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Material properties of cross-anisotropic (or transversely isotropic) elastic and
layered systems including pavement structures are essential for the analysis of
mechanical responses. Besides laboratory determination of these material
properties, direct inversion using in situ input data is fundamental and more
useful. In this paper, the system identification (SID) method with constraints
is proposed to invert the elastic moduli in an anisotropic layered half space in
general and in a layered pavement in particular. Since in the inverse calcula-
tion, the forward calculation is required, we have also presented briefly the
forward calculation approach based on the cylindrical system of vector func-
tions and the propagating matrix method. Our SID algorithm is then applied
to three-layer and four-layer pavements with different numbers of cross-aniso-
tropic layers, with the deflections at the surface of the layered pavement as
inputs. Our numerical results demonstrate clearly that the proposed SID-based
inverse method is accurate and efficient for a broad range of seed moduli.

Keyword: inverse problem; layered pavement; cross-anisotropy (transverse
isotropy); system identification

1. Introduction

Anisotropic and layered materials and structures are very common in different engineer-
ing fields. For instance, it was observed that the behaviour of pavement materials
including asphalt concrete, unbound granular base and subgrade soils would be aniso-
tropic due to the preferred orientation of the aggregates which widely exist in the
pavement materials.[1–7] Using the micromechanical analysis and experimental tech-
niques, Masad and his colleagues demonstrated that the asphalt mix behaved as an
anisotropic material.[1] Underwood et al. tested and studied the anisotropy of asphalt
concrete cores in the vertical and horizontal directions from gyratory-compacted speci-
mens.[2] Wagoner and Braham investigated the anisotropic effect at low temperatures
for samples compacted with superpave gyratory compactor.[3] Zhang et al. analyzed the
inherent anisotropy of asphalt mixture in microstructure, and showed experimentally
that the magnitude of the compressive stiffness in the vertical direction was 1.2 to 2
times that in the horizontal direction.[4] The anisotropic properties of unbound granular
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base were investigated using several experimental techniques including the triaxial load-
ing test.[5,6] The non-linear and anisotropic behaviour of unbound granular base was
also investigated.[7] Therefore, consideration of the cross-anisotropic behaviour is nec-
essary in the mechanistic analysis of layered pavement structures.

For the best performance of the structures, it is crucial that the material properties
and their behaviour are well understood. While one could determine the material prop-
erties by conducting laboratory tests, the results obtained may not accurately present the
actual or in situ material properties. As such, inverse problems are important topics in
structural and materials engineering.[8–11] For example, the generalized extremal algo-
rithm was applied for the solution of an inverse problem in order to estimate the mate-
rial properties [8] and the obtained results indicated that this algorithm was competitive
with other stochastic methods such as genetic algorithms. Using an analytical inverse
technique, the structural characteristics of a beam were modelled by Moaveni and Chou
and the comparison of their results with the direct solutions confirms the capability of
the inverse method.[10] Recently, Messineo et al. developed an inverse problem for
ultrasonic transmission through multilayer systems.[11] In addition, the use of model-
ling techniques such as finite element and boundary element methods together with
inverse problems and minimization techniques has been constantly a research
topic.[12,13]

In pavement engineering, evaluation of the material properties or the pavement
moduli can be performed by different in situ methods such as the plate bearing test,
multi-depth deflectometers and falling weight deflectometers (FWD) (Figure 1).
Estimation of the pavement material properties from FWD test data is very popular
among pavement engineers and based on that several methods have been developed to
backcalculate the mechanical properties.[14,15] For instance, the pavement
backcalculation procedure can be conducted using different iteration methods including

Figure 1. Schematics of the FWD for measuring the surface deflections of a layered pavement at
sensors si with distances di from the loading centre.
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the gradient search, intelligent optimization [16], hybrid schemes [17] and evolutionary
algorithms.[18] So far, however, no inverse algorithm has been proposed for the back-
calculation of pavement properties where each layer could be of cross-anisotropy.

In this paper, the system identification method (SID) is proposed to invert the elastic
moduli in cross-anisotropic and layered pavements. The input data for the inversion of
material properties are the deflections on the surface of the layered pavements which
can be observed using the FWD and which will be mimicked in this paper via our
forward algorithm. This paper is organized as follows. In Section 2, we present the
forward algorithm for solving the cross-anisotropic layered pavements. In Section 3, the
SID method with constraints will be presented. In Section 4, numerical examples on the
inverted material properties based on the SID approach are given for different layered
pavements. Conclusions are drawn in Section 5.

