the oscillatory singularities at the crack front, the Dirac delta function in the Green’s
functions is replaced by the Gaussian distribution function, and correspondingly, the unit Heaviside func-
tion is approximated by the Error function. Numerical study illustrates the effect of the ¢ parameter in the
Gaussian distribution function on the J-integral. The stress intensity factors, electric displacement inten-
sity factor, and magnetic induction intensity factor are expressed in terms of the extended displacement
discontinuities. The influence of different MEE material mismatches as well as different extended load-
ings (uniformly or non-uniformly distributed on the crack face) on the fracture parameters is investi-
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gated. Different rectangular crack sizes are also considered in the numerical simulation.
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1. Introduction

Since Williams (1959) first investigated a semi-infinite interfa-
cial crack in elastic dissimilar media, increasing enthusiasm fol-
lows in studying the behaviors and characters of interfacial
cracks. The oscillatory singularity at the two-dimensional (2D)
interfacial crack tip was discussed (Erdogan, 1965; England,
1965; Rice and Sih, 1965; Suo and Hutchinson, 1990) and different
approaches were proposed to deal with this unsatisfactory oscilla-
tory behavior (e.g., Atkinson, 1977; Comninou, 1977, 1990;
Dundurs and Gautesen, 1988). Related works on the corresponding
three-dimensional (3D) interfacial fracture problems can be found
in Willis (1971), Lazarus and Leblond (1998a,b), Antipov (1999),
Bercial-Veleza et al. (2005) and Pindra et al. (2008), among others.
One efficient way of simulating interfacial cracks is by interfacial
dislocations (Eshelby, 1951; Comninou, 1977; Qu and Li, 1991).
But the oscillating singularity would still exist with the Dirac delta
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function in the solutions. Mathematically, it has been proved that a
variety of appropriate approximations of the Dirac delta function
can be made depending on the specific physical or engineering
problems under consideration. Zhang and Wang (2013) reconsid-
ered the dislocation approach for interfacial cracks and replaced
the Dirac delta function with the Gaussian distribution function
to eliminate the oscillatory singularity.

The analysis of the elastic interfacial cracks was then extended
to the piezoelectric bi-material (Kuo and Barnett, 1991; Suo et al.,
1992; Beom and Atluri, 1996; Qin and Mai, 1999; Herrmann and
Loboda, 2000; Zhao et al., 2008b). One of the most interesting find-
ings from these studies was that besides the classical singularity
Y2 and the well-known oscillatory singularity r~'/2*% the
extended stresses have a new type of singularity r~'/2** near the
crack tip in 2D and also in 3D piezoelectric bi-materials. It was also
found that an impermeable interfacial crack in the transversely
isotropic bi-materials could be classified into two types according
to the feature of the e-singularity and x-singularity of the stress
field near the crack tip.

The first magneto-electro-elastic (MEE) composite was fabri-
cated by Van Run et al. (1974). In recent two decades, due to the
interesting coupling features among the mechanical, electrical
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and magnetic fields, MEE composites have attracted extensive
attentions from different branches of science and engineering.
Since defects may exist in these novel composites, fracture prob-
lems in them need to be addressed. Representative contributions
in this direction include 2D in-plane fracture problems (Song and
Sih, 2003; Sih and Song, 2003; Gao et al., 2003; Wang and Mai,
2003) and anti-plane problems (Wang and Shen, 1996;
Spyropoulos et al.,, 2003; Gao et al.,, 2004; Chue and Liu, 2005;
Zhong and Li, 2006; Hu and Chen, 2014).

For the study of the crack problems in MEE bi-materials, all the
previous works, such as Gao et al. (2003), Zhou et al. (2004) and
Tian and Gabbert 2005, helped shed light on the understanding
of 2D interfacial fracture behaviors of MEE bi-materials. The study
on the corresponding 3D interfacial fracture problems is more
important in theory and practical in engineering applications. In
this direction, Zhao et al. (2008a) analyzed the interfacial crack
of an arbitrary shape in 3D transversely isotropic MEE bi-materials
by extending their 3D piezoelectric bi-material approach (Zhao
et al., 2008b). They found that as its counterpart in piezoelectric
bi-materials, the stress near the crack front in MEE bi-material also
has two kinds of singularity, namely, the oscillating and non-oscil-
lating singularities, depending on the specific MEE bi-material sys-
tem. They further explained that these two singularities cannot
coexist in the same bi-material system. Zhu et al. (2009) adopted
the integro-differential equation method to analyze the 3D interfa-
cial crack in MEE bi-material. In their work, the unknown displace-
ment discontinuities along the crack face were approximated by
the product of extended basic density functions and polynomials
and the resulting integro-differential equations were solved
numerically.

The displacement discontinuity method was first proposed by
Crouch (1976) to study the crack problems in elasticity numeri-
cally. Later studies showed that this method is efficient and flexi-
ble, and further can be conveniently applied to analyze 3D crack
problems in piezoelectric media (Zhao et al., 1997) and in MEE
materials (Zhao et al., 2007) by extending the original elastic dis-
placement discontinuity to include the piezoelectric potential
and magnetic potential.

In this paper, we first apply the boundary integro-differential
method (i.e., Zhao et al., 2008a) to derive the Green’s functions of
the extended interfacial displacement discontinuities in 3D trans-
versely isotropic MEE bi-material. The Dirac delta function in the
Green'’s function is then approximated by the Gaussian distribution
function as in Zhao et al. (2014) to remove the oscillatory singular-
ities. Correspondingly, the approximation of the unit Heaviside
function is introduced based on its relation with the Dirac delta
function. Using the obtained 3D Green’s functions, the extended
displacement discontinuity method is applied to analyze the inter-
facial cracks in 3D MEE bi-materials.

This paper is organized as follows: Section 2 outlines the basic
equations of the MEE material. In Section 3, solutions, especially
those on the interface, for an interfacial crack in 3D MEE bi-mate-
rial are obtained via the integro-differential approach which is
extended from Zhao et al. (2008a). Then the Green’s functions of
the constant extended interfacial displacement discontinuities
within a rectangular element and the point extended interfacial
displacement discontinuities are derived. In Section 4, the Dirac
delta function and the unit Heaviside function in the Green'’s func-
tions are approximated, respectively, by the Gaussian distribution
function and the Error function. The analytical expressions for the
stress intensity factors, electric displacement intensity factor, mag-
netic induction intensity factor and the energy release rate are also
given. Extended displacement discontinuity method is introduced
in Section 5. In Section 6, numerical results are presented to illus-
trate the effect of the ¢ parameter in the Gaussian distribution
function on the J-integral. The influence of different MEE material

mismatches and different extended loadings (uniformly or non-
uniformly distributed on the crack face) on the crack parameters
is further investigated. Conclusion is drawn in Section 7.

2. Basic equations

In a three-dimensional Cartesian coordinate system x;
(i=1,2,3), the governing equations for a linear transversely iso-
tropic MEE medium without body force and free from electric
charge and current are given by (1) the equilibrium equation,
(2) the kinematic equation, and (3) the constitutive equation as
listed below:

0i;j=0, D;;=0, Bj;=0, (1)

—

&j = j(uij +u;;), E= =@, Hi = Vi (2)
O = Cijuiéxi — €iEx — fiiHr

D; = eién + Kk + gy H, 3)
Bi = fuaeut + &uEr + wyHi,

where oy, D; and B; are stress, electric displacement and magnetic
induction components, respectively, and they are called extended
stresses. u;, ¢ and y are displacement components, electric poten-
tial and magnetic potential and are called extended displacements.
& E; and H; denote, respectively, strain components, electric field
and magnetic field. ¢, € fin ki i and p; are elastic constants,
piezoelectric constants, piezomagnetic constants, dielectric permit-
tivity, electromagnetic constants and magnetic permeability,
respectively. A subscript comma denotes the partial differentiation
with respect to the coordinate, with repeated indices taking their
summation from 1 to 3 (Huang et al., 1998; Pan, 2002; Zhao and
Fan, 2008).

