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S U M M A R Y
Viscoelastic behaviour of materials in nature is observed in post-event deformations due to
seismic or volcanic activities. In this paper, by adopting the correspondence principle, we pro-
pose an inelastic model to predict first the Laplace-domain response of a transversely isotropic
viscoelastic half-space due to a shear or tensile fault of polygonal shape. The displacement
and stress fields in the time domain are then obtained using an efficient and accurate algorithm
for the inverse Laplace transform. Numerical examples are presented to validate the proposed
solution and to show the viscoelastic displacement and stress fields due to a strike-slip, dip-slip
and tensile fault of rectangular shape. The obtained results indicate that both viscoelasticity
and transverse isotropy play significant roles in the viscoelastic response of the half-space due
to faults, which could be used as benchmarks for the future numerical analysis of realistic
post-seismic or volcanic event.

Key words: Geomechanics; Elasticity and anelasticity; Fault zone rheology; Fractures and
faults.

1 I N T RO D U C T I O N

Space geodesy enables us to gain a better understanding of de-
layed post-event deformations of the Earth’s surface (Fialko 2004).
However, based on the enhanced observations of interferometric
synthetic aperture radar (InSAR) and global positioning system
(GPS), the existing elastic models fail to predict the real deforma-
tion fields on the surface of the Earth. For instance these models
cannot reproduce the observed uplifts (Piombo et al. 2007). One
way to overcome this flaw is to consider a viscoelastic lithosphere
in post-seismic or volcanic events. The viscoelastic model can be
defined in the way that the source function in time and the relaxation
of deformation and stress fields in the inelastic media over time con-
trol the post-event transients. The correspondence principle can be
adopted to take care of the complicated time convolution in the time
domain (Christensen 1982). The correspondence principle enables
us to solve the equivalent elastic problem in the Laplace domain by
replacing the elastic moduli with the Laplace transformed complex
moduli. Therefore, the responses in the time domain can be obtained
by utilizing an efficient inverse Laplace transform algorithm should
the corresponding elastic problem be solved analytically.

The deformation and stress responses of an elastic or viscoelas-
tic half-space due to dislocation sources have been investigated
by many researchers. Nur & Mavko (1974) considered an elastic
lithosphere overlying a viscoelastic half-space (the asthenosphere)
to study the post-seismic deformation due to sudden dislocation
sources. Singh & Rosenman (1974) found the quasi-static deforma-
tion of a viscoelastic half-space due to a displacement dislocation.

Okada (1985) derived the exact closed-form surface deformations
due to shear and tensile faults in an isotropic elastic (IE) half-space.
Okada later presented the closed-form solution for the internal de-
formations and strains (Okada 1992). Piombo et al. (2007) extended
Okada’s elastic solutions to the corresponding viscoelastic isotropic
half-space. Hetland & Hager (2005, 2006) utilized the correspon-
dence principle to find the inverse Laplace transforms for general
linear viscoelastic rheologies. They presented the deformation field
near an infinite strike-slip fault in an elastic layer overlaying a vis-
coelastic half-space. Recently, Chen et al. (2009) derived the semi-
analytical solution for a multilayered viscoelastic pavement due to
a surface loading.

Although the assumption of isotropy could be suitable for crys-
talline basement rocks, it fails to describe accurately the behaviour
of sedimentary rock masses. These types of rocks are best described
by a transversely isotropic material model with the sedimentary
plane being parallel to the isotropic plane (Amadei 1996; Wang &
Liao 1998; Gercek 2007). Pan et al. (2014) extended Okada’s solu-
tion (Okada 1985, 1992) to the corresponding transversely isotropic
half-space with a general polygonal fault and showed that rock
anisotropy could significantly affect the displacement and strain
fields induced by the fault.

In this paper, the analytical solution of a transversely isotropic
viscoelastic (TIV) half-space due to the shear and tensile faults
is derived. We emphasize that since the half-space is assumed to
be homogeneous, the effect of material layering, that is an elastic
lithosphere overlying a viscoelastic half-space, is not considered. In
deriving our solution, the correspondence principle is first utilized
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to find the displacement and stress solutions in the Laplace domain.
Then, by using the inverse Laplace transform algorithm of Honig
& Hirdes (1984), the viscoelastic response in the time domain is
obtained. This paper is organized as follows: The geometry of the
problem and the proposed rheology model are defined in Section
2. A brief introduction to the inverse Laplace transform algorithms
and the features of the adopted algorithm in this work are also pre-
sented in this section. Numerical examples are carried in Section 3
to validate the proposed viscoelastic solution and to further demon-
strate the influence of the transverse isotropy and viscoelasticity on
the deformation and stress fields in the TIV half-space. Conclusions
are drawn in Section 4. In this paper, the following abbreviations
are used for simplicity: AV, anisotropic viscoelastic; IE, isotropic
elastic; IV, isotropic viscoelastic; TIE, transversely isotropic elastic;
TIV, transversely isotropic viscoelastic.

