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In this paper, we present an analytical solution on the general static deformation of a spherically
anisotropic and multilayered magneto-electro-elastic (MEE) hollow sphere. We first express the general
solution in each layer in terms of the spherical system of vector functions where two transformations of
variables are also proposed to achieve the analytical results. The spherical system of vector functions can
be applied to expand any vector as well as scalar function, and it further automatically separates the stat-
ic deformation into two independent sub-problems: The LM-type and N-type. The LM-type is associated
with the spheroidal deformation and is coupled further with the electric and magnetic fields. The N-type
is associated with the torsional deformation and is purely elastic and independent of the electric and
magnetic fields. To solve the multilayered spherical problem, the propagation matrix method is intro-
duced with the propagation matrix being simply the exponential matrix for each layer. By assuming
the continuity conditions on the interface between the adjacent spherical shells, the solution can be sim-
ply propagated from the inner surface to the outer surface of the layered and hollow MEE sphere so that
specific boundary value problems can be solved. As numerical examples, a three-layered sandwich hol-
low sphere with different stacking sequences under different boundary conditions is studied. Our results
illustrate the influence of the stacking sequences while showing the effectiveness of the proposed
method.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Magneto-electro-elastic (MEE) materials and structures attract
many researchers because of their excellent ability of converting
energy among the electric, mechanical, and magnetic fields. As
such, they have huge potential applications in smart sensors,
actuators, filters among others, as reviewed in material community
as multiferroics and multiferroic composites (Eerenstein et al.,
2006; Nan et al., 2008).

In the past two decades, studies of these solids were concentrat-
ed primarily on MEE layered plates under both static and dynamic
deformation. Pan (2001) and Wang and co-workers (2003) ana-
lyzed multilayered MEE rectangular plates under static loadings
with the propagation matrix method. In constructing the
propagation matrix, they employed the Stroh formalism and the
state-space method. Pan and Heyliger (2002) and Chen and
co-workers (2007a) investigated the corresponding free vibration
problem in the layered rectangular and multilayered MEE plates.
The dispersion relation of wave propagation in multilayered MEE
plates with infinite dimensions in the horizontal plane was derived
and analyzed by Chen and co-workers (2007b) and Yu and co-
workers (2012). More recent studies include guided waves in lay-
ered MEE bars with rectangular cross-sections (Yu et al., 2014) and
free vibrations in layered plates under more complicated lateral
boundary conditions (Chen et al., 2014).

Compared to the horizontally layered structure, a layered
sphere poses more of a challenge. Ding and Chen (1996) calculated
the natural frequencies of an elastic spherically isotropic hollow
sphere submerged in a compressible fluid medium. Based on the
state-space method and variables separation techniques, Chen
and Ding (2001) and Chen and co-workers (2001) investigated,
respectively, the free vibration of hollow elastic sphere and the
static deformation of multilayered piezoelectric hollow spheres.
Heyliger and Wu (1999) derived an analytical solution for the radi-
al deformation of a layered piezoelectric sphere. However, to the
best of the authors’ knowledge, the general static deformation of
a multilayered MEE hollow sphere with spherical anisotropy has
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not been analyzed so far. Furthermore, our recent studies indicate
that a spherical and layered shell structure could be more efficient
and powerful than a cylindrical and layered shell in terms of the
produced coupling effect between the magnetic and electric fields
(under preparation). This absence motivates the present study.

This paper is organized as follows: After the introduction, in
Section 2, we describe the problem to be solved and present the
basic equations in spherical coordinates for the spherically
anisotropic MEE material. In Section 3, we introduce the spherical
system of vector functions along with its properties. In Section 4,
the general solutions in the analytical form for each layer and
the propagation matrix in terms of the exponential matrix are
derived. Numerical examples are presented in Section 5 and con-
clusions are drawn in Section 6.