2. Forward solutions in cross-anisotropic multilayered media

We consider a homogeneous but cross-anisotropic layer with its axis of symmetry being
along the z-axis. Then the equilibrium equations in the cylindrical coordinate system
(r, θ, z) can be expressed as

@rrr
@r

þ @rrh
r@h

þ @rrz
@z

þ rrr � rhh
r

¼ 0

@rrh
@r

þ @rhh
r@h

þ @rhz
@z

þ 2rrh
r

¼ 0

@rrz
@r

þ @rhz
r@h

þ @rzz
@z

þ rrz
r

¼ 0

(1)

where σij are the components of the stress tensor. Also in the cylindrical coordinate sys-
tem, the constitutive relations can be written, for the layer of cross-anisotropy with z
being the axis of symmetry, as

rrr ¼ c11crr þ c12chh þ c13czz
rhh ¼ c12crr þ c11chh þ c13czz
rzz ¼ c13crr þ c13chh þ c33czz

rhz ¼ 2c44chz; rrz ¼ 2c44crz; rrh ¼ 2c66crh

(2)

where γij are the components of the strain tensor and cij are the elastic constants. It is
noted that since c66 = (c11–c12)/2, there are only five independent elastic constants in
Equation (2). Furthermore, in many engineering fields, particularly in pavement engi-
neering, the five elastic constants cij are usually expressed in terms of the five engineer-
ing coefficients as expressed below:

c11 ¼ Eh 1� ðEh=EvÞ½ �l2v
ð1þ lhÞ 1� lh � ð2Eh=EvÞl2v

� �

c12 ¼
Eh lh þ ðEh=EvÞl2v

� �
ð1þ lhÞ 1� lh � ð2Eh=EvÞl2v

� �
c13 ¼ Ehlv

1� lh � ð2Eh=EvÞl2v
; c33 ¼ Evð1� lhÞ

1� lh � ð2Eh=EvÞl2v
c44 ¼ Gv; c66 � c11 � c12

2
¼ Eh

2ð1þ lhÞ

(3)
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where Eh and Ev are the Young’s moduli within the plane of transverse isotropy and
normal to it, respectively; μh and μv are the Poisson’s ratios characterizing the lateral
strain response in the plane of transverse isotropy relative to the in-plane strain and the
strain normal to it, respectively; and Gv is the shear modulus in the plane normal to the
plane of transverse isotropy.

It should be noted that since the strain energy should be always positive in an elas-
tic solid, all principal minors of the stiffness matrix [cij] in Equation (2) must be posi-
tive.[19] This leads to the following constraints on the five engineering coefficients.

Ev; Eh; Gv [ 0
�1\lh\1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev

Eh
� 1� lh

2

r
\ lv\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev

Eh
� 1� lh

2

r (4)

As it is well known, besides the equilibrium equations in Equation (1) and the constitu-
tive relations in Equation (2), we also need the strain-displacement relations. In the
cylindrical coordinate system, the components of the strain tensor are related to the
three elastic displacements ui by

crr ¼
@ur
@r

; chh ¼
@uh
r@h

þ ur
r
; czz ¼

@uz
@z

chz ¼
1

2

@uh
@z

þ @uz
r@h

� �
; crz ¼

1

2

@uz
@r

þ @ur
@z

� �
; crh ¼

1

2

@ur
r@h

þ @uh
@r

� uh
r

� � (5)

With the governing Equations (1), (2) and (5) for a cross-anisotropic elastic layer, we
now describe the corresponding boundary value problem for the layered half space. We
assume now that there is a p-layered cross-anisotropic elastic half space with perfectly
bonded interfaces. The layers are numbered consecutively with the layer at the top

Figure 2. Schematics of a p-layered pavement half space under a uniform vertical loading q
within the circle r = R on the surface.
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being layer 1 and the last layer being layer p, which is just above the half space
(Figure 2). We place the cylindrical coordinates on the surface with the z-axis pointing
into the layered half space. The jth layer is bounded by the interfaces z = zj−1, zj with
zj−1 being the vertical coordinate of the upper interface of the jth layer and zj being that
of the lower interface. It is obvious that z0 = 0 and zp =H, where H is the depth of the
last layer interface. Also for the jth layer, its thickness is hj = zj – zj−1. We assume that
there is a vertical load uniformly applied over a circular area (r < R) on the surface of
this p-layered half space with magnitude q, as shown in Figure 2. Then, the boundary
conditions on the surface of the layered half space can be expressed as

rzz ¼ �q 0 6 r 6 R
0 r[R

�

rrz ¼ rhz ¼ 0
(6)

The forward problem in such a layered half space is to find the solutions of displace-
ment, strain and stress fields at any observation point induced by the surface loading
(Equation (6)). The solution should obviously satisfy the boundary conditions on the
surface, the interface continuity conditions along the interfaces (i.e. the elastic displace-
ments ui and the stress components σiz should be continuous across the interfaces); and
the solutions should decay to zero as the observation point approaches infinity.