3. Green’s functions of extended interfacial displacement
discontinuities

3.1. Integro-differential expressions of extended stresses due to an
interfacial crack

We consider a transversely isotropic MEE bi-material system
with its interface parallel to the plane of isotropy and lies on the
0x1X2-plane, as schematically shown in Fig. 1. The poling direction
is along the x3-axis. A flat crack of arbitrary shape lies on the inter-
face. The upper and lower faces of this interfacial crack are
denoted, respectively, by S* and S~ with their outer normal vectors
being

Fig. 1. An interfacial crack of an arbitrary shape under extended loadings on its
surface in a transversely isotropic MEE bi-material.
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{ni}Jr = {07 07 _1}7 {ni}7 = {0707 1} (4)

The electric and magnetic boundary conditions on the crack
face can be different (Wang and Mai, 2007; Zhao et al., 2007). In
this paper, we assume the electrically and magnetically imperme-
able condition along the crack face to illustrate our solution proce-
dure. By this assumption, we have D3(xq,X,0")=D3(x1,%x,07)=0
and B3(X1,X2,0+) = B3(X1,X2,07) =0.

As we know, one technique of dealing with cracks in an infinite
media under far-field loadings is transferring the far-field loadings
onto the crack faces. This can be achieved by superposing the crack
free problem and the perturbed problem. For the perturbed prob-
lem, the loadings applied on the crack faces which are related to
the far-field loadings are calculated from the crack free problem.
It can be proved that the applied extended tractions (including
the tractions p;, the electric displacement boundary value w, and
the magnetic induction boundary value y) on the upper and lower
crack faces have the same magnitude but opposite directions, i.e.,

pils = —pils-» Olsr = -0, Vs =5, (=1,2,3), (5a)
where
p; = oyn;, =Dn;, y=Bmn. (5b)

Thus, the present interfacial crack under far field loadings is
converted to the perturbed problem which is the main focus of this
paper.

Using the approach which is similar to the one in Zhao et al.
(2008a), the displacement components u; the electric potential ¢
and the magnetic potential Y/ at point (x;,x,,h) induced by an arbi-
trary interior crack on the plane x5 = h are expressed by the follow-
ing integral over the crack face S(¢&,#n; h):

s, h) = = [ [Pl + @l + T ] as.
o) = [ [PPlul+ Lol + Tlwl]ds. i=1.2.3. (6

wtaxa.h) = [ [Pl + @l + Tl ds

where P, Q and I are, respectively, the tractions, electric displace-
ments and magnetic inductions of the fundamental solutions given
by Ding et al. (2005). Their superscripts F, D and B correspond to the
solutions induced by point force, point electric charge and point
electric current. ||uj]|, ||@]] and |[{|| are the displacement disconti-
nuities, the electric potential discontinuity and the magnetic poten-
tial discontinuity across the crack faces, namely

l[ui(&,m)ll = wi&n, ") —wi(&n,h0),
o mll =& nh") —d(&nh),
||l/,(§7 17)” = W(év , h+) - ‘ﬁ(é: n, hi):

where superscripts “+” and “—" correspond to the physical quanti-
ties on the upper and lower crack faces, respectively.

Substituting the fundamental solutions in Ding et al. (2005) into
Eq. (6), along with the kinematic Eq. (2) and constitutive Eq. (3),
and further letting h — 0, we obtain the extended stresses on the
interface:

=123, (7)

031(X1,X2,0) =/

s+

{[K”(i —x1)° + Kz (1 - Xz)z] [[ua]

+ (K11 — Ki2) (€ —x1)(n — X2)U2||}

x ! 5705 + 21Kay 613\1;3 ”
[(€=x0)” + (7 - %2)’] ‘
el ol
+ 27K 4 o, + 27K 43 o, s (83)

03;(X1,X2,0) :/

st

{(Kn — K12) (& = x1) (11 = %2)l|wa]| + [K11 (7 — x2)?

+K12(5—X1)2H|u2||} X ! 572 ds
[ =x)? + 01— x)
ad

Ollus|l el oyl
+ 27K 44 % + 27K 4 9% + 27K y3 o, (Sb)

033(X1,%2,0) = /7 (K1 l|us]l + Kzt | @l + Kzt [l l]

s

X 1 ds
P 2 2 372
[(6=x)” + (- x2)?]
O|ur]| | 9l|uz]]
+27rl<1< o o, ) (80)

Ds(%1,x2,0) = / [Ka12]|us]| + K2 [|@ll + K2 (¥ ]l]
.

x ! s+ 2k, (2l Ay
2 2132 (224} Xy
[(f—xl) +(’1—X2)]

(8d)

Bs(%1,x2,0) :/ (Kz13(|us]| + Kzsl| @] + K[ ]]
51

X L dS + 27K 8\\u1||+8Hu2||
P 2 213/2 0X4 0Xo
[(6=x1)* + (%)

(8e)

for the field points within the interfacial crack ((x1,%2,0) € S), and

031(X1,%2,0) = /

JST

{ [Kn(g“ —x1)> +Kip(n — Xz)z] flul

+ (K11 = Ki2)(E—x1)(n —Xz)lluz}

« 1 ds (9a)

[+ m-x7]"

032(X1,%2,0) = /_ {(Ku = Ki2)(& = x1)(n — X2)||us |

+ [Knn =) + Kn(e - x)’] |U2|}

“ 1 ds (9b)

a2 +m-x?]"

3 (%1.,%2,0) = / Ko 1] + Koo [ 9]] + Kt 1]
:

« 1 ds (9¢)

[e-xp+m-x?] "

Da(x1,3.0) = | Kenats| + Kz ] + Kaa ]
« 1 _— (9d)
[(6=x)" + (7~ x2)?]

B3(x1,%,,0) = / Kz lus]| + Kaas ||l + Kzs [[]l]
Jst

x ! ds (9e)

(e + -]
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for the field points outside the crack area ((x1,x2,0) ¢ S). The coeffi-
cients K and K; in Eqgs. (8) and (9) are material constants given in
Appendix A (Zhao et al., 2008a).

Comparing Egs. (8)-(9), it is observed that there are extra differ-
ential terms in Eq. (8) when the field point is located on the inter-
facial crack. It is these differential terms that make the coupling
more complicated in bi-material systems. The interaction of two
different material spaces through the interface may result in the
lost of symmetry in interfacial crack behaviors. For example, a pure
far-field tension may produce a combined stress field, i.e., the ten-
sile and shear stress field, at the crack tip.