2. Problem description and basic equations

We assume, as shown in Fig. 1, a spherically anisotropic and p-
layered MEE hollow sphere. The ith layer has a radius of ri on its
interior interface and ri+1 on its exterior interface. Thus, the inner
and outer surface of the layered sphere has, respectively, a radius
of r1 and rp+1, and is under suitable boundary conditions which will
be presented later. The interface between the adjacent layers is
assumed to be perfectly connected. In other words the extended
displacements and tractions in r-direction are continuous. Spheri-
cal anisotropy means that in the spherical coordinates (r, h, /), the
center of the spherical isotropy is coincident with the origin and
the symmetry axis of the material is along r-direction. We further
mention that only under this assumption of spherical anisotropy,
we can derive the analytical solutions as presented in this paper;
the general anisotropic case has to be solved numerically.

For this general problem, the following equations must be sat-
isfied at every point inside each of the individual layers in terms
of the spherical coordinates. The general constitutive relations of
the MEE structure with spherical anisotropy are given as follows:

rhh ¼ c11chhþ c12cuuþ c13crr � e31Er �q31Hr ; rrh ¼ 2c44crh� e15Eh�q15Hh

ruu ¼ c12chhþ c11cuuþ c13crr � e31Er �q31Hr ; rru ¼ 2c44cru� e15Eu�q15Hu

rrr ¼ c13chhþ c13cuuþ c33crr � e33Er �q33Hr ; rhu ¼ 2c66chu

Dh ¼ 2e15chr þ e11Ehþa11Hh; Du ¼ 2e15cur þ e11Euþa11Hu

Dr ¼ e31ðchhþcuuÞþ e33crr þ e33Er þa33Hr

Bh ¼ 2q15chr þa11Ehþl11Hh; Bu ¼ 2q15cur þa11Euþl11Hu

Br ¼ q31ðchhþcuuÞþq33crr þa33Er þl33Hr

ð1Þ
Fig. 1. A hollow MEE sphere made of p layers with its inner surface at r1 and outer
surface at rp+1. Both surfaces are subjected to suitable extended displacement and
traction boundary conditions.
where rij, Di and Bi are the stress, electric displacement and mag-
netic induction, respectively; cij, Ei and Hi are the strain, electric
field and magnetic field, respectively; cik, eik and lik are the elastic,
dielectric, and magnetic permeability coefficients, respectively; eik

and qik are the piezoelectric and piezomagnetic coefficients, respec-
tively; aij are the electromagnetic coefficients. It is noted that an
additional relationship c11 = c12 + 2c66 holds for the spherically
anisotropic material with the r-axis being the axis of symmetry.

In Eq. (1), the strains, electric and magnetic fields are related to
the elastic displacement and electric and magnetic potentials by
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ð2Þ

where ui (i = r, h, u) are components of elastic displacement, / and
w are electric and magnetic potentials.

Under static deformation and in the absence of external forces,
the equations of equilibrium are written in the following form:
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ð3Þ

Similarly, the static Maxwell equations of the electric and magnetic
fields without electric and magnetic sources are given as
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ð4Þ
3. Spherical system of vector functions

To solve the problem described in Section 2, we introduce the
following spherical system of vector functions (Ulitko, 1979):

Lðh;u; n;mÞ ¼ erSðh;u; n;mÞ
Mðh;u; n;mÞ ¼ rrS ¼ eh@h þ eu

@u
sin h

� �
Sðh;u; n;mÞ

Nðh;u; n;mÞ ¼ rr� ðerSÞ ¼ ðeh
@u

sin h� eu@hÞSðh;u; n;mÞ

ð5Þ

where er, eh, and eu are the unit vectors, respectively, along r-, h-
and u-directions, and S is a scalar function defined by

Sðh;u; n;mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn�mÞ!

4pðnþmÞ!

s
Pm

n ðcos hÞeimu;

jmj 6 n and n ¼ 0;1;2; . . . ð6Þ

with Pm
n being the associated Legendre function (Abramovitz and

Stegun, 1972). It is noted that the scalar function S satisfies the fol-
lowing Helmholtz equation

1
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where k2 = n(n + 1).
The following identity for any f(h,u) is also very useful when

deriving our solutions
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It is easy to show that the spherical system of vector functions (5) is
complete and orthogonal in the following sense.R 2p

0 du
R p

0 Lðh;u; n;mÞ � �Lðh;u; n0;m0Þ sin hdh ¼ dnn0dmm0R 2p
0 du

R p
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ð9Þ

where dij are the components of the Kronecker delta and an overbar
indicates complex conjugate.