2 P RO B L E M D E S C R I P T I O N

We consider a fault of rectangular shape in a transversely isotropic
and viscoelastic (TIV) homogenous half-space. The geometry of
the problem is shown in Fig. 1 which is similar to Okada (1992),
Piombo et al. (2007) and Pan et al. (2014). In the adopted coordinate
system, the x1–x2 plane is the free surface of the half-space and
x3 ≤ 0 is the problem domain. The axis of symmetry of the TIV
material is assumed to be parallel to the x3-axis. The strike-slip, dip-
slip and tensile components of the dislocation are, respectively, Us,
Ud and Ut, representing the movement of the hanging wall relative
to the foot wall of the fault. The strike direction and the dip angle
of the fault are represented by φ and δ, respectively.

2.1 Viscoelastic constitutive relation

The general constitutive relation for a linear anisotropic viscoelastic
(AV) medium can be expressed as (Christensen 1982),

σi j (x, t) = �i jkl (x, t) ∗ ε̇kl (x, t), (1)

where x is the position vector, t is the time variable, Ψijkl is the
fourth-order relaxation function tensor, and the star ‘∗’ denotes
the time convolution. A dot above the variable indicates the time
differentiation, and the summation from 1 to 3 is implied over the
repeated indices. Similar to the work by Carcione (1990), we now
define the relaxation matrix as,

�AV =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 ψ13 c14 c15 c16

ψ22 ψ23 c24 c25 c26

ψ33 c34 c35 c36

c44χ2 c45χ2 c46χ2

Sym. c55χ2 c56χ2

c66χ2

⎤
⎥⎥⎥⎥⎥⎥⎦

H (t),

(2)

where �AV is the relaxation matrix for an AV material and H(t) is
the Heaviside function. The elements of the relaxation matrix are,⎧⎪⎪⎨
⎪⎪⎩

ψi j = ci j − D +
(

D − 4

3
G

)
χ1 + 4

3
Gχ2 if i = j

ψi j = ci j − D + 2G +
(

D − 4

3
G

)
χ1 − 2

3
Gχ2 if i �= j

(3)

with

D = (c11 + c22 + c33)/3 (4)

G = (c44 + c55 + c66)/3. (5)

Furthermore, in eqs (2) and (3), matrix cij represents the space-
dependent stiffness and

χν = 1 −
Lν∑

l=1

(
1 − τ ν

εl

τ ν
σ l

) (
1 − e−t/τν

σ l
)

ν = 1, 2 (6)

are the relaxation functions with τ ν
εl and τ ν

σ l being the material re-
laxation times for the lth mechanism and Lv being the total number
of relaxation mechanisms. It is noted that the relaxation matrix �AV

is formed in such a way that the trace and deviatoric components

Figure 1. Geometry of a rectangular fault with three types of discontinuities Us, Ud and Ut in a transversely isotropic viscoelastic half-space (with x1–x2 being
the plane of isotropy and x3 = 0 being the free surface). The strike direction and the dip angle of the fault are represented by φ and δ, respectively.
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of the stress tensor depend on the time variable through the kernels
χ 1 and χ 2, respectively. The trace of the stress tensor is an invari-
ant upon the transformation of the coordinate system implying that
the hydrostatic stress (one third of the trace) is only related to the
function χ 1. Hence, function χ 1 describes the dilatational deforma-
tion whereas χ 2 represents the shear deformation (Carcione et al.
1988 and Carcione 1990). We should point out that our relaxation
functions presented in eq. (6) are similar to but different from those
in Carcione (1990). The difference is that in Carcione (1990), time
t = ∞ (0) corresponds to the elastic (relaxation) limit whilst in
eq. (6), t = 0 (∞) corresponds to the elastic (relaxation) limit.
Thus the adopted relaxation functions in our paper can be re-
duced to the viscoelastic model frequently used in geophysics
for post-seismic deformation analyses, as we will show below
when validating our solutions against those by Singh & Rosenman
(1974).