A couple of useful approaches have been proposed to solve the forward problem of
layered half spaces under a vertical surface loading within a circle of r = R, (i.e.
[20,21]). In this paper, we only briefly mention the vigorous analytical method [22,23]
by Pan since our inverse algorithm will be based on this forward calculation. The
method in [22,23] is based on the propagator matrix method in terms of the cylindrical
system of vector functions with the latter being defined as

Lðr; h; k;mÞ ¼ ezSðr; h; k;mÞ
Mðr; h; k;mÞ ¼ er

@

@r
þ eh

@

r@h

� �
Sðr; h; k;mÞ

Nðr; h; k;mÞ ¼ er
@

r@h
� eh

@

@r

� �
Sðr; h; k;mÞ

(7a)

where er, eθ and ez are the unit vectors along the coordinate axes r, θ and z, respec-
tively, and

Sðr; h; k;mÞ ¼ 1ffiffiffiffiffiffi
2p

p JmðkrÞeimh; m ¼ 0;�1;�2; . . . (7b)

with Jm(λr) being the Bessel function of order m (m = 0 corresponds to the axial sym-
metric deformation) and i =

ffiffiffiffiffiffiffi�1
p

. The parameters λ and m are the transformation vari-
ables corresponding to the horizontal physical variables r and θ, respectively.

Due to the orthogonality of the vector functions in Equation (7a), any vector, such
as the displacement and traction vectors, at any z-level can be expressed as follows:

uðr; h; zÞ ¼
X
m

Z þ1

0
½ULðzÞLðr; hÞ þ UM ðzÞMðr; hÞ þ UN ðzÞNðr; hÞ�kdk (8a)
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tðr; h; zÞ � rrzer þ rhzeh þ rzzez

¼
X
m

Z þ1

0
½TLðzÞLðr; hÞ þ TM ðzÞMðr; hÞ þ TN ðzÞNðr; hÞ�kdk (8b)

The in-plane stress components can be obtained using these equations and the constitu-
tive relations in Equation (2). Making use of these relations and carrying out some sim-
ple mathematical operations, one can arrive at the following ordinary differential
equations for the expansion coefficients in Equation (8) in each layer.[22]

dUL=dz ¼ k2UMc13=c33 þ TL=c33

dUM=dz ¼ �UL þ TM=c44

dTL=dz ¼ k2TM

dTM=dz ¼ k2UM ðc11c33 � c213Þ=c33 � c13TL=c33 (9a)

dUN=dz ¼ TN=c44
dTN=dz ¼ k2c66UN

(9b)

In our forward and inverse calculations of the layered system under the uniform vertical
load within a circular area on the surface (Equation (6) and Figure 2), the deformation
will be axis-symmetric. Thus, the solution related to Equation (9b) will be automatically
zero and it will not be discussed thereafter. Furthermore, due to the symmetric feature,
our solution should be independent of variable θ. In other words, ∂f/∂θ = 0 for any
physical quantity f and thus we only need m = 0 in Equation (7) for the involved cylin-
drical function S.

From Equation (9a), one can easily find the solution matrix [Z(z)] in each layer and
thus the corresponding propagator matrix [a(z)] between the top zj−1 and bottom zj
interfaces (Figure 2) of any layer j as [22,23]

½EðzÞ� ¼ ½ZðzÞ�½K� (10a)

½Eðzj�1Þ� ¼ ½aðzj � zj�1Þ�½EðzjÞ� (10b)

where [E(z)] is the expansion coefficient column matrix defined by

½EðzÞ� ¼ ½ULðzÞ; kUM ðzÞ; TLðzÞ=k; TM ðzÞ�T (11)

and [K] is a 4 × 1 column coefficient matrix with its elements to be determined by the
continuity and/or boundary conditions. It is also noticed that Equation (10b) can be
propagated from one layer to the other repeatedly so that the unknown coefficients [K]
in Equation (10a) in the bottom homogeneous half space and the tractions on
the surface of the layered half space can be connected and solved. It is noted that in the
bottom homogeneous half space, two of the coefficients in [K] should be zero since
the solution in the half space has to decay to zero when z approaches infinity. On the
surface of the layered half space, the expansion coefficients for the traction vector in
Equation (8b) can be found (making use of the boundary condition in Equation (6)) as

TLðk; 0Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z2p

0

ZR

0

�qJ0ðkrÞrdrdh ¼ �
ffiffiffiffiffiffi
2p

p
RJ1ðRkÞq=k; TM ðk; 0Þ ¼ 0 (12)
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After solving these four unknowns, two on the surface and two in the homogeneous
half space, the propagator relation (10b) can be propagated to any z-level to find the
expansion coefficients there. Thus, the solutions in terms of the cylindrical system of
vector functions can be found at any z-level. With these expansion coefficients, the
physical-domain solutions can be obtained by carrying out the inverse transform, which
can be carried out numerically.[22,24] Therefore, the forward problem has been success-
fully solved. In the next section, we discuss the corresponding inverse method in a lay-
ered half space.