4. Solutions in terms of spherical system of vector functions

4.1. Expansions of physical quantities in each spherical layer

Owing to the orthogonal properties (9), we can expand any vec-
tor, such as the elastic displacement u, electric potential / and
magnetic potential w, as
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For easy presentation, the scalar function S(h, u; n, m) is written as
S(h, u) or S later on. For the same reason, the dependence of the
expansion coefficients UL, UM, UN, U and W on (n,m) is also omitted.

Similarly, the traction vector t, the electric displacement vector
D and magnetic induction vector B can be expressed as

tðr; h;uÞ � rrrer þrrheh þrrueu

¼
X1
n¼0

Xn

m¼�n

erTLSþ eh TM
@S
@h
þ TN

sin h
@S
@u

� �
þ eu

TM

sin h
@S
@u
� TN

@S
@h

� �	 


Dðr; h;uÞ ¼
X1
n¼0

Xn

m¼�n

erDLSþ eh DM
@S
@h
þ DN

sin h
@S
@u

� �
þ eu

DM

sin h
@S
@u
�DN

@S
@h

� �	 


Bðr;h;uÞ ¼
X1
n¼0

Xn

m¼�n

erBLSþ eh BM
@S
@h
þ BN

sin h
@S
@u

� �
þ eu

BM

sin h
@S
@u
� BN

@S
@h

� �	 


ð11Þ

Also in terms of the spherical system of vector functions, the strains,
the electric and magnetic fields can be expressed by the coefficients
of the elastic displacements and the electric and magnetic potentials
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in which the superscript prime ‘‘0’’ indicates the derivative with
respect to the radial coordinate r.

Substituting Eqs. (11) and (12) into Eq. (1) and comparing the
coefficients on both sides of the resulting equations, we find
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Furthermore, making use of Eqs. (1)–(4) and (11), we obtain
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where C = c11 + c12.

It is obvious from Eqs. (13) and (14) that TN and UN are uncou-
pled form other variables and that they are purely elastic, meaning
that they are independent of the electric and magnetic fields. We
call this the N-type problem, which is also associated with the tor-
sional deformation only. The N-type problem satisfies the follow-
ing set of first-order differential equations
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ð15Þ

The remaining part is called LM-type problem, which couples the
elastic, electric and magnetic fields together. The deformation in
this case is associated with the spheroidal deformation. It is gov-
erned by the following set of first-order differential equations
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in which each sub-matrix is given by

U ¼ ½UL UM U W �t ; T ¼ ½ TL TM DL BL �t ð17aÞ
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Both Eq. (15) for the N-type and (16) for the LM-type are first-order
differential equations with variable coefficients. In other words,
their coefficients are functions of the variable r. To find the general
solutions to these equations, we first recast Eqs. (15) and (16) into
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To solve Eq. (18), we let r ¼ rien, with 0 6 n 6 ni and ni ¼ lnðriþ1=riÞ
to change Eq. (18) to (derivative is now with respect to n)
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Introducing

�TN ¼ rTN; �T ¼ rT ð20Þ

we obtain the following first-order differential equations with con-
stant coefficients
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In Eq. (21),
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Fig. 2. Variation of the dimensionless elastic displacement component urc44=ðqr2Þ
in (a) and the dimensionless stress component rrr/(qc44) in (b) along the radial
direction (r/r2) in a spherically anisotropic piezoelectric hollow sphere made of
BaTiO3 under a uniform external pressure q on its outer surface r2. The electric
shorted circuit is applied on both the inner (r = r1) and outer (r = r2) surfaces.
4.2. Solution and propagation matrices of N- and LM-type
deformations