For the TIV material, eq. (2) can be reduced to

�TIV =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 ψ13 0 0 0
ψ11 ψ13 0 0 0

ψ33 0 0 0
c44χ2 0 0

Sym. c44χ2 0
c66χ2

⎤
⎥⎥⎥⎥⎥⎥⎦

H (t),

(7)

where �TIV is the relaxation matrix for a TIV material with⎧⎪⎪⎨
⎪⎪⎩

ψi j = ci j − D +
(

D − 4

3
G

)
χ1 + 4

3
Gχ2 if i = j

ψi j = ci j − D + 2G +
(

D − 4

3
G

)
χ1 − 2

3
Gχ2 if i �= j

(8)

and

D = (2c11 + c33)/3; G = (2c44 + c66)/3 (9)

c66 = (c11 − c12)/2. (10)

For an isotropic viscoelastic (IV) material, the relaxation matrix
�TIV can be reduced to

� IV =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 ψ12 0 0 0
ψ11 ψ12 0 0 0

ψ11 0 0 0
ψ44 0 0

Sym. ψ44 0
ψ44

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

ψ11 =
(

λ + 2

3
μ

)
χ1 + 4

3
μχ2

ψ12 =
(

λ + 2

3
μ

)
χ1 − 2

3
μχ2

ψ44 = μχ2, (12)

where � IV is the relaxation matrix for an IV material and λ and μ

are the elastic Lamé constants of the isotropic material.
We remark that at t = 0 the relaxation matrices for the AV, TIV

and IV will represent the corresponding elastic limit of the problem.
This elastic limit corresponds further to the situation where the
two relaxation functions in eq. (6) are reduced to unit 1, namely,
χν = 1 (ν = 1, 2). We further point out that, at t = 0, the IV

material will be reduced to the IE material and the TIV material
to the transversely isotropic elastic (TIE) material. Therefore, the
solutions presented by Okada (1985, 1992) in the IE half-space and
by Pan et al. (2014) in the TIE half-space can be utilized to verify
the proposed viscoelastic solutions.

Based on the viscoelastic correspondence principle (Christensen
1982), the formulation of the present viscoelastic problem will
be equal to the corresponding elastic problem in Laplace domain
with Laplace transformed complex material properties. The Laplace
transform of a real function f with f(t) = 0 for t < 0 is

F(s) = L [ f (t)] =
∫ ∞

0
e−st f (t) dt. (13)

Thus, the constitutive relation eq. (1) in the Laplace domain can
be written as

σ̄i j (x, s) = s �̄i jkl (x, s)ε̄kl (x, s), (14)

where s is the Laplace variable and the overbar denotes the function
in the Laplace domain. The relaxation functions and relaxation
tensor for the TIV materials in the Laplace domain are given as,

χ̄ν = 1

s
−

Lν∑
l=1

(
1 − τ ν

εl

τ ν
σ l

) (
1

s
− 1

s + 1/τ ν
σ l

)
ν = 1, 2 (15)

�̄TIV =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ̄11 ψ̄12 ψ̄13 0 0 0
ψ̄11 ψ̄13 0 0 0

ψ̄33 0 0 0
c44χ̄2 0 0

Sym. c44χ̄2 0
c66χ̄2

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

with⎧⎪⎪⎨
⎪⎪⎩

ψ̄i j = ci j

s − D
s +

(
D − 4

3
G

)
χ̄1 + 4

3
Gχ̄2 if i = j

ψ̄i j = ci j

s − D
s + 2G

s +
(

D − 4

3
G

)
χ̄1 − 2

3
Gχ̄2 if i �= j,

(17)

where D and G are defined by Eq. (9) and Eq. (10) holds for c66. The
elastic deformation due to a shear and tensile polygonal fault in a
TIE half-space was recently solved by Pan et al. (2014). Therefore,
making use of these solutions, the displacement and its derivative
induced by a strike-slip, dip-slip and tensile fault in a TIV half-space
can be expressed in the Laplace transformed domain as

Strike-slip fault,

ūi (x, s) = −Ūs

{
cos φŪi1(x, s) + sin φŪi2(x, s)

}
ūi, j (x, s) = −Ūs

{
cos φŪi1, j (x, s) + sin φŪi2, j (x, s)

}
(18)

Dip-slip fault,

ūi (x, s) = Ūd

{
sin φ cos δŪi1(x, s) − cos φ cos δŪi2(x, s)

− sin δŪi3(x, s)
}

ūi, j (x, s) = Ūd

{
sin φ cos δŪi1, j (x, s) − cos φ cos δŪi2, j (x, s)

− sin δŪi3, j (x, s)
}
. (19)

Tensile fault,

ūi (x, s) = Ūt

{− sin φ sin δŪi1(x, s) + cos φ sin δŪi2(x, s)

− cos δŪi3(x, s)
}
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ūi, j (x, s) = Ūt

{− sin φ sin δŪi1, j (x, s) + cos φ sin δŪi2, j (x, s)

− cos δŪi3, j (x, s)
}
, (20)

where

Ūi j (x, s) = Ū∞
i j (x, s) + Ū c

i j (x, s), (21)

where Ūi j (x, s) is the i-component of the Laplace-domain displace-
ment in the half-space at x for a given uniform displacement discon-
tinuity in the j-direction on the fault, Ū∞

i j (x, s) is the i-component
of the full-space displacement at x due to the same uniform dis-
placement discontinuity in the j-direction, and Ū c

i j (x, s) is the com-
plementary part of the solution satisfying the free surface boundary
conditions (Pan et al. 2014). Using eqs (18)–(20) with eq. (14), the
stress components in the Laplace domain can be obtained.