3. Inversion solutions in cross-anisotropic multilayered media

In pavement engineering, a layered pavement is mostly investigated by the FWD-related
methods. In terms of the FWD, a uniform vertical loading is applied within a circle on
the surface of the layered pavement (Figure 1). Then the surface deflections (i.e. uz) will
be measured by either seven or nine sensors located on the surface as the FWD stan-
dard. In this paper, we assume that there are nine sensors on the surface in the FWD.
While the measured deflections can be directly applied to analyze the pavement behav-
iour, they can also be utilized to invert the material parameters in the layered pave-
ments. The approach associated with the latter is called backcalculation (or inversion)
algorithm in pavement engineering.

While a couple of methods have been proposed to backcalculate the elastic moduli
in layered pavements (or half spaces), most of those methods are restricted to very
small number of layers, to narrow seed moduli and to elastic isotropy.[14,15,18,25]
Backcalculation of cross-anisotropic and layered half spaces using the FWD data has
not been reported in the literature.

In this paper, we propose the SID method to invert the cross-anisotropic moduli of
a layered pavement half space. The SID method was originally introduced by Wang
and Lytton to invert the modulus and thickness of isotropic elastic-layered pavements
[26] and later by Lytton to analyze the subsurface radar signals.[27] The principle of

Figure 3. Schematics of the SID method in moduli inversion of layered pavements using the
FWD-measured surface deflections as inputs.

724 Y. Cai et al.
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this method is based on the Taylor’s series expansion of a non-periodic function com-
bined with an iterative scheme as shown in Figure 3.

In the SID inverse process, the deflections at the nine sensors measured by the
FWD are used as the inputs to backcalculate the moduli in each layer of the pavement.
The thickness and Poisson’s ratio of each layer are fixed as given. The adjusted moduli
vector {ΔE} (including the Young’s and shear moduli in all layers) is then obtained in
an iterative process and is controlled by the following equation.

F½ � � DEf g ¼ ef g (13)

where the symbol “[]” is for a matrix and “{}” for a vector. Also in Equation (13), {e}
is the relative error vector of the surface deflection between the calculated and measured
ones with its element being defined as

ei ¼ Wm
i �Wc

i (14)

where Wi
m is the measured deflection at ith sensor location by the FWD and Wi

c the
calculated deflection at the same sensor location (i = 1 −m, with m being the total num-
ber of the sensors in FWD, which is 9 in the present study). The elements of the sensi-
tivity matrix [F] in Equation (13) is defined as

Fij ¼ @Wi
c

@Ej
(15)

where Ej is the modulus in the inverse procedure ( j = 1 − n, with n being the total num-
ber of moduli to be backcalculated, which varies from four to eight in the present
study).

It should be pointed out that since total number of rows (i.e. the number of sensors)
m is usually not the same as the total number of columns (i.e. the number of unknown
moduli) n (m ≥ n in general and it is also true in the present study), the linear system
of algebraic equations (13) is not a regular one where m = n. Furthermore, the coeffi-
cient matrix, i.e. the sensitivity matrix [F] in Equation (13), could be ill-conditioned
when two or more moduli have similar effects on, or when a modulus has a negligible
effect on, the behaviour of the layered pavement. Thus, in order to solve ΔEj from
Equation (13), one cannot use the standard linear solvers; instead, the powerful singular
value decomposition (SVD) technique [28] will be used in this paper.

The SVD method is based on the following theorem of linear algebra [28]: any
m × n matrix, for instance, our matrix [F] in Equation (15), can be written as the product
of an m × n column-orthogonal matrix [U], an n × n diagonal matrix [w] (≡diag [w1,w2,
…,wn-1,wn] with positive or zero elements ordered as w1 ≥ w2 ≥ … ≥ wn-1 ≥ wn) and the
transpose of an n × n orthogonal matrix [V]. In other words, we can decompose our
sensitivity matrix [F] as

½F�m�n ¼ ½U �m�ndiag½wj�n�n½V �Tn�n (16)

where the superscript T indicates the transpose of a matrix, and the two matrices satisfy
the following orthonormal conditions

½U � � ½U �T ¼ ½I �m�m; ½V � � ½V �T ¼ ½I �n�n (17)

Inverse Problems in Science and Engineering 725
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In Equation (17), [I] is the identity matrix. Thus, via the SVD method, we can solve
the adjusted moduli vector {ΔE} in Equation (13) as

DEf g ¼ F½ ��1 � ef g (18)

where

½F��1
n�m ¼ ½V �n�ndiag½1=wj�n�n½U �Tn�m (19)

In writing Equation (19), we have assumed that if wi ≤ ε, then 1/wi = 0, with ε being a
very small value proportional to the inverse of the condition number of the matrix [F]
defined as Cond = w1/wj (where wj is the minimum non-zero value in the diagonal
matrix [w]). It is obvious that if the condition number Cond is infinite, then matrix [F]
is singular; if Cond is very big, matrix [F] is ill-conditioned. In this paper, we directly
make use of the SVD programme in [28] which not only diagnoses the condition of the
matrix [F], but also solve the system of linear equations in Equation (13).