3.2. Green’s functions of constant extended interfacial displacement
discontinuities within a rectangular element

In practice, an arbitrarily shaped interfacial crack can be discret-
ized into small constant rectangular elements, as shown in Fig. 2. If
the integrals in Egs. (8) and (9) over such an element can be calcu-
lated, the stresses at any field point can be obtained easily. Thus, in
this subsection, we will derive the Green’s functions due to con-
stant extended interfacial displacement discontinuities within a
rectangular element. For simplicity, we assume that the local coor-
dinate system (¢&,7) in Fig. 2 coincides with the global coordinate
system (x1,X2) on the interface and a general rectangular element
with length of 2a and width of 2b is centered at the origin of the
local coordinate system. Over the rectangular element, uniform
extended displacement discontinuities with strengths of [Ju||
(i=1,2,3), ||¢°|] and |[y/¢|| are distributed. Based on the definition
of the Heaviside function, i.e.,

H(x) = {

1, x>0,
0, x<0,

the extended displacement discontinuities within the constant rect-
angular element can be mathematically expressed as

(10)

[[ur (x1,%2)|| = |[u3[|(H(x1 + a) — H(x; — a))(H(x2 + b) — H(x; — b)),
[[ua (x1,%2)[| = [[U5||(H(x1 + @) — H(x; — a))(H(x2 + b) — H(x, — b)),
[[us(x1,%2)[| = [[us||(H(x1 + @) — H(x1 — a))(H(x2 + b) — H(x, — b)),
llp(x1,%2)[| = [|@°||(H(x1 +a) — H(x; — a))(H(x, + b) — H(x — b)),
[l (x1, %2)|| = [[°[|(H(X1 +a) — H(x: — a))(H(x2 + b) — H(x, — b)).
(11)

Substituting Eq. (11) into Egs. (8) and (9) and combining the
obtained results inside and outside the element, we have finally
the extended stresses at any point (x1,x,0) on the interface:

K1l +K1212]||U€H + (Ky1 — Kq2)Is|[us ||
20 (Ka 5] + Kol | + Kall9°1]) x 503

031(X1,%2,0) =

+a) — 6(x1 — a)][H(x2 + b) — H(xy — b)), (12a)
= 1 4
J St
] H AT — - ¢
o T -b

Fig. 2. Discretization of an arbitrary interfacial crack into N rectangular elements.

O'32(X17X2,0) = (K]] —Ku)lg”ll?“ —+ [K]]IQ +K1211H|U§H

+ 27 (K [us]| + Kaz || @° | + Kasly°]])

x [H(x1 +a) — H(x; — a)][6(x2 + b) — §(x2 — b)],
(12b)

033(X1,X2,0) = (Kzn [[U§ | + Kz21 [ 0% || + Kz [[°]]) (11 + I2)

+ 27K {[6(X1 + a) — 6(x1 — a)][H(x, + b)

—H(x; = b)]||ui|| + [H(x1 +a) — H(x; — a)][6(x + D)

—d(x2 = b)][lus]l}, (120)
D3(x1,%2,0) = (Kaiz|[u5]] + K2 || 0% || + Kz [W°])) (I + L)

+ 27K {[0(X1 + a) — 6(x1 — a)][H(x2 + b)

— H(xa = b)J|[uf || + [H(x1 + a) — H(x1 — a)][6(x> + b)

—0(x2 = b)]llus ]|}, (12d)
Bs(x1,X2,0) = (Kas||[u§]| + Kzsl @°l| + Kzss|[¥*|) (I +I2)

+27K3{[0(X1 +a) — 6(x; — a)][H(x2 + b)

—H(x; = b)][[uf || + [H(X: + a) — H(X; — a)][6(x2 + D)
— (X2 = b)[[us ]}, (12e)
where 6 is the Dirac delta function, which is also defined as
d(x) = dH(x)/dx; the three integrals I; (i=1,2,3) are
Li(x1,%,a,b) = / (f X1) 572 ds
{(f X1) + (- Xz)]
L(X1,X,a,b) = / Lk x2)’ 5 dS (13)
[(=x)" + (1 —x)’]

(& =x)(1 = %)
21 225/2(15
E-n) + (1 - x|

I3(x1,%z,a,b) :/s {(

where S, denotes the surface of the rectangular element. The three
integrals in Eq. (13) over a general rectangular element as shown in
Fig. 2 can be obtained analytically as below:

(%1 —a)® +2(xa — b)°
300 - a)(x, — b)y/(x - 0 + (v~ b)?
(X1 —a)* +2(x, + b)*
+b)/ (%1 — @) + (% + b)?
X1 +a)> +2(x, — b)’
)
)
)

I](X],XZ,U,b) = -

2

3(% +a)(xz — )/ (%1 + ) + (x; — b)?
(x1+a

+2(x, +b)*
Xa+b \/(X1+a)

,  (14a)

3(x +a) + (%, +b)’

—

2(x; —a)* + (x, — b)’
3(%1 — )(%; — b)y/ (%1 — @) + (x — b’
2(x; —a)* + (x, + b)*
300 - @) +b)y/ (1 —a)* +
2(x; +a)* + (x, — b)?
300 + @)% — b)y/(n + ) + (%2 — b)?
2(x; +a)* + (x, + b)*

- . (14b)
300 + )%z + b)y/ (4 + @) + (%2 + b)?

L(x1,%;,a,b) = —

+

(X, + b)?

+
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1

\/(xl —a’ + (x, - b)’
1

\/(x1 —a)’ + (% +b)’
1

V@ + 0 + (x — b)?
+ ! . (140)
V(%1 + a7 + (x2 +b)?

It is observed from Eq. (13) that if the field point (x,x») falls
outside the integration area S,, the three integrals in Eq. (13)
are regular; If the integration area S, contains the field point
(x1,x2), the three integrals turn out to be divergent. However,
the closed-form expressions in Eqs. (14a)-(14c) are proved to
hold for both regular and divergent cases. We further point out
that the obtained divergent integrals should be interpreted as
finite-part integrals and that they can be found using the Hadam-

I3(x1,%2,a,b) =

ard regularization (loakimidis, 1982; Wang et al, 2001;
Hadamard, 1923). The regularization procedure is briefly
described below.

First, we introduce the polar coordinates as
E—X; =rcosf
< 1 ’ (15)

N —X; =r1sing.

Thus, the general expression of the three integrals in Eq. (13)
becomes

[ )
I_H/a/o H Y drdo, (16)

where H denotes the Hadamard finite-part integral; f{0) is cos20,
sin?0 and cosfsind for I, I, and I, respectively.

We now assume that the divergent point (&) = (x1,x2) is arbi-
trarily located within the rectangular area {¢,n}={(—a,a),(—b,b)}
as shown in Fig. 3. Then, the whole rectangular area is divided into
eight triangular areas (Fig. 3). The integral in Eq. (16) is taken over
each triangular area and the obtained results are added together to
find the final integral expression. The integral in Eq. (16) has the
singularity of order r~2 and it can be evaluated in the Hadamard
sense as

Thus, the three divergent integrals can be evaluated by using
Eq. (17) and the results turn out to be same as Eqs. (14a)-(14c).
A detailed derivation for the divergent integral I, is given in Appen-
dix B.

We define the extended stresses and extended displacements
using the following notations

03i I:i:1,2,3,

g33=1¢ D3 =4,
By I=5, a8)
lufll J=j=1.2,3,
lujll = q lloel J=4,
el J =5,

then the solutions in Eq. (12) can be expressed in a compact form as
031(X1,X2) = Gy (x1,%2) [, (19)

where Gj(x;,x;) are the Green’s functions corresponding to the
constant extended displacement discontinuities within the rectan-
gular element of {x1,x,} = {¢n}={(—a,a),(—b,b)} on the interface.
For instance, Gi,(x1,X2) = Ki1l1(x1,X2) + Ki2l2(X1,x2). The above
Green'’s functions can be reduced to the solutions of the plane-strain
interfacial crack problem by taking the limit of b — oc. Besides, the
derived solutions can be reduced to those for the corresponding
interfacial cracks in piezoelectric bi-materials by making the mag-
netic-related coefficients zero (Zhao et al., 2014).