2.2 Inverse Laplace transform

Based on the formulations presented in the previous section, the
displacements and stresses induced by faulting in a TIV half-space
can be found in the Laplace domain by the correspondence principle.
The next step is to transform these components back to the time
domain. Once the solutions are found in the Laplace transformed
domain, the time-domain solutions are obtained by carrying out the
inverse Laplace transform. In other word, once F(s) is given as in
eq. (13), its time-domain expression with f(t) = 0 for t < 0 can be
found by taking the inverse Laplace transform

f (t) = L−1 [F(s)] = 1

2π i

∫ κ+i∞

κ−i∞
est F(s) ds (22)

with s = κ+iω and κ , ω being real values.
Since in general, the inverse of F(s) cannot be found analytically,

numerical methods are needed to carry out the inverse integral in
eq. (22). Several numerical algorithms have been proposed to carry
out the inverse Laplace transform (Weeks 1966; Dubner & Abate
1968; Stehfest 1970; Durbin 1974; Talbot 1979; De Hoog et al.
1982; Honig & Hirdes 1984), and comparisons among different
algorithms can be found in Bellman et al. (1966), Davies & Martin
(1979), Duffy (1993), Cohen (2007) and Kuhlman (2013). In this
paper, we use the algorithm presented by Honig & Hirdes (1984) for
the numerical inverse Laplace transform. The algorithm is based on
the Fourier series expansion developed by Dubner & Abate (1968)
and Durbin (1974), and is presented briefly below.

By following Durbin (1974), if the Laplace transform of f(t) is
F(s) as defined by eq. (13), then its inverse Laplace transform,
as defined by eq. (22), can be approximated by the Fourier series

expansion in the time interval [0, 2T] as

fN (t) = eκt

T

[
− 1

2
Re {F(κ)} +

N∑
j=0

(
Re

{
F

(
κ + i

jπ

T

)}

× cos

(
jπ

T
t

)
− Im

{
F

(
κ + i

jπ

T

)}
sin

(
jπ

T
t

))]
,

(23)

where κ , T and N are three real parameters which need to be chosen
properly. Thus, the accuracy of the original algorithm by Durbin
(1974) depends on the discretization and truncation errors related
to these parameters. Honig & Hirdes (1984) proposed two different
methods for finding the optimal values of these parameters: (1) for
fixed N and T, they found the optimum value for κ by equalizing the
truncation and discretization error and (2) the optimum value for
κ was calculated by minimizing the sum of the absolute values of
discretization and truncation errors. Furthermore, Honig & Hirdes
(1984) adopted three different algorithms to accelerate the con-
vergence of the Fourier series: ε-algorithm, minimum-maximum
method and curve-fitting based method. Due to these unique fea-
tures, we utilize the algorithm of Honig & Hirdes (1984) to carry
out the involved inverse Laplace transform numerically to find the
displacement and stress components in the time domain. Our numer-
ical examples listed in the Appendix show that this inverse Laplace
algorithm is very efficient and accurate.

3 R E S U LT S A N D D I S S C U S I O N

In the first numerical example, the displacement response on the
surface of an IV half-space due to a strike-slip vertical fault is
studied. The dimension of the fault in the IV medium is 10 km ×
10 km with a uniform dislocation Us = 50 H(t) cm over the entire
fault (Fig. 2). The lower edge of the fault is 12 km below the
surface and the strike direction of the fault is parallel to the x1-axis.
We assume that the medium is elastic dilatational and Maxwell
deviatoric which satisfying the Poisson condition (λ = μ). To apply
our viscoelastic model to this simple Maxwell model, we only need
to simply set χ 1 = 1 and τ 2

ε = 0 in the relaxation functions eq. (6).
Under these conditions, the other relaxation function χ2 will be

χ2 = e−t/τ2
σ , (24)

where τ 2
σ is the relaxation time in shear for the Maxwell model.