4.2.1. Spherically symmetric deformation
Before we present the solutions to Eq. (21) and the correspond-

ing propagation matrices, we first discuss the special and simple
deformation corresponding to n = 0 and m = 0 in our spherical sys-
tem of vector functions. It is obvious that for this case we do not
have the N-type solution, and that the LM-type solution is reduced
to the solution associated with L component only. More specifical-
ly, when n = 0, we find that Eq. (16) needs to be reorganized by
introducing the extended displacements and tractions as
U ¼ ½UL;U;W�t; T ¼ ½TL;DL;BL�t ð23Þ

This is equivalent to removing the second row and second column
in the involved matrices while also letting n = 0 in other elements.
Thus, the size of the matrices defined in Eq. (17) will all be reduced
to 3 � 3, with the following new elements
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3
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0 0 0

2
64

3
75;

H22 ¼
�2 0 0
0 �2 0
0 0 �2

2
64

3
75 ð24bÞ

Therefore, instead of a 4 � 4 system, for the special case of n = 0,
all the involved intermediate matrices are 3 � 3. We also point out
that since n = 1 involves rigid-body motion (Watson and Singh,
1972), its solution will not be discussed in this paper.

4.2.2. Solution matrices and propagation matrices
We present the solutions and propagation matrices for both the

N-type and LM-type. For the LM-type the solution corresponding
to n = 0 will be formally the same as for the case of n P 2, but with
the involved vector and matrix sizes being reduced, and with the
intermediate matrices for n = 0 being those given by Eq. (24).

For each given layer with constant material properties, the solu-
tions of Eq. (21) can be assumed as

UNðnÞ
�TNðnÞ

	 

¼ expðBNnÞ

UNð0Þ
�TNð0Þ

	 

UðnÞ
�TðnÞ

	 

¼ expðBnÞ

Uð0Þ
�Tð0Þ

	 
 ð25Þ



Table 1
Material properties of piezoelectric BaTiO3, magnetic CoFe2O4, and MEE materials MEE which is made of 50% BaTiO3 and 50% CoFe2O4 (cij in 109 N/m2, eij in C/m2, qij in N/Am, eij in
10�9 C2/(Nm2), lij in 10�6 Ns2/C2, aij in 10�12 Ns/VC).

Properties BaTiO3 CoFe2O4 MEE Properties BaTiO3 CoFe2O4 MEE

c11 166 286 213 e31 = e32 �4.4 0 �2.71
c22 166 286 213 e33 18.6 0 8.86
c12 77 173 113 e24 = e15 11.6 0 0.15
c13 78 170.5 113 q31 = q32 0 580.3 222
c23 78 170.5 113 q33 0 699.7 292
c33 162 269.5 207 q24 = q15 0 550 185
c44 43 45.3 49.9 e11 = e22 11.2 0.08 0.24
c55 43 45.3 49.9 e33 12.6 0.093 6.37
c66 44.5 56.5 50 l11 = l22 5 590 201
a11 0 0 �5.23 l33 10 157 83.9
a33 0 0 2750 – – – –
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For ith layer, with its inner and outer interfaces at r = ri and ri+1,
which corresponds 0 and ni, the extended displacement and trac-
tion components at its interfaces are connected by

UNðniÞ
�TNðniÞ

	 

¼ expðBN

i niÞ
UNð0Þ
�TNð0Þ

	 

¼ expðBN

i niÞ
UNðni�1Þ
�TNðni�1Þ

	 

UðniÞ
�TðniÞ

	 

¼ expðBiniÞ

Uð0Þ
�Tð0Þ

	 

¼ expðBiniÞ

Uðni�1Þ
�Tðni�1Þ

	 
 ð26Þ

We point out that there is no summation over the repeated
index i on the right-hand side of Eq. (26). With the relation (26),
we can propagate the solution from the inner surface (r1, n = 0)
to the outer surface (rp+1, np ¼ lnðrpþ1=rpÞ) of the layered MEE hol-
low sphere to arrive at