3.3. Green’s functions of point extended interfacial displacement
discontinuities

In the last subsection, the Green’s functions of constant
extended interfacial displacement discontinuities within a rectan-
gular element are obtained. When the size of the element
approaches zero, i.e., 2a = 2b — 0, we can obtain the Green’s func-
tions or the fundamental solutions corresponding to the point
extended interfacial displacement discontinuities, with the latter
being defined as:

limda?|[uf|| = 4a*||us]| = U],
limda?||uf|| = 4a®|us]| = V]
limda®|uf|| = 4a®(|us|| = W], (20)

[ R(0) B lim4a?||@?|| = 4a?||@¢|| = || D],
o [ [ Lo | {7%}1& a7y lmaellle?ll = 4elllg’l = o]
a0 T « L RO limda?|1y?|| = 4a?(y*|| = ¥
a+ xi n, X2 ax
\‘~,\‘\\~\\~ @ @ /,’/’

|
Ll
I
i
|
! e b-x,
!
|
1
\
i
Ll
I
\
P

--------------------------- N2 S ’-'--‘/‘53----------
fea) i o 4
T =,
e
Singular point (x;, x2) .-~ % ! 1 O b+x,
o

Fig. 3. Division of a rectangular integration area into eight triangular integration areas.
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where [|u4]], |[uzll, llus]l, [l¢]] and ||y/|| with the superscript p denote
the point extended displacement discontinuities; [|U]|, [|V]|, [[WII,
||®|| and ||'¥|| are the strength of the point extended displacement
discontinuities. By this definition and based on the solutions in Sec-
tion 3.2, the extended stresses at any point (x1,x2,0) on the interface
induced by the point extended interfacial displacement discontinu-
ities can be expressed by
031(X1,%2,0) = [K11J; (%1, %2) + K125 (%1, %2)][|U]|

+ (Ki1 = Ki2)J5 (%1, %) | V]|

+ 270Kt [ W]+ Kaal|D]| + Kas | 1), (x1)5(x2).

(21a)

032(X1,%2,0) = (K11 — Ki12)J5(x1,%2) ||U]]
+ [K11J2 (%1, X2) + KioJ; (%1, %2)][| V]|
+ 27 (Kar [[W]| + Kaz| Q| + Kas||']])0(x1)0x, (x2),

(21b)
033(X1,%2,0) = (Ka1 [W|| + K21 |9 + Kz31[[¥]]) U (%1, X2)
+J5(%1,%2))
+ 27K {0y, (x1)0(X2) Ul + 0(X1)dx, (x2) [ V[|},  (210)

D3(%1,%2,0) = (Kz2 W] + K22 | @] + Kzz2[[V])) J1 (X1, %2) + ]2 (X1, X2))
+ 27K {6y, (X1)0(X2) |U|| + 6(x1)dy, (x2) | V| },
(21d)

B3 (%1,%2,0) = (Kz3 Wl + K3 | @] + Kzss '] U1 (%1,%2) +J2(X1,%2))
+27tK3 {0y, (%1)0(x2)||U|| + (x1)0x, (x2) IV },

(21e)
where J,(x) is the derivative of the Dirac delta function, i.e.,
do(x

oulx) = 20, (22a)
and

. Li(x1,%2,0) x2
J1(x1,%2) = lim = ,

! a0  4a? 2 +x§)5/2

. L(x1,%;,0) x2
Jo(x1,%2) = lim 5= 573 (22b)

w0 ARG

. 13(X17X2.a) X1X2
J5(x1,%2) = lim 5 = 577

oA )

Again, by making use of the compact notations in Eq. (18), solu-
tions in Eq. (21) can be rewritten as

031(X1,%2) = Gy (x1, %) ]|, (23)

where GZ(X1,X2) denotes the Green’s functions for the point
extended interfacial displacement discontinuities applied at (xq,x2) =
(0,0). For example, G5, (x1,X2) = K11]; (%1, X2) + K12J5 (X1, %2).

The application of constant displacement discontinuities may
be relatively limited, but the obtained point Green'’s functions are
very flexible in solving interfacial crack problems with complex
boundary conditions and geometries. Furthermore, the higher
order elements, e.g., linear or quadratic elements, can be con-
structed simply by integrating the Green’s function of the point
extended interfacial displacement discontinuities.

4. Extended stress intensity factors and energy release rate
4.1. Approximations of Dirac delta and Heaviside functions

We point out that the solutions containing the Dirac delta func-
tion will cause oscillating singularity in the extended stresses

(Zhao et al., 2014). Therefore, before performing fracture analysis,
the Dirac delta function in the solutions is approximated by the
Gaussian distribution function as

1 2
o) = o= exp {— %} , (24)

where 0 < ¢ < 1. The selection and the effect of the parameter ¢ on
the fracture parameters will be discussed later in the numerical
analysis section.

Correspondingly, the derivative of the Dirac delta function is
given by

(x)_dé(x)_i X X
YT dx T 27es P 22|

On the other hand, as we know, the Heaviside function is the
integral of the Dirac delta function. Thus, if the Dirac delta function

is given by Eq. (24), the Heaviside function should be determined
by

_ % (1 +Erf [ﬁ] ) (26)

where Erf is the integral of the Gaussian distribution or the Error
function.

(25)

4.2. Extended stress intensity factors and energy release rate

For simplicity, a local coordinate system (31, B2, f3) is introduced
so that its origin p coincides with a point on the crack front of
interest (Fig. 4). The p-axis is perpendicular to the crack front line
and directs towards the inner side of the crack, while the p,-axis is
tangential to the crack front line, and s is parallel to the global x3-
axis. Now we consider the point (81,82, 83) = (—p,0,0) (p > 0) out-
side the crack but close to the point p. By introducing the

transformation
(¢+p)=rcosh, n=rsind, (27)

the extended stresses in Eq. (9) at point (—p,0,0) become

031(—p,0,0) :/

s+

{ [Kn cos? 0+ Ky sin® 0] s |

+ (Kq1 — Ku)cos()sin()||qu}r1—3dS, (28a)
032(—p,0,0) =/ {(K11 — Kq2) cos 0sin 0||uq]|
st
+ {KH sin® 0 + K1, cos? 0] Huzll}lds (28b)
3’
1
033(—p,0,0) = / Kzt [[usll + Kzt [l + Kenn ][] 5 dS. (28¢)
B3
B2
A
b4
Interface
Crack fl}‘(l)nt line

Fig. 4. Local coordinate system (f1,f2,3) at a point p on the front line of the
interfacial crack.
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1
D3(—p,0,0) = /+ (Kz12]|us]] + Koz || @] +Kz32W||]r—3d5 (28d)

1
B3(-p,0,0) = /‘ [Kasusll + Kzas |0l + Kzss[lll] 5 dS (28e)

Thus, the extended stress intensity factors at the crack front can
be defined as

KF = llm\/2_7'C‘O'33 —-p,0,0),
KP = hm\/z—n'D3 (=p,0,0),
KE = llm\/ﬁ& —-p,0,0), (29)
K= llm\/ﬁ‘GN -p,0,0),
K, Jnmﬁan (—p,0,0),

where K with the superscripts F, D and B denote, respectively, the
stress intensity factors, the electric displacement intensity factor
and the magnetic induction intensity factor.