The viscoelastic displacement components are obtained at a fixed
surface point on the IV half-space located at (x1, x2, x3) = (2,
3, 0) km (Fig. 2). The displacement components as functions of

Figure 2. A strike-slip vertical fault of square shape with dimension 10 km × 10 km in an IV half-space. The fault is under a uniform dislocation Us = 50
H(t) cm. The lower edge of the fault is 12 km below the surface and the strike direction of the fault is parallel to the x1-axis.
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Time-dependent response of a TIV half-space 167

Figure 3. Viscoelastic displacement components u1, u2, u3 versus dimensionless time t/τ 2
σ at fixed point (x1, x2, x3) = (2, 3, 0) km on the surface of an elastic

dilatational and Maxwell deviatoric half-space due to the strike-slip vertical fault in Fig. 2. The analytical solutions by Singh & Rosenman (1974) are also
shown for comparison.

dimensionless time are depicted in Fig. 3. As a validation of our
calculated displacements via numerical inverse Laplace transform,
the analytical solution by Singh & Rosenman (1974) is also pre-
sented. It can be deduced that our numerical results are in good
agreement with the analytical ones. It can be further observed that
with increasing time, the magnitude of the displacement compo-
nent u3 monotonically increases while both u1 and u2 monotoni-
cally decrease (in magnitude), and that all the three displacement
components converge to their corresponding limit values when the
dimensionless time is about five times of the relaxation time.

In the second numerical example, we present the viscoelastic
displacement fields due to a rectangular fault in a TIV half-space
made of clayshale. The rectangular fault has a dimension of 12 km ×
8 km and it is under a uniform dislocation Us = 50 H(t) cm (or
Ud = 50 H(t) cm or Ut = 50 H(t) cm) (Fig. 4). The lower edge of the
fault is 10 km below the surface and the strike direction of the fault
is parallel to x1-axis. The dip angle is δ = 40◦ and the field point is
fixed at (x1, x2, x3) = (25, 15, −5) km. The stiffness coefficients and
relaxation parameters for the TIV (with IV being its special case)
medium are taken from Carcione (1990) and are listed in Table 1.

Figure 4. A rectangular fault of dimension 12 km × 8 km under a uniform dislocation Us = 50 H(t) cm (or Ud = 50 H(t) cm or Ut = 50 H(t) cm) in an IV or
TIV half-space. The lower edge of the fault is 10 km below the surface and the strike direction of the fault is parallel to the x1-axis. The dip angle is δ = 40◦.
The field point is fixed at (x1, x2, x3) = (25, 15, −5) km for Figs 5 and 6 and the observation domain is a rectangle on the surface of the half-space with −4
km < x1 < 16 km and −4 km < x2 < 12 km for Figs 7–9.
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Table 1. Elastic stiffness coefficients and relaxation parameters for TIV, IV and IV (Voigt)
clayshale.

Elastic stiffness (GPa) c11 c12 c13 c33 c44 c66

Clayshale (TIV) 66.6 19.7 39.4 39.9 10.9 23.4
Clayshale (IV) 39.9 18.1 18.1 39.9 10.9 10.9
Clayshale (IV) Voigt average 59.8 31.8 31.8 59.8 14.0 14.0

Relaxation parameters (s) τ 1
εl τ 1

σ l τ 2
εl τ 2

σ l

1 0.0332577 0.0304655 0.0352443 0.0287482
2 0.0033257 0.0030465 0.0029370 0.0023957

Figure 5. Viscoelastic displacement components as a function of t/τ 1
ε1 at fixed internal point (x1, x2, x3) = (25, 15, −5) km for the three different types of

faults. The first row (a–c) is the displacement induced by a strike-slip fault, the second row (d–f) is the one by a dip-slip fault and the third row (g–i) is the one
by a tensile fault. The three curves in each figure correspond to those in the TIV material with solid lines, in the IV material using Voigt average model with
dotted lines, and in the IV material with dashed-dotted lines. All the material properties are listed in Table 1.
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Table 2. Comparison of the present solutions at the fixed internal point (x1, x2, x3) = (25, 15, −5) km for IV and TIV half-spaces at
time t≈0 with the elastic solutions by Okada’s (1992) in IE and Pan et al. (2014) in TIE half-spaces.