We also point out that in the iterative process, with the k-step adjusted (variational)

moduli DEðkÞ
j ( j = 1 − n) being evaluated from Equation (13), the k + 1 step moduli

Eðkþ1Þ
j can be updated by

Eðkþ1Þ
j ¼ EðkÞ

j þ DEðkÞ
j (20)

The iteration steps are controlled by the following three criteria. In other words, during
the iteration process, we check the three criteria in order.

(1) If the minimum absolute value in adjustment vector DEðkÞ
j is less than 0.001EðkÞ

j
(for j = 1 − n), the iteration stops; or else,

(2) if the root-mean-square deviation of the relative error r (defined in Equation
(21) below) between calculated and measured deflections in the sensor loca-
tions is less than 1%, i.e. r < 0.01, then the iteration stops; or else,

(3) if the maximum iteration step reaches 60, then the iteration stops. We note that
in the iteration steps, the relative error r is defined as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

ðwc
i � wm

i Þ2
m

vuut (21)

It should be further pointed out that, during any iteration step, the horizontal/vertical
Young’s moduli (Eh and Ev) and their variations (ΔEh and ΔEv), as well as the Poisson’s
ratios (μh and μv) in any layer of the layered elastic half space should strictly satisfy the
following constraint, as can be derived from Equations (4) and (20) based on the posi-
tive strain energy requirement.

0\
Eh

Ev
� 2l2h
1� lv

\
1þ DEv

1þ DEh
(22)
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4. Numerical examples

In the first numerical example, we consider a three-layer pavement structure consisting of
asphalt concrete, granular base and subgrade soil layers. Actual material properties and
the geometry of the pavement structure are presented in Table 1. Two models are consid-
ered in terms of the cross-anisotropy properties of each layer of the pavement structure.
In Model 1, only the base layer is assumed to be cross-anisotropic, while both the asphalt
concrete and subgrade layers are isotropic. In Model 2, both the asphalt concrete and base
layers are assumed to be cross-anisotropic, while the subgrade layer is isotropic. These
three-layer pavement half spaces are loaded by a uniform pressure of 700 kPa on the sur-
face within the circle of radius R = 150 mm with surface deflections at the nine sensor
locations being listed in Table 1. It is noted that the surface deflections at the nine sensor
locations are actually calculated using our forward solution algorithm presented in
Section 2 to mimic the FWD measured ones. The forward solutions are also used to
mimic the FWD measured ones in other numerical examples below.

We further remark that, in Model 1, in order to reduce the number of inverse param-
eters, we assume that the shear modulus in the vertical direction in the cross-anisotropic
base layer is directly determined by the vertical Young’s modulus and vertical Poisson’s
ratio in the base layer as given by the following equation:

Gv ¼ Ev

2ð1þ lvÞ
(23)

Table 2 lists the backcalculated Young’s moduli in each layer of Model 1 using our
SID method along with relative errors. Totally, four moduli in the layered pavement are
inverted. In order to show that our SID is nearly insensitive to the seed values, we

Table 1. Actual material properties and geometry of the three-layer pavement structures with
different cross-anisotropic layers and surface deflections “measured” at nine sensors si located at
distance di from the loading centre.

Model 1: Pavement with only cross-anisotropic base layer
Layer AC Base Subgrade

Horizontal Vertical
Moduli (MPa) 1500 300 500 30
Poisson’s ratio 0.35 0.4 0.4 0.45
Thickness (mm) 150 240 Infinity

di (mm) 0 203 305 457 610 914 1219 1524 1829
Deflection (μm) 1002.64 867.74 795.73 704.98 624.85 491.79 389.27 312.43 255.54

Model 2: Pavement with both cross-anisotropic asphalt concrete and base layers
Layer AC Base Subgrade

Horizontal Vertical Horizontal Vertical
Moduli (MPa) 1500 3000 300 500 30
Poisson’s ratio 0.35 0.35 0.4 0.4 0.45
Thickness (mm) 150 240 Infinity

di (mm) 0 203 305 457 610 914 1219 1524 1829
Deflection (μm) 977.79 867.11 798.28 707.63 627.06 493.18 390.05 312.80 255.67
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listed the inverted results based on three different types of seed moduli. It is clearly
observed from Table 2 that the inverted moduli are very accurate with the relative error
being less than 0.005%. Our results further demonstrate that the backcalculated moduli
using our SID are almost independent of the seed modulus values, no matter if the seed
moduli are in descending (Type 1), constant (Type 2) or ascending (Type 3) order.