We point out that Eqs. (28a)-(28e) are similar to the corre-
sponding ones for the homogeneous transversely isotropic MEE
materials in Zhao et al. (2007), except that the coefficients Kj; and
K in the integrals are different in both cases and that the oscilla-
tory singularity is removed due to the replacement of the Dirac
delta function by the Gaussian distribution function. Therefore,
the extended stresses at the crack front only possess the ordinary
singularity of order r~'/2, The singularity of the stresses at the four
corners of a rectangular crack is quite complicated, but with an
order of singularity below 1/2 (Schmitz et al., 1993; Cruse, 1996).
As important fracture parameters, we now derive the formulas
for the extended stress intensity factors and J-integral. By follow-
ing the approach in Zhao et al. (2007), the extended stress intensity
factors at the crack front can be expressed as:

Ki = v2nn Im Kot [[usl + Kz |91 + Kt 11/ VP,
Ky = Vann lim{Kzrallus|| + Kzza | ll + Kas2 W1/ VP

K7 = V2 lim{Kas us | + Kezs |0l + Kass v}/ VP, (30)

KIFI \/27171

tim[2Ky; + Koo /7

V27T
3
The J-integral is given by Beom and Atluri (1996) and Zhang

et al. (2002)

Ky = lim{Ky -+ 2K1a] uzll/ VP

J= }IKTHK, (31)

where K= (Kt K* K, KP K®)" is the vector of the extended
stress intensity factors and

H=[Re(Y' +Y )] (1+M*) = (1+iM)" [Re(Y' +Y )]+ iM),
M= —[Re(Y" +Y)] '[Im(Y" —Y)],

(32)
where matrix Y is defined in Appendix C and its superscripts “+”

and “-" correspond to the upper and the lower material spaces,
respectively.

5. Extended displacement discontinuity method

Crouch (1976) first introduced the displacement discontinuity
method. He placed N displacement discontinuities of unknown
magnitude along the boundaries of the region to be analyzed. A
system of algebraic equations is then formed and solved for the
discontinuity values that produce the prescribed boundary trac-
tions or displacements. This method will be extended in the pres-
ent study to analyze the rectangular interfacial crack in 3D MEE bi-
materials.

Although the interfacial crack can be of arbitrary shape, only
rectangular cracks are assumed as illustration in the numerical
study. We assume that a rectangular interfacial crack is divided
into N = N; x N, elements as in Section 3.2. Constant extended dis-
placement discontinuities of unknown magnitudes are distributed
within each element. The influence functions which are essential in
the extended Crouch’s method have been obtained as the Green’s
functions in Section 3.2. It should be noted that solutions in Eq.
(12) are derived in local coordinate system. Thus, in global system,
it follows that the stress ¢%; at the centre of the kth element due to
the extended displacement discontinuities ||u}'|| within the Ith con-
stant element is
%1 (Xaie, Xaks X1, X21) = G (e — X1, Xape — Xa) [, (33)
where (Xqx,X2) and (x1;,X5;) define the positions of the element cen-
ters, and relative coordinates (x;—x;) are used. By superposition, the
total extended stresses at the centre of the kth element due to
extended displacement discontinuities in all N elements is simply

N

= ZGZ' (Xak — X1, Xa — Xa1) 4" (34)
=1

0%, (X1, X2k)

Then the solution of the prescribed interfacial crack problem is
specified by the solution of a system of 5N linear equations with 5N
unknowns:

N

ZGf]’(Xlk — Xa1, Xok — Xa1) | U], (35)
[

t0f (X1, Xok) =

where f(x1,Xx,) on the left side is the distribution function of the
loadings prescribed on the crack faces and t° is the loading strength.
It can be seen that the prescribed extended tractions are not neces-
sarily uniform along the whole crack faces and if they are uniformly
distributed then f{x1,x,) = 1. It should be pointed out that if the dis-
continuities are distributed symmetrically about the centre of the
crack, Eq. (35) can be reduced to a 5N/2 by 5N/2 system of
equations.

The extended displacement discontinuities close to the crack tip
can be extrapolated by fitting the calculated results of the elements

at the front of it and the fitting equations are shown as below:
Hu]” = lerl/z + ijrs/zv J=1,2,3,4)5, (36)

where yj; and yj, are fitting coefficients and r here denotes the
distance of the field point from the crack tip. Then by substituting
Eq. (36) into Eq. (30), the extended stress intensity factors become

= V217 (Ka1 )31 + K1 Jag + K31 fs1),
K? = V2 (Ka2)s; + Koo Yy + K2 )s1)
= V21 (K331 + Kas g + Kz sy

(37)
V21T
Kf = 3 2K + K12) 711,
V21T
Kf = ~5— (K1 +2K12) 5,
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Fig. 5. Three different sizes of the rectangular interfacial crack.

.5620
—0-
f— —e_
5618 1 It
f . _
= 5616 ¢ *~e
5 * —-e—- V,=0.3/V,=0.7
Q
= !
L5614 A +
{ 0,,=40MPa , D,=0.01C/m’, B,=0.1T
5612 A *
60—
000 01 .02 .03 .04 05 06 .07 .08 .09 .10

£

Fig. 6a. Variation of the maximum dimensionless J-integral along the edge of the
square interfacial crack with different ¢ values under ¢33 = 40 MPa, D5 = 0.01 C/m?
and B3 = 0.1 T for the material system of V; = 0.3/V,=0.7.

6. Numerical examples

In the following numerical examples, the piezoelectric material
BaTiO3 and the piezomagnetic material CoFe,04 are used to com-
pose the MEE composite. The available material constants of these
two constituents are listed in Appendix D. If m;-my-m3 denotes
the material coordinate system, then the poling direction of the
given materials in Appendix D is along the mjs-direction. The
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Fig. 6b. Variation of the maximum dimensionless J-integral along the edge of the
square interfacial crack with different ¢ values under o33 = 40 MPa, D5 = 0.01 C/m?
and B3 = 0.1 T for the material system of V; =0.5/V,=0.7.
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Fig. 7a. Variation of the maximum dimensionless stress intensity factor K; on the
edge of x; = 0 of the rectangular interfacial crack with different applied stress ratios
of g31/033, three different crack sizes are considered.

material constants of the resultant MEE composite can be obtained
by following the rule of mixture:
AS=AVi+A"(1 - V), (38)
where V; is the volume fraction of the piezoelectric component
BaTiOs (i = 1, 2 are for the upper and lower material spaces, respec-
tively); A with the superscripts “c”, “e” and “m” denote, respec-
tively, the material constants of the composite, the piezoelectric
component BaTiO3 and the piezomagnetic component CoFe,04. In
the following numerical examples, the material coordinate system
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Fig. 7b. Variation of the maximum dimensionless stress intensity factor K on the
edge of x; = 0 of the rectangular interfacial crack with different applied stress ratios
of g31/033, three different crack sizes are considered.
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Fig. 7c. Variation of the maximum dimensionless stress intensity factor Kj; on the
edge of x; = 0 of the rectangular interfacial crack with different applied stress ratios
of g31/a33, three different crack sizes are considered.
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Fig. 7d. Variation of the maximum dimensionless J-integral on the edge of x; = 0 of
the rectangular interfacial crack with different applied stress ratios of a31/a33, three
different crack sizes are considered.
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Fig. 8a. Distribution of the dimensionless J-integral along the edge of x; = 0 of the
square interfacial crack under os3;=40MPa, D;=0.01C/m? and B3=0.1T and
031 = 0 MPa, three different bi-material systems are considered.