UNðnpÞ
�TNðnpÞ

" #
¼ pN UNð0Þ

�TNð0Þ

	 


UðnpÞ
�TðnpÞ

" #
¼ p

Uð0Þ
�Tð0Þ

	 
 ð27Þ

where

pN ¼ expðBN
p npÞ expðBN

p�1np�1Þ . . . expðBN
1 n1Þ

p ¼ expðBpnpÞ expðBp�1np�1Þ . . . expðB1n1Þ
ð28Þ

Eq. (27) is a simple relation and, for given boundary conditions on
both the inner and outer surfaces, can be solved for the involved
unknowns. We present the following example for the LM-type to
illustrate.

We assume that, at the outer surface r = rp+1, the radial traction
in its dimensionless form is applied, as

rrr ¼ r0Pnðcos hÞ=cmax ð29Þ

where cmax is the maximum value of all elastic coefficients among
all layers and Pn represents the n-order Legendre function. In addi-
tion, we assume that all other elastic traction components on both
the inner and outer surfaces are zero and the electric and magnetic
fields are short circuited at those locations (i.e., U(r1) = U(rp+1) =
W(r1) = W(rp+1) = 0).

Then, Eq. (27) for the LM-type can be written as

U1ðnpÞ
0

rpþ1 �rrr

�T2ðnpÞ

2
6664

3
7775 ¼

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

2
6664

3
7775

U1ð0Þ
0
0

�T2ð0Þ

2
6664

3
7775 ð30Þ

in which �rrr ¼ r0=cmax, U1 ¼ ½UL UM �t , �T2 ¼ ½ rDL rBL �t . From Eq.
(30), one can determine the unknowns at the inner surface r = r1 as

U1ð0Þ
�T2ð0Þ

	 

¼

p21 p24

p31 p34

	 
�1 0
rpþ1 �rrr

	 

ð31Þ
With the solved coefficients at the inner surface, a propagating
relation similar to Eq. (26) can be applied to find the expansion
coefficients at any r-level in any given layer. For instance, to obtain
the coefficients of the extended displacement and traction vectors
at r, with rj�1 < r < rj in layer j, we propagate the solution from the
inner surface to find

UðnÞ
�TðnÞ

	 

¼ expðBjnÞ expðBj�1nj�1Þ . . . expðB1n1Þ

Uð0Þ
�Tð0Þ

	 

ð32Þ

Substituting the expansion coefficients from Eq. (32) into Eqs. (10)
and (11), we can then obtain the extended displacements and trac-
tions at any r-level in any layer as functions of spherical coordinates
(r, h, u). Thus, the boundary value problem is finally solved.

5. Numerical examples

5.1. Verification of the analytical solution

Before presenting the numerical results, we have first compared
our solution to existing solutions for the reduced cases. We apply
our formulation to the reduced piezoelectric case where a piezo-
electric hollow sphere is made of BaTiO3 with its inner radius, r1,
being half of its outer radius r2. It is assumed that the short-circuit-
ed electric boundary condition is applied to both the inner and
outer surfaces and that a uniform external pressure q (i.e., rrr = �q)
is applied on the outer surface of the sphere while other elastic
traction components are zero on both the inner and outer surfaces.
The material coefficients of the piezoelectric BaTiO3 are the same
as those in Chen and co-workers (2001). Fig. 2a and b show the dis-
tribution of the dimensionless stress rrr/(qc44) and the dimension-
less displacement urc44=ðqr2Þ. These distributions are identical to
those of Chen and co-workers (2001).