Table 3 lists the inverted shear moduli as well as the Young’s moduli in the same
three-layer pavement structure as for Model 1. Here however, instead of fixing shear
moduli in the cross-anisotropic base layer as given in Equation (23), the SID method is
directly applied to also invert this shear modulus. Thus, totally five moduli are inverted.
It is worth to point out that the seed shear modulus is selected to be about half of that
of the seed Young’s modulus in the same layer. Similarly, three different types of seed
moduli are assumed in order to study the sensitivity of the inverse results to the seed
values. The error percentage presented in Table 3 is very small which demonstrates that
the SID-based inversion in a pavement with cross-anisotropic base layer is very accu-
rate. As shown in Table 3, the maximum relative error of the backcalculated moduli is
less than 0.1%, which further demonstrates that the inverse algorithm based on the SID
is reliable.

The backcalculated results for Model 2 are presented in Table 4 in which the hori-
zontal and vertical moduli of asphalt concrete and base layers are inversely calculated,
again using three types of seed moduli. The shear moduli in the asphalt concrete and
base layers are fixed as given by Equation (23) so that in total we invert four different
moduli in the layered pavement. Material properties for this pavement model are pre-
sented in Table 1. With the surface deflections presented in Table 1, the relative error
for the backcalculated results with both cross-anisotropic asphalt concrete and base lay-
ers are also very small, less than 1%.

Table 2. Actual material properties of the three-layer pavement with cross-anisotropic base layer
only (Model 1), along with the inverted elastic moduli. In the inversion calculation, the Poisson’s
ratios and vertical shear modulus Gv are fixed and three types of seed moduli are selected to
study the sensitivity of the inverse algorithm on the seed moduli.

Pavement Model 1

Actual
modulus
(MPa)

Seed modulus
(MPa) Inverted modulus (MPa) Relative error (%)

AC Eac 1500 Type 1 30,000 1500.019 0.001
Base Ebh 300 3000 299.999 0.000

Ebv 500 3000 499.982 −0.004
Subgrade Esg 30 300 30.000 0.000
AC Eac 1500 TypE 2 10,000 1500.016 0.001
Base Ebh 300 10,000 300.00 0.000

Ebv 500 10,000 499.989 −0.002
Subgrade Esg 30 10,000 30.00 0.000
AC Eac 1500 Type 3 300 1500.022 0.001
Base Ebh 300 3000 300.000 0.000

Ebv 500 3000 499.985 −0.003
Subgrade Esg 30 3000 30.000 0.000

Note for modulus symbols: Eac =modulus of asphalt concrete, Ebh and Ebv = horizontal and vertical moduli of
granular base, and Esg =modulus of subgrade.
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Table 3. Actual material properties of the three-layer pavement with cross-anisotropic base layer
only (Model 1), along with the inverted elastic moduli and vertical shear moduli. In the inversion
calculation, only the Poisson’s ratios are fixed and three types of seed moduli are selected to
study the sensitivity of the inverse algorithm on the seed moduli.

Pavement model 1

Actual
modulus
(MPa)

Seed modulus
(MPa) Inverted modulus (MPa) Relative error (%)

AC Eac 1500 Type 1 30,000 1500.117 0.008
Base Ebh 300 3000 299.862 −0.046

Ebv 500 3000 500.127 0.025
Gv 178.6 1500 178.592 0.012

Subgrade Esg 30 300 30 0.000
AC Eac 1500 Type 2 10,000 1500.414 0.028
Base Ebh 300 10,000 299.802 −0.066

Ebv 500 10,000 500.308 0.062
Gv 178.6 5000 178.58 0.006

Subgrade Esg 30 10,000 30.002 0.007
AC Eac 1500 Type 3 300 1499.972 −0.002
Base Ebh 300 3000 299.77 −0.077

Ebv 500 3000 500.28 0.056
Gv 178.6 1500 178.61 0.022

Subgrade Esg 30 30,000 30 0.000

Note for modulus symbols: Eac =moduli of asphalt concrete, Ebh and Ebv = horizontal and vertical moduli of
granular base, Gv = vertical shear modulus of granular base and Esg =modulus of subgrade.

Table 4. Actual material properties of the three-layer pavement with both cross-anisotropic
asphalt concrete and base layers (Model 2), along with the inverted elastic moduli. In the inver-
sion calculation, the Poisson’s ratios and vertical shear modulus Gv are fixed and three types of
seed moduli are selected to study the sensitivity of the inverse algorithm on the seed moduli.