m;-my—ms of the obtained transversely isotropic composite is made
to coincide with the global coordinate system x;-x,—x3. Three dif-
ferent crack sizes will be considered for the rectangular interfacial
crack as shown in Fig. 5 ((a)-(c)). It should be noted that all the geo-
metric quantities and the obtained displacement discontinuities in
the numerical examples are normalized by length [ = 1 m. The stress
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Fig. 8b. Distribution of the dimensionless J-integral along the edge of x; = 0 of the
square interfacial crack under o33;=40MPa, D;=0.01C/m? and B3=0.1T and
031 =40 MPa, three different bi-material systems are considered.
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Fig. 8c. Distribution of the dimensionless J-integral along the edge of x; = 0 of the
square interfacial crack under o33;=40MPa, D;=0.01C/m? and B3=0.1T and
31 =80 MPa, three different bi-material systems are considered.
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Fig. 9. Variation of the maximum dimensionless J-integral on the edge of x; = 0 of
the square interfacial crack with different applied stress ratios of ¢3/033, three
different bi-material systems are considered.

intensity factors K (K, K; and Kj,;) are normalized by /7l/20,,
where ¢, is the effective stress which is defined differently for spe-
cific cases. The electric displacement intensity factor Kp and the
magnetic induction intensity factor K are normalized by +/7l/2Ds
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Fig. 10. Variation of the maximum dimensionless J-integral on the edge of x; = 0 of
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Fig. 11. Variation of the maximum dimensionless J-integral on the edge of x; = 0 of
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different bi-material systems are considered.
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Fig. 12. Loadings of (a) linear distribution and (b) parabolic distribution on the
crack face.

X

v
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and +/7l/2Bs, respectively, with D3 being the applied electric dis-
placement and Bs; the applied magnetic induction. The energy
release rate J-integral is always normalized by c33/(l0%,), with o33
being the applied traction component and cs3 the elastic constant
of BaTiOs.

As mentioned in Section 3.2, our solutions can be reduced to the
ones for the plane-strain interfacial cracks in piezoelectric bi-mate-
rials as in Zhao et al. (2014). Furthermore, our solutions can be
reduced to the ones for cracks in 3D homogeneous MEE full space
as in Zhao et al. (2007). We have numerically checked our
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Fig. 13a. Variation of the dimensionless J-integral along the edge of x, = 0 of the
square interfacial crack under loadings, respectively, of uniform, linear and
parabolic distribution.
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Fig. 13b. Variation of the dimensionless J-integral along the edge of x; =0 of the
square interfacial crack under loadings, respectively, of uniform, linear and
parabolic distribution.

formulations for these reduced cases and found that our solutions
are correct.

As mentioned in Section 4.1, the parameter ¢ in Eqs. (24) and
(25) should be assigned properly. Thus, numerical study on the
effect of different values of the parameter ¢ on the J-integral is nec-
essary. Fig. 6 shows the variation of the maximum dimensionless J-
integral along the edge of the square-shaped interfacial crack (as
shown in Fig. 5a) with different ¢ values under the loading of
033 =40 MPa, D3=0.01 C/m? and B3;=0.1T for volume fractions
of V;=0.3/V,=0.7 (Fig. 6a) and V;=0.5/V,=0.7 (Fig. 6b). From
Fig. 6, it can be seen that as ¢ approaches zero, J-integral
approaches a constant value which is the minimum value of J;
when ¢ is near the value of 0.03, J-integral has a maximum value.
However, the difference between them is far less than 1% and
can be consequently neglected. Furthermore, similar results are
obtained for different rectangular-shaped cracks and for different
material volume fractions. As such, in the following calculations,
we assume ¢ = 0.0075.

Figs. 7a-7c show, respectively, the variations of the maximum
dimensionless stress intensity factors K, Kj; and Kj;; on the left edge
(x1 = 0) of the rectangular interfacial crack with different applied
stress ratio gs3;/033 for which the value of g3 is fixed at 40 MPa.
The electric displacement of D;=0.01 C/m? and the magnetic
induction of B3=0.1T are also applied. The effective stress to
normalize the stress intensity factors here is calculated as

0.=4/0% +0%. In all the following calculations, unless
mentioned specifically such as Fig. 9, the volume fractions of the
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Fig. 14. Dimensionless displacement discontinuity ||us|| (x107*) on the whole square interfacial crack under mixed loadings of (a) uniform distribution; (b) linear

distribution; and (c) parabolic distribution.

piezoelectric constituent for the upper and the lower material
spaces are V;=0.5 and V,=0.7, respectively. From Fig. 7, it can
be seen that the normal stress intensity factor K; (Fig. 7a)
decreases, whilst both shear stress intensity factors Ky (Fig. 7b)
and Kiy; (Fig. 7c) increase with the increasing ratio of g3¢/g33. It is
observed that nonzero Kj; occurs even though no os; is applied.
This demonstrates the special coupling relation mentioned in Sec-
tion 3.1. Meanwhile, we found that the maximum values of these
three stress intensity factors all occur at the middle of the crack
edge. Besides, the electric displacement intensity factor Kp and
the magnetic induction intensity factor K also change with applied
shear stresses. However, their changes are little as compared to the
stress intensity factors so that their differences are neglected.
Fig. 7d shows the variation of the maximum dimensionless energy
release rate J-integral on the left crack edge (x; = 0) with different
ratios of 031/033 for different crack shapes. It is found that the max-
imum J-integral does not always occur at the center of the crack
edge and its location is affected by the applied shear loadings,
which can be seen in the following part.

Fig. 8 shows the distribution of the dimensionless J-integral
along the left edge (x; = 0) of the square interfacial crack (Fig. 5a)
under o33=40MPa, D;=001C/m?> and B;=0.1T with
31 =0 MPa, 40 MPa and 80 MPa in Figs. 8a, 8b and 8c, respectively.
Different volume fractions of the piezoelectric BaTiOs;, namely
V1 =0.3, V;=0.5,and V; = 0.7 are considered for the upper material
space, whilst the volume faction for the lower material space
remains V,=0.7. In Figs. 8a and 8b, the maximum J-integral is
located at the center of the left crack edge. However, in Fig. 8c,

maximum J-integral is located symmetrically on two sides of the
edge center. Besides, the J-integral at corners of the rectangular
crack are zero as shown in Figs. 8a-8c. Actually, as mentioned in
Section 4.2, the singularity at four corners of a rectangular crack
is weak, and thus the stress intensity factors at four corners is zero,
which was also reported in Pan and Yuan (2000), Wang et al.
(2001) and Noda and Kihara (2002) for rectangular cracks in elastic
material. It also can be seen that the J-integral of the homogeneous
case is larger than that of the bi-material cases. In other words, the
interface between the two material spaces implements a stronger
restriction on the crack propagation under the current loading case
if J-integral is adopted as the fracture criteria.

Fig. 9 shows the variation of the maximum dimensionless J-
integral on the left edge (x; = 0) of the square interfacial crack with
different ratios of ag31/033 for three different bi-material systems.
Again, o33 is fixed at 40 MPa, and D3=0.01 C/m? and B3=0.1T
are also applied. Figs. 10 and 11 present, respectively, the effect
of different electric loading and the effect of different magnetic
loading on the maximum dimensionless J-integral on the left edge
(x1 = 0) of the square interfacial crack. Fig. 10 indicates that there
exists a critical value of the applied electric displacement for each
bi-material system which induces the maximum J-integral. The J-
integral decreases monotonically and symmetrically towards zero
on two sides of this critical value. This critical value of the applied
electric displacement for material systems V;=0.3/V,=0.7,
V1=0.5/V,=0.7 and V;=0.7/V,=0.7 is approximately 0.0025 C/
m?, 0.004 C/m? and 0.005 C/m?, respectively. Similarly, as shown
in Fig. 11, there also exists a critical value of the applied magnetic
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Fig. 15. Dimensionless electric potential jump ||¢|| (x10~*) on the whole square interfacial crack under mixed loadings of (a) uniform distribution; (b) linear distribution;

and (c) parabolic distribution.

induction and this critical value for all three material systems is
roughly at B3 =0T.