5.2. A hollow sandwich sphere under uniform external pressure

Having validated our solutions, we now apply them to a three-
layered sandwich hollow sphere made of magneto-electro-elastic
materials. We first consider the spherically symmetric deformation
corresponding to n = 0. The following three different stacking
sequences are studied (from inner layer to the outer layer): (1)
B/F/B, (2) F/B/F, (3) MEE/MEE/MEE (simply MEE), where ‘‘B’’
denotes BaTiO3, ‘‘F’’ denotes CoFe2O4, and ‘‘MEE’’ denotes the
MEE material made of 50% BaTiO3 and 50% CoFe2O4. The third case
actually corresponds to a homogeneous spherical shell made of the
coupled MEE material. We denote the outer radius of the layered
hollow sphere by r4 = R, and let the inner radius of the hollow
sphere be located at r1 = 0.4R with each of the three layers having
equal thickness of 0.2R. The material constants are listed in Table.1
and are taken from Chen and co-workers (2007a,b) and Xue and
Pan (2013) with the MEE material properties being predicted based



Fig. 3. Variation of the extended displacements and stresses along the radial direction of the hollow sandwich sphere made of magneto-electro-elastic materials with its
outer surface being under uniform pressure p = r0/cmax. The dimensionless elastic displacement component urcmax/(Rr0) in (a), electric potential /emax/r0 in (b), magnetic
potential wqmax/r0 in (c), radial stress rrr/r0 in (d), circumferential stress rhh/r0 in (e), radial electric displacement Drcmax/(r0emax) in (f), and radial magnetic induction Brcmax/
(r0qmax) in (g). The dashed thin vertical lines denote the two interfaces in the sandwich sphere.
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on the micromechanics of Kuo and Pan (2011). As for boundary
conditions, we assume that the outer surface of the sphere is under
a uniform external pressure, i.e., rrr = �r0 and that the other elastic
traction components are zero on both the inner and outer surfaces
of the layered sphere. Furthermore, electric and magnetic short-
circuit is assumed on both the inner and outer surfaces. For easy
presentation, all quantities are normalized by following the same
approach used in Chen and co-workers (2007a,b).

Fig. 3 show the variation of the induced extended displace-
ments and stresses in dimensionless form with respect to the
normalized radius r/R. The elastic displacement component urcmax/
(Rr0) is presented in Fig. 3a, the electric potential /emax/r0 in
Fig. 3b, the magnetic potential wqmax/r0 in Fig. 3c, the radial trac-
tion rrr/r0 in Fig. 3d, the circumferential traction rhh/r0 in Fig. 3e,
the radial electric displacement Drcmax/(r0emax) in Fig. 3f, and the
radial magnetic induction Brcmax/(r0qmax) in Fig. 3g. While cmax is
the maximum elastic coefficients among all materials, emax and
qmax are, respectively, the maximum absolute values of the piezo-
electric and magnetostrictive coefficients of the given materials.
From Fig. 3a–c, by comparing to the homogeneous MEE results,



Fig. 4. Variation of the extended displacements and stresses along the radial direction at fixed h = 0� of the hollow sandwich sphere made of magneto-electro-elastic
materials with its outer surface being under an axisymmetric external pressure rrr = r0P2(cosh)/cmax. The dimensionless elastic displacement component urcmax/(Rr0) in (a),
electric potential /emax/r0 in (b), magnetic potential wqmax/r0 in (c), radial stress rrr/r0 in (d), circumferential stress rhh/r0 in (e), radial electric displacement Drcmax/(r0emax)
in (f), and radial magnetic induction Brcmax/(r0qmax) in (g). The dashed thin vertical lines denote the two interfaces in the sandwich sphere.
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the elastic displacement and electric and magnetic potentials are
clearly affected by the layering. From Fig. 3d, we can observe that
the radial stress is only slightly influenced by the layering and that
the traction boundary condition is satisfied which verifies again
our solution. The circumferential stress, however, shows obvious
dependence on layering as can be observed from Fig. 3e, along with
its expected jump across the interfaces. It is particularly interesting
that, while the magnetostrictive layer F corresponds to a large
increase in the stress magnitude in the middle layer of the sand-
wich B/F/B, the piezoelectric layer B helps to reduce it substantially
in the middle layer of the sandwich F/B/F. From Fig. 3f and g, we
observe that, compared to the semi-coupled B/F/B or F/B/F cases,
the truly coupled MEE layer would induce much large magnitude
of the electric displacement and magnetic induction, which is par-
ticular true in the inner layer.