Fault type Strike-slip Dip-slip Tensile
Displacement (mm) u1 u2 u3 u1 u2 u3 u1 u2 u3

Okada (1992) −3.2642 −3.7373 1.1749 −0.8319 −2.5241 −1.2683 −0.7542 0.3966 0.7325

IV at t ≈ 0 −3.2638 −3.7374 1.1766 −0.8308 −2.5242 −1.2683 −0.7551 0.3968 0.7325

IV
m

at
er

ia
l

IV(Voigt) at t ≈ 0 −3.3530 −3.6987 0.7803 −1.0835 −2.5003 −1.2642 −0.5461 0.3490 0.7342

Pan et al. (2014) −2.1865 −7.9182 −3.7736 5.3771 −4.3373 1.1136 −4.2437 1.0799 −1.3198

T
IV

m
at

er
ia

l

TIV at t ≈ 0 −2.2045 −7.9065 −3.7386 5.3438 −4.3275 1.0963 −4.2242 1.0729 −1.3051

Table 3. Viscoelastic displacement components (in mm) at (x1, x2, x3) = (25, 15, −5) km due to the three different
types of faults in the TIV half-space at different times.

t/τ 1
ε1 Strike-slip Dip-slip Tensile

u1 (mm) u2 (mm) u3 (mm) u1 (mm) u2 (mm) u3 (mm) u1 (mm) u2 (mm) u3 (mm)

0.001 −2.2046 −7.9065 −3.7387 5.3438 −4.3275 1.0963 −4.2242 1.0729 −1.3051
0.010 −2.3510 −7.8115 −3.4530 5.0748 −4.2481 0.9563 −4.0675 1.0168 −1.1857
0.100 −2.9341 −7.4124 −2.2010 3.9846 −3.9372 0.3881 −3.4471 0.8050 −0.7011
0.200 −3.0397 −7.3310 −1.9125 3.7815 −3.8821 0.2820 −3.3387 0.7714 −0.6105
0.500 −3.1249 −7.2653 −1.6669 3.6202 −3.8368 0.1966 −3.2539 0.7444 −0.5376
1.000 −3.1944 −7.2116 −1.4600 3.4896 −3.8001 0.1258 −3.1863 0.7229 −0.4773
2.000 −3.2380 −7.1769 −1.3136 3.4090 −3.7766 0.0806 −3.1464 0.7100 −0.4389
4.000 −3.2474 −7.1690 −1.2725 3.3927 −3.771 0.0705 −3.1393 0.7073 −0.4303
4.800 −3.2477 −7.1688 −1.2710 3.3925 −3.7710 0.0703 −3.1392 0.7073 −0.4301
5.000 −3.2477 −7.1688 −1.2708 3.3925 −3.7710 0.0703 −3.1392 0.7073 −0.4301

To investigate the effect of transverse isotropy, the displacement
fields for IV clayshale are also presented. Two different IV media
are used with their stiffness constants being obtained using two
different approaches. In the first approach, the material properties
for IV clayshale are directly taken from Carcione (1990) as listed in
the row named ‘Clayshale (IV)’ in Table 1. In the second approach,
the equivalent IV stiffness constants are calculated using the Voigt
average method (Pan et al. 2014). In other words, the Voigt average
moduli are calculated using the following formulations once the
TIE material properties are given.

λvoigt = c11 + c33 + 5c12 + 8c13 − 4c44

15

μvoigt = 7c11 + 2c33 − 5c12 − 4c13 + 12c44

30
. (25)

This IV material properties are listed in Table 1 in the row named
‘Clayshale (IV) Voigt average’.

At the fixed observation point (x1, x2, x3) = (25, 15,−5) km,
the time-dependent displacement components vs. normalized time
for different types of faults are presented in Fig. 5. It is ob-
served from Fig. 5 that while the two IV material models pre-
dict very similar displacements with roughly the same values
for the given fault type, the TIV material model predicts com-
pletely different displacements as compared to the IV models.
This demonstrates that if the rock material under consideration
is TIV, use of an IV model would predict completely wrong time-
dependent displacements induced by faults. We further notice that
all displacement components are either monotonically decrease or
monotonically increase, and are finally convergent to their limiting
values.

We further mention that we have validated our solutions at the
fixed internal point (x1, x2, x3) = (25, 15, −5) km in the corre-

sponding elastic half-space, which are achieved from our viscoelas-
tic models by taking the limit at t/τ 1

ε1 ≈ 0. For the isotropic case,
our IV and IV (Voigt) models at t/τ 1

ε1 ≈ 0 yield the elastic displace-
ments very close to those in Okada (1992), and for the transversely
isotropic case, the displacements from our TIV model are nearly
equal to those in Pan et al. (2014). The comparison of these elastic
displacement components are presented in Table 2, with the elastic
material properties being those listed in Table 1. Furthermore, listed
in Table 3 are the viscoelastic displacement components induced by
the three different types of faults in the TIV half-space at differ-
ent times for future reference (accurate to the listed five digits). It
can be observed from this table that the viscoelastic displacement
components all approach their convergent values at t/τ 1