As pointed out early in this paper, the proposed method can be
also applied to the interfacial crack under non-uniform loadings on
its faces. As an example, both linear and parabolic loadings are con-
sidered. It is assumed that the distribution of the loadings varies
only along x;-direction. Along x,-direction, the applied loads are
uniformly distributed. Since the crack length in x;-direction is
assumed to be [ =1 m, the distribution functions are given by

Xqy for0<x <05

o {?5*1 f (39)
o5 qo for0.5<x <10

for linear distribution as shown in Fig. 12a and

qx1) = —qpx1(x1 — 1) for0<x <1.0 (40)

for parabolic distribution as shown in Fig. 12(b), where qq is the
strength of the applied loads. For comparison, the same loading
strengths of ¢3; = 40 MPa, D = 0.01 C/m?2 and B = 0.1 T are con-
sidered for different loading distribution cases. Fig. 13 presents
the distribution of the dimensionless J-integral along (a) the edge
of x, = 0; and (b) the edge of x; = 0 of the square-shaped interfacial
crack. It can be observed that the distribution of the J-integral along
x;-direction (Fig. 13a) for the linear distribution is similar to the one
for the parabolic distribution but different from the one due to the
uniform distribution. It is also seen from both Figs. 13a and 13b that

the J-integral for the uniform distribution is the largest among all
three cases and the one due to the parabolic distribution is the
smallest. Besides, for both linear and parabolic distributed loadings,
the maximum J-integral along x,-direction (Fig. 13a) does not occur
at the center of the edge, although no shear traction loadings are
applied.

Figs. 14-16 show, respectively, the contour plots of the
obtained opening displacement discontinuity, the electric potential
discontinuity and the magnetic potential discontinuity distributed
on the whole crack face under mixed loadings of (a) uniform distri-
bution; (b) linear distribution; and (c) parabolic distribution. The
loading conditions are exactly the same as the ones in Fig. 13. It
is obvious that the distributions of these extended displacement
discontinuities for the three different loading types are different.

7. Concluding remarks

Green’s functions of constant extended interfacial displacement
discontinuities within a rectangular element and of point extended
interfacial displacement discontinuities in 3D transversely isotro-
pic MEE bi-materials have been derived. Based on the obtained
Green's functions, the extended displacement discontinuity
boundary integral method has been developed to analyze the elec-
trically and magnetically impermeable interfacial cracks in 3D MEE
bi-materials. When the Dirac delta function and the unit Heaviside
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Fig. 16. Dimensionless magnetic potential jump ||y|| (x10~8) on the whole square interfacial crack under mixed loadings of (a) uniform distribution; (b) linear distribution;

and (c) parabolic distribution.

function in the Green’s functions are approximated, respectively,
by the Gaussian distribution function and the Error function, the
oscillatory singularities of the extended stresses near the interfa-
cial crack front disappear. Thus, the singularity behaviors near
the crack front of MEE bi-materials become the classical elastic
one. The stress intensity factors, electric displacement intensity
factor and magnetic induction intensity factor have been derived
and expressed in terms of the extended displacement discontinu-
ities. The effect of the parameter ¢ in the Gaussian distribution
function on the J-integral is proved to be very small within the
given range of ¢. This feature makes the developed extended dis-
placement discontinuity method more efficient and useful for
interfacial crack analysis in 3D MEE materials. Numerical results
demonstrate the coupling effects on the stress intensity factors of
different modes for the interfacial crack. Material mismatch on
both sides of the interface also shows a significant effect on the
crack parameters, so is the non-uniform loadings. It should be
mentioned that the presented formulation is also applicable to
interfacial crack problems in decoupled piezoelectric and/or elastic
bi-materials as special cases.
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Appendix A. Constants Kj; and K;; in Eqgs. (8) and (9)

To calculate constants Kj and K three steps are needed as
shown in the following:

A1l. The material-related constants in deriving the fundamental
solutions for a transversely isotropic MEE material are given

below:

aim:kmis,-, i:1—4, m:1—3,

& = (C130%1 + €310 + f31%3)Si — C12,

W51 = C44S5, sy = €1555, W53 = f15S5,

Vi = (C3301 + €330z + f33003)Si — C13,

VUi = (33001 — K330 — Z33%i3)Si — €31, (A1)

Uiz = (f33001 — G330z — Us3%3)Si — f31,

Wi1 = Caa(Si + %i1) + €150 + f15%i3,

Wiy = €15(Si + 0lir) — K110 — 811%i3,

O3 = f15(Si + o) — 11 %z — fy1 %3,
where s; are the roots of the material characteristic equation and k;,;
are the material-related constants given in Zhao et al. (2008a).
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A2. Related coefficients in the fundamental solutions (Zhao
et al., 2008a) are determined by

4 4 4 4
ZAi =0, 4nZz9i1Af =1, 47) WpAi=0, 47 0sA =0,

i=1 i=1

4
A+ ZA_)I = Z s Aillim — ZAjiijm = ZAL L,
Jj=1

j=1

Ajiﬂjm = ZAL’l?)Lm, A; i1 — ZAJI(JJ]] = Z i }1,
= =

(A2)

Aidim +

4 4 4 4
ZBi = 0, 47'[2’19,‘13,‘ = 0, 471219,‘23,' = 1, 47'[2191'33,‘ = 0,
i=1 i=1 i=1 i=1

4 4
B + ZBJI = Z jis B,'OCim — ZBﬁO(jm = ZBJLICXJLm

4
B,’ﬂ,’m + ZBjiﬂjm = ZB]LI’lg]Lm B; Wi — ZBJ,CO]] = Z i jl
i =

(A3)
4 4 4 4
ZC,‘ = 0, 47[279,‘1 Cj = 07 47[279{2Cj = 07 47[279,‘3Ci = 1,
i=1 i=1 i=1 i=1
4 4 4
G+ chi = Zcﬁy Cittim — chi(xjm = ZCL ,L,m
j=1 j=1

j=1 j=1
4 4
CiYim + chiﬁjm = Zcﬁﬁfm Ciwiy — ZCﬂa)ﬂ = Z ji )1
=1 =1
(A4)
4 4
foimDi =0, ssDs-+ ZS,‘D;‘ =0
i=1 i=1
4
2TC4485D5 — ZﬂzwnDi =—1, Ds+Dss= D55,
i=1
4 L
S SRS v R Y S
j=1 Jj=1

Ws1(Dss —Ds) =
4
wi1D; — ijlDﬁ = Z(D D]Ll7
j=1 j

4
OimDi + Z’ﬂijﬁ = Zﬁmeij
Jj=1 j=1

In the above equations, the variables with the superscript “L”
denote the material constants in the lower half space.
A3. Constants appearing in Eqs. (8) and (9) are calculated as

L Al
—a)51D55,

K]] = C44Ws51 (Ds - DSS)SS

4 4 4
+ 226{),‘] |:C44 <D,‘S,‘ — ZDgSj) + Ca4 (A, — ZAU>

i-1 =1 j=1

4 4
— €15 (Bi - ZBU) —f1s (Ci - ZQ‘;‘)} )
j=1 j=1

K1y = —2C44m57 (DS - D55)S5

4 4 4
— an |:C44 (Disi - ZDiij> + Ca4 <Ai - ZA‘;)

i=1 j=1 j=1

4 4
—es (B,- - ZB,,-) —fis <ci - Zcﬁ)} , (A6)
j=1 j=1

4 4 4
Koy = 0aKj, Ko=) 9okKj, Ki=) vsK},
> i—1 i=1

4 4
KJL = —Caq4 <D,‘Si + ZDiISj) — Cy4 <A1 + ZAU> (A7)