Pavement model 2

Actual
modulus
(MPa)

Seed modulus
(MPa) Inverted modulus (MPa) Relative error (%)

AC Each 1500 Type 1 30,000 1502.553 0.170
Eacv 3000 30,000 2978.868 −0.704

Base Ebh 300 3000 299.529 −0.157
Ebv 500 3000 500.093 0.019

Subgrade Esg 30 300 29.999 −0.003
AC Each 1500 Type 2 10,000 1502.551 0.170

Eacv 3000 10,000 2978.861 −0.705
Base Ebh 300 10,000 299.529 −0.157

Ebv 500 10,000 500.092 0.018
Subgrade Esg 30 10,000 29.999 −0.003
AC Each 1500 Type 3 300 1502.574 0.172

Eacv 3000 300 2978.925 −0.702
Base Ebh 300 3000 299.527 −0.158

Ebv 500 3000 500.09 0.018
Subgrade Esg 30 30,000 29.999 −0.003

Note for modulus symbols: Each and Eacv = horizontal and vertical moduli of asphalt concrete, Ebh and
Ebv = horizontal and vertical moduli of granular base, and Esg =modulus of subgrade.
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We now consider a four-layer pavement structure consists of asphalt concrete, gran-
ular base, unbound subbase and subgrade soil layers. Actual material properties and the
geometry of the pavement structure together with the deflections at different sensors on
the surface are presented in Table 5. The loading on the four-layer pavement again is
by a uniform pressure of 700 kPa on the surface within the circle of radius R = 150 mm
and the deflections on the surface are calculated by our forward algorithm presented in
Section 2 to mimic the ones measured by FWD. Three models are considered in order
to backcalculate the elastic properties of pavement layers. The first model is called
Model 3 where the asphalt concrete and subgrade soil layers are assumed to be isotro-
pic while granular base and unbound subbase layers are considered to be cross-aniso-
tropic. In the second model, which is called Model 4, both asphalt concrete and
granular base layers are cross-anisotropic whilst the unbound subbase and subgrade soil
layers are isotropic. In the third model, which is called Model 5, the asphalt concrete,
granular base and unbound subbase are all assumed to be cross-anisotropic and only the
subgrade soil layer is assumed to be isotropic.

Shown in Table 6 are the inverted moduli results based on our SID approach for
Model 3 where the four-layer pavement has both base and subbase layers being
cross-anisotropic (Model 3). In the inversion calculation, the Poisson’s ratios and
vertical shear modulus Gv are fixed. It is clear from this table that our inverse algorithm
is accurate even for inverting six different moduli in the layered pavement. Also, the

Table 6. Actual material properties of the four-layer pavement with both cross-anisotropic base
and subbase layers (Model 3), along with the inverted elastic moduli. In the inversion calculation,
the Poisson’s ratios and vertical shear modulus Gv are fixed and three types of seed moduli are
selected to study the sensitivity of the inverse algorithm on the seed moduli.

Pavement Model 3

Actual
modulus
(MPa)

Seed modulus
(MPa) Inverted modulus (MPa) Relative error (%)

AC Eac 1500 Type 1 30,000 1499.965 −0.002
Base Ebh 500 3000 503.579 0.716

Ebv 800 3000 799.392 −0.076
Subbase Esbh 300 3000 299.508 −0.164

Esbv 500 3000 500.659 0.132
Subgrade Esg 30 300 30 0.000
AC Eac 1500 Type 2 10,000 1499.999 0.000
Base Ebh 500 10,000 500.343 0.069

Ebv 800 10,000 799.941 −0.007
Subbase Esbh 300 10,000 299.882 −0.039

Esbv 500 10,000 500.267 0.053
Subgrade Esg 30 10,000 30 0.000
AC Eac 1500 Type 3 300 1499.994 0.000
Base Ebh 500 3000 500.409 0.082

Ebv 800 3000 799.916 −0.010
Subbase Esbh 300 3000 299.923 −0.026

Esbv 500 3000 500.112 0.022
Subgrade Esg 30 30,000 30 0.000

Note for modulus symbols: Eac =modulus of asphalt concrete, Ebh and Ebv = horizontal and vertical moduli of
granular base, Esbh and Esbv = horizontal and vertical moduli of subbase, and Esg =modulus of subgrade.
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iteration steps for the convergence are all very low. For Types 1, 2 and 3, we only need
respectively 16, 18 and 17 steps to satisfy the convergence criteria 1 or 2 as discussed
above, and the relative error between the inverted and actual moduli is less than 1%.
Table 7 lists the inverted moduli for Model 4 of the four-layer pavement where a total
of eight different moduli are inverted. In this model, the asphalt concrete and base lay-
ers are assumed to be cross-anisotropic and all the Young’s moduli as well as the verti-
cal shear moduli are inverted. It is observed that our SID can successfully backcalculate
all the moduli in the four-layer pavement, with accuracy of less than 0.1%. Finally,
Table 8 lists the inverted moduli results for Model 5 where the four-layer pavement has
three layers being cross-anisotropic (asphalt concrete, base and subbase layers) with a
total of seven unknown moduli to be inverted. It is clearly seen that even for this very
complicated layered pavement structure, our SID backcalculated moduli are very close
to the actual moduli of the pavement, with a relative maximum error being about
1.66%.