ε1 ≈ 4.5.
The hydrostatic, effective, and maximum shear stresses at fixed

point (x1, x2, x3) = (25, 15, −5) km due to different types of faults
are shown in Fig. 6 as functions of time. The hydrostatic stress (σ h),
effective stress (σ e) and maximum shear (τm) stresses are defined,
respectively, as

σh = (σ11 + σ22 + σ33)/3

σe = [
0.5

{
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

}
+ 3

(
σ 2

12 + σ 2
23 + σ 2

13

)]0.5

τm = max

{∣∣∣∣σ1 − σ3

2

∣∣∣∣ ,
∣∣∣∣σ2 − σ3

2

∣∣∣∣ ,
∣∣∣∣σ1 − σ2

2

∣∣∣∣
}

, (26)

where σ 1, σ 2, and σ 3 are principal stress components. Comparing
the variation of the stresses in Fig. 6 to that of the displacements
in Fig. 5, we notice that: (1) the stresses from the three viscoelastic
models are all different; even the two IV models predict different
stress variations; (2) while the hydrostatic stress either monoton-
ically increases or monotonically decreases with normalized time
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Figure 6. Hydrostatic stress (σ h), effective stress (σ e), and maximum shear stress (τmax ≡ τm) as functions of t/τ 1
ε1 at fixed internal point (x1, x2, x3) = (25,

15, −5) km induced by different types of faults in three different viscoelastic half-spaces. The first row (a–c) is the hydrostatic stress due to the strike-slip,
dip-slip and tensile faults. The second row (d–f) is the effective stress due to the strike-slip, dip-slip and tensile faults. The third row (g–i) is the maximum
shear stress due to strike-slip, dip-slip and tensile faults. The three curves in each figure correspond to those in the TIV half-space with solid lines, in the IV
half-space using Voigt average model with dotted lines, and in the IV half-space with dashed-dotted lines. All the half-space material properties are listed in
Table 1.

(Figs 6a–c), the variation of the effective stress and maximum shear
stress is peculiar (Figs 6d–h; Table 4) in the TIV half-space. More
specifically, under either a strike-slip or a dip-slip faulting, the min-
imum of the induced effective stress and maximum shear stress is
not at the elastic limit t = 0, but at a later time when the material
experiences viscoelastic deformation (Table 4). We further remark
that since the maximum shear stress is the key stress component in
Mohr–Coulomb failure criterion and that other stresses are also in-
creasing with increasing time, failure induced by a faulting may not

occur immediately at time t = 0 in the viscoelastic materials; rather
it may be delayed due to the viscoelastic effect. Similar phenom-
ena were observed for crack propagation in viscoelastic materials
(Knauss 1970; Wnuk & Knauss 1970). Finally in Table 4 (accurate
to the listed five digits), we have listed the time-dependent hydro-
static stress, effective stress, and maximum shear stress at fixed point
(x1, x2, x3) = (25, 15, −5) km induced by different types of faults in
the TIV half-space for future reference. It is clearly observed from
Table 4 that all these stresses converge when the dimensionless time
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Table 4. Time-dependent hydrostatic stress (σ h), effective stress (σ e), and maximum shear stress (τm) in (kPa) at fixed
internal point (x1, x2, x3) = (25, 15, −5) km induced by different types of faults in the TIV half-spaces.

t/τ 1
ε1 Strike-slip Dip-slip Tensile

σ h (kPa) σ e (kPa) τm (kPa) σ h (kPa) σ e (kPa) τm (kPa) σ h (kPa) σ e (kPa) τm (kPa)

0.001 2.8440 18.4245 10.3917 0.6701 10.0759 5.7491 0.9918 6.6758 3.7226
0.010 2.3246 18.2885 10.3420 0.9407 9.3620 5.3071 0.6785 7.0559 3.8921
0.100 −0.1239 20.3375 11.6958 2.1728 8.8406 5.0440 −0.8252 10.1633 5.8622
0.200 −0.8064 21.6652 12.4890 2.4956 9.6015 5.5130 −1.2567 11.3011 6.5237
0.500 −1.4347 23.1100 13.3375 2.7928 10.5363 6.0680 −1.6546 12.4398 7.1675
1.000 −1.9583 24.3870 14.0796 3.0396 11.4227 6.5862 −1.9850 13.4081 7.7056
2.000 −2.3658 25.4722 14.7059 3.2306 12.1838 7.0290 −2.2429 14.2011 8.1432
4.000 −2.5068 25.8879 14.9452 3.2973 12.4661 7.1930 −2.3326 14.4984 8.3076
4.800 −2.5145 25.9134 14.9599 3.3012 12.4824 7.2025 −2.3375 14.5164 8.3176
5.000 −2.5155 25.9167 14.9618 3.3017 12.4845 7.2037 −2.3382 14.5188 8.3190

Figure 7. Surface deformation due to a strike-slip fault in a viscoelastic TIV half-space. Top row (a–c) shows the viscoelastic deformation on the surface at
normalized time t/τ 1

ε1 = 4.5 and the bottom row (d–f) shows the difference between the elastic and viscoelastic deformations. (Multimedia view).

increases, although their rate of convergence is slower as compared
to that of displacements.