5.3. A hollowed sandwich sphere under an axisymmetric external
pressure

Here we assume the same sandwich structure as in Section 5.2,
but under an axisymmetric external pressure rrr = r0P2(cosh)/cmax

on its outer surface. The response of the layered sphere is plotted
along the radial direction for fixed angle h = 0�. Fig. 4 shows that
distribution of the extended displacements and stresses along



Fig. 5. Distribution of dimensionless displacement component uhcmax/(R/r0) in (a)
and stress component rrh/r0 in (b) as functions of (r,h) in the homogeneous MEE
hollow sphere under an axisymmetric external pressure rrr = r0P2(cosh)/cmax

applied on its outer surface r = R.
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radial direction in the same sandwich hollow spheres as in Fig. 3
discussed in Section 5.2. Similar to Fig. 3, the extended displace-
ments (i.e., radial elastic displacement in Fig. 4a, electric potential
in Fig. 4b, and magnetic potential in Fig. 4c) depend significantly
upon layering of the sphere, but the radial stress component is
nearly independent of layering and MEE coupling. Furthermore,
for the order 2 case, material layering has only slight effect on
the circumferential stress, even though one can still observe its dis-
continuities across the interface of different layers (Fig. 4e). Com-
paring the electric displacement and magnetic induction for
orders 0 and 2 (i.e., Figs. 3f and g vs. 4f and g), one can clearly
notice the difference. While for the case of order 0, the largest mag-
nitude of these electric and magnetic quantities is reached on the
inner surface (r/R = 0.4) by the fully coupled homogeneous MEE
hollow sphere (Fig. 3f and g), for the case of order 2, the B/F/B sand-
wich sphere has the largest magnitude of the electric displacement
on the inner surface (Fig. 4f) and the F/B/F sandwich sphere has the
largest magnitude of the magnetic induction on the inner surface
(Fig. 4g).

Shown in Fig. 5a and b are the variations of the elastic displace-
ment component uh and the stress component rrh in both the radial
and circumferential directions when the upper surface of the
homogeneous hollow MEE sphere is under the same axisymmetric
external pressure of order 2 as in Fig. 4. These two figures illustrate
how the elastic displacement and stress vary as functions of (r, h).
While these 3D contour plots are smooth, there are minima and
maxima within the (r, h)-plane one may need to pay attention to,
as can be clearly observed from Fig. 5b for the shear stress
distribution.
6. Conclusions

In this paper, we have derived the analytical solutions for a lay-
ered hollow sphere made of spherically anisotropic magneto-elec-
tro-elastic materials. The spherical system of vector functions is
introduced to express the solutions and variable transformation
is carried out twice in order to reduce the system of differential
equations to a standard one with constant coefficients. For the
multilayered case, the propagator matrix method is employed with
the propagating matrix in each layer being simply the exponential
matrix. We further point out that under the spherical system of
vector functions, the spheroidal and torsional deformations can
be easily separated with the multiphase coupling being involved
in the spheroidal deformation only. The special case of uniform
deformation corresponding to order 0 is also discussed. As numer-
ical examples, we have presented the results for both orders 0 and
2 for three layered hollow spheres made of piezoelectric BaTiO3,
magnetostrictive CoFe2O4, and the coupled MEE material under
external pressures of orders 0 and 2. The stacking sequences stud-
ied are B/F/B, F/B/F, and the homogenous MEE spheres. The influ-
ence of layering, multiphase coupling, as well as different orders
of loading, on the elastic, electric and magnetic quantities is illus-
trated clearly. Specifically, we find that:

1. The presence of the magnetostrictive layer causes relatively
large stress in the B/F/B sphere while the piezoelectric layer
reduces the corresponding stress.

2. The fully coupled MEE sphere induces large values of electric
displacement and magnetic induction in the innermost layer.

3. Unlike the majority of the MEE field variables, the components
of radial stress have little dependence on stacking sequence.

These features would be valuable references when designing
layered spherical structures made of MEE materials.
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