= =1
+eis (B + ZB,,) +f1s <C + ZQ)
j=1 j=1
4 4 4
Ky = Z(Uﬂ |:C13 (Di - ZDU> —C33 <A151 - ZAUSJ>
i=1 Jj=1 J=1
4 4
+ €33 (Bisi - ZBU5j> +f3 (Cisi - Zcijsj)] ;
= =

4 4 4
K, = Za)n {eu <D,- - ZDU) — €33 (Aisi - Z&j%)
i=1 Jj=1 J=1
4 4
— K33 (Bisi - ZBUSJ) — 833 <Ci5i - Zcijsj)} ;

j=1 j=1

4 4 4
Ky = wq [f31 (Di - ZD,,-) —f33 (Aisi - ZA,-jsj)
i=1 j=1 j=1
4 4
— 833 (Bisi - ZBU‘SJ'> — Hs3 (C,-S,» - ZCUSJ‘)} )

=1 =1

4 4 4
Kor = 0iKar, Koi =Y 00K, K= 0sKa,

i=1 i=1 i=1

4 4 4
Kz12 = Zﬁﬂ KzzZ; KZZZ = 219121(222-, Kz32 = Z’Lgi3KZZZ7 (Ag)

i1 i1 i
4 4 4

Koz = 0iKus, Koz=) 0oKas, Kiaz=) K,
i1 i1 i1

where

4 4
K1 = C13 (Di + ZDg) —C33 (A,*Si + ZAiij>
¢ =

=

4 4
+ €33 (Bisi + Z&j-%) +f33 (Cis,- + ZCUSJ) )
: =

=

Kzzz = €3 (D + ZDU> — €33 <A Si + ZAUSJ>

j=1
(A10)

4
—&33 <Bi5i + ZBM) — 83 (C,s, + ZC,]S]> ;
=

j=1

4 4
Kzs =f3 <Di + ZDij> —f33 (Ais,- + ZAIJ'SJ)
j=1 j=1
4 4
— 833 (B,»s,- + ZBiij) — Uz <C,‘Si + ZC,‘;S]) .
=1

=

Appendix B. Calculation of divergent integrals I, in Eq. (13)

To calculate the divergent integral I; in Eq. (13) or Eq. (16), the
rectangular integration area is divided into eight triangular areas,
as shown in Fig. 3. The finite part integral I; is evaluated over each
triangle using Eq. (17). Note that f{0) = cos?0 for I;.
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For triangle :

b+ x
Ry = cos(n/22+ 0)’

=% cos2 9 1
P:—/ do=—
! _n;2 R(0) b+x;3

For triangles @ and ®:

a—X;
R(0) = ———
©) cos0’
243 0 coszedg
o, R(0)

(B1)
cos> 0,.

1 3 . 1 . 3 .
=er(ZsmOngﬁ51r1303+7sm92+

1 .
2 sm3(92>.

12
(B2)
For triangle @:
- b— X
ROy = cos(m/2 —0)’

/2 2
4 cos“ 0, 1 1
I = /63 R(0) do = — . 2:‘}cos 05.

For triangle ®:

b—X2
RO) = cos(0 —m/2)’

/2465 2
I? _ _/ cos 0d0: 1
/2 R(6) b—x;3
For triangle ® + @:

_ a—+ X
k)= cos(mw — 0)’

T+07 2
I?”:—/ cos 0d0
/2405 R(Q)

1 3 . 1 . 3 1
_7a+X1 (4_1 sin 0 +ﬁ sin 365 +Z cos 05 1 c05365>.

(B4)

1 sm 0s.

(B5)
For triangle ®:

b + X2
k)= cos(3m/2 - 0)’

372 cos? 0 1 1
B=- / do = cos 0
! Jrvo, R(0) " b+x3 "

Adding all the results in Egs. (B1)-(B6

(B6)

), we obtain

1 1
= 2§cos 03

3 . 1 . 3 1
77)((1 sin 03 +ﬁ sin 303 +4 sin 0, +ﬁ sm3(92)

1

1
m— cos> 0,

1
b X2 3 Slrl 05 —

3 3 1
{4 sin 07 + sm3(97 +4 €0s 05 — P cos395} (B7)

From the geometric relation in Fig. 3, the sine and cosine
expressions for angles 6,, 63, 65 and 0, are presented as

oS0, = a—% , sinf, = b+x :
(@a—x)>+(b+x)° (a—x)*+ (b +x,)
a—x . b—x
cosf; = - 1b . sinfs = - 2b =
(@a—x1)"+(b-xa) (@a—=x)"+(b—-x2)
b- . a-+x
cos s = - yb . sinfs = > ]b =;
(a+x1)"+ (b —xa) (@+x)"+(b—x)
cos 0y = ajxl = sinf; = bsz =
(@+x1)"+ (b+x2) (@+x1)"+ (b+x2)

(B8)

Besides, we have the following formulas

c0s30 = cos3 0 — 3 sin® 6 cos 0,

B9
sin360 = 3sin 0 cos? 0 — sin’ 0. (B9)
Finally, I; is calculated as
2
I (%1,%2,a,b) = ta— ) +2(X2_b)
(xl —a)(Xa — b)\/(x; — a)* + (x, — b)?
(1 — a)* +2(x, + b)*
+ 2
3(% — @)%z + b)y/ (%1 — @) + (x + b)
N (%1 +a)® +2(x, — b)°
3(% + a)(x2 = b)y/ (%1 + @) + (x2 — b)?
2 2
(X1 +a) +2(x2 +b) (B10)

300 + )%z + b)y/ (4 + @) + (%2 + b)?

The expression of I; in Eq. (B10) is the same as the one in Eq.
(14a). Similarly, I, and I3 can also be calculated with the results
being exactly the same as those in Eqs. (14b) and (14c).

Appendix C. Derivation of matrix Y for J-integral

The standard eigenequation for MEE material is given as (Zhao
and Fan, 2008):

(x ) (5)=2(5) e

where N; = -T"'R", N, =T~' =NJ, N; = RT"'R" — Q = N} and
Cur  emi S Cue  €ui fou

Q=| ey —kn &1 |, R=|¢€y —Kn —g&;|,
ffli =811 —Hn f?zi —&12 —Hp
Cioke  €xi o

T=| €y —Kn —gn

f;zi —822 —Hx

Letting matrices A =(aq,a,,as a4,as) and B=
with a, and b, being the eigenvectors of Eq. (C1

(b1,b,bs3, b4, bs)
), we then have:
AA" + AA” = BB' + BB = 0,

- _ (C2)
BA" +BA' = AB' + AB' =1,
wherelis a5 x 5 identity matrix. The matrix Y in the calculations of

J-integral is defined by

Y =iAB". (C3)

Appendix D. Material constants

€11 C33 Ci2  Ci3 Ca4 €31 €33 €15

BaTiO3 166 162 77 78 43 44 186 116
CoFe,04 286 2695 173 1705 453 O 0 0

K11 K33 Hi1 H33 f3 f33 fis

BaTiO; 11.2 126 5000 10,000 O 0 0
CoFe,04 0.08 0.093 59,000 157,000 580.3 699.7 550

(Units: ¢; (x10° N/m?); e; (C/m?); K (x107° C/Vm); g (x107° -
Ns? C?); f; (x1079 N/Am)).
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