Table 7. Actual material properties of the four-layer pavement with both cross-anisotropic asphalt
concrete and base layers (Model 4), along with inverted elastic moduli and vertical shear moduli.
In the inversion calculation, only the Poisson’s ratios are fixed and three types of seed moduli are
selected to study the sensitivity of the inverse algorithm on the seed moduli.

Pavement Model 4
Actual modulus

(MPa)
Seed modulus

(MPa)
Inverted modulus

(MPa)
Relative error

(%)

AC Each 1500 Type 1 30,000 1500.766 0.051
Eacv 3000 30,000 3000.726 0.024
Gacv 1111.11 15,000 1110.515 −0.054

Base Ebh 500 3000 499.707 −0.059
Ebv 800 3000 799.498 −0.063
Gbv 285.7 1500 285.796 0.020

Subbase Esb 300 3000 299.929 −0.024
Subgrade Esg 30 300 30 0.000
AC Each 1500 Type 2 10,000 1500.77 0.051

Eacv 2000 10,000 3000.712 0.024
Gacv 740.7 5000 1110.515 −0.054

Base Ebh 500 10,000 499.707 −0.059
Ebv 800 10,000 799.495 −0.063
Gbv 285.7 5000 285.794 0.019

Subbase Esb 300 10,000 299.929 −0.024
Subgrade Esg 30 10,000 30 0.000
AC Each 1500 Type 3 300 1500.778 0.052

Eacv 2000 300 3000.714 0.024
Gacv 740.7 150 1110.51 −0.054

Base Ebh 500 3000 499.697 −0.061
Ebv 800 3000 799.491 −0.064
Gbv 285.7 1500 285.796 0.020

Subbase Esb 300 3000 299.929 −0.024
Subgrade Esg 30 30,000 30 0.000

Note for modulus symbols: Each and Eacv = horizontal and vertical moduli of asphalt concrete, Gacv = vertical
shear modulus of asphalt concrete, Ebh and Ebv = horizontal and vertical moduli of granular base, Gbv = vertical
shear modulus of granular base, Esb =modulus of subbase, and Esg =modulus of subgrade.
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5. Conclusions

In this paper, we have developed the SID inverse method to backcalculate the elastic
moduli in layered pavements based on the deflection data from FWD. Our method
applies not only to the isotropic-layered case, but also to the cross-anisotropic one. The
required forward calculation is based on the efficient propagating matrix method in
terms of the cylindrical system of vector functions. Since in the linear elastic system,
the strain energy should be positive, the moduli to be inverted are not independent but
are constrained. Thus, during iteration in the SID procedure, constraints are applied to
make sure that the inverted elastic moduli satisfy the positive strain energy condition.
Our algorithm is applied to both three-layer and four-layer pavement systems and the
inverted moduli are all very close to the actual ones for broad range of seed moduli
(ascending, constant and descending variations), showing that the proposed approach is
accurate and efficient.

Acknowledgement
The first author (YC) would like to thank the University of Akron for hosting his visit in
2012–2013.

Table 8. Actual material properties of the four-layer pavement with cross-anisotropic asphalt con-
crete, base and subbase layers (Model 5), along with the inverted elastic moduli. In the inversion
calculation, the Poisson’s ratios and vertical shear modulus Gv are fixed and three types of seed
moduli are selected to study the sensitivity of the inverse algorithm on the seed moduli.

Pavement Model 5

Actual
modulus
(MPa)

Seed modulus
(MPa)

Inverted modulus
(MPa)

Relative error
(%)

AC Each 1500 Type 1 30,000 1498.544 −0.097
Eacv 2000 30,000 3000.496 0.017

Base Ebh 500 3000 508.286 1.657
Ebv 800 3000 798.844 −0.144

Subbase Esbh 300 3000 298.941 −0.353
Esbv 500 3000 501.585 0.317

Subgrade Esg 30 300 30 0.000
AC Each 1500 Type 2 10,000 1499.652 −0.023

Eacv 2000 10,000 3000.132 0.004
Base Ebh 500 10,000 501.633 0.327

Ebv 800 10,000 799.782 −0.027
Subbase Esbh 300 10,000 299.786 −0.071

Esbv 500 10,000 500.283 0.057
Subgrade Esg 30 10,000 30 0.000
AC Each 1500 Type 3 300 1499.364 −0.042

Eacv 2000 300 3000.216 0.007
Base Ebh 500 3000 503.457 0.691

Ebv 800 3000 799.526 −0.059
Subbase Esbh 300 3000 299.565 −0.145

Esbv 500 3000 500.632 0.126
Subgrade Esg 30 30,000 30 0.000

Note for modulus symbols: Each and Eacv = horizontal and vertical moduli of asphalt concrete, Ebh and
Ebv = horizontal and vertical moduli of granular base, Esbh and Esbv = horizontal and vertical moduli of
subbase, and Esg =modulus of subgrade.
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