As a final numerical example, we present the surface response
induced by different types of faults. The geometry of the problem
is the same as the one shown in Fig. 4 and the observation area
is a rectangle on the surface of the half-space with −4 km < x1

< 16 km and −4 km < x2 < 12 km. The surface responses for
the strike-slip fault, dip-slip fault and tensile fracture are shown in
Figs 7–9, respectively. In these figures, the top row is the surface
response at the normalized time t/τ 1

ε1 = 4.5 where the displacement
components converge to their limiting values and the bottom row is
the difference between the elastic and viscoelastic responses. It can
be observed from Fig. 7a that the displacement component u1 due
to a strike-slip fault is nearly all positive in the entire domain whilst
the difference between the elastic and viscoelastic responses could
be positive or negative (Fig. 7d). A similar feature can be observed
for the displacement component u3 by a tensile fault shown in
Figs 9(c) and (f). It is further noticed from the bottom rows of
Figs 7–9 that the difference between the elastic and viscoelastic
deformations could be significant. This is particularly true for the
vertical displacement where the difference is in the same order of
the actual deformation (Fig. 8f). All these observations indicate that
both transverse isotropy and viscoelasticity play an important role
in the prediction of displacement and stress fields. Thus for more

realistic and accurate predictions, viscoelasticity and anisotropy
must be considered especially for sedimentary rock masses.

4 C O N C LU S I O N S

We have derived the time-dependent displacement and stress fields
induced by faults in a viscoelastic half-space. Utilizing the cor-
respondence principle, we first find the solutions in the Laplace
domain. Using an accurate and efficient inverse Laplace transform
algorithm, we obtain the solutions in the time domain. The for-
mulations are applied to a TIV half-space and two IV half-spaces
with three types of finite-size faults. Our viscoelastic solutions at
t = 0 are validated with the elastic solutions for both isotropic and
transversely isotropic case, and at any time t, are validated with the
analytical solutions by Singh & Rosenman (1974) for the simple
Maxwell model. Our numerical results show the following impor-
tant features:

(1) For a given fault, variations of the viscoelastic displacement
and stress fields with time can be completely different in TIV and
IV half-spaces.

(2) The magnitude of the difference between the elastic and vis-
coelastic fields can be significant, especially when the half-space is
deformed by dip-slip and tensile faults.
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Figure 8. Surface deformation due to a dip-slip fault in a viscoelastic TIV half-space. The top row (a–c) shows the viscoelastic deformation on the surface at
normalized time t/τ 1

ε1 = 4.5 and the bottom row (d–f) shows the difference between the elastic and viscoelastic deformations. (Multimedia view).

Figure 9. Surface deformation due to a tensile fault in a viscoelastic TIV half-space. The top row (a–c) shows the viscoelastic deformation on the surface at
normalized time t/τ 1

ε1 = 4.5 and the bottom row (d–f) shows the difference between the elastic and viscoelastic deformation. (Multimedia view).

(3) In a viscoelastic half-space, the maximum values of the hy-
drostatic stress, effective stress, and the maximum shear stress in-
duced by a given fault do not occur in the elastic limit. They all
increase with increasing time, implying possible post-seismic fail-
ure in rocks.

In summary, our numerical results demonstrate that one may
need to consider both elastic anisotropy and viscoelastic anisotropy
in materials in order to predict accurately the deformation and stress
fields in the lithosphere due to a post-seismic or volcanic event.
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A P P E N D I X : VA L I DAT I O N A N D
E F F I C I E N C Y O F N U M E R I C A L
L A P L A C E I N V E R S E T R A N S F O R M
A L G O R I T H H M

We investigate the accuracy and efficiency of the inverse Laplace
transform by looking at the following three typical and oscillating
decaying functions

f1(t) = J3(2t)H (t); f2(t) = e−2t cos(3t)H (t);

f3(t) = e−2t sin(3t)H (t). (A1)

The Laplace transform of these functions are (Williams 1973;
Bracewell 1978),

F1(s) = (
√

s2 + 4 − s)3

8
√

s2 + 4
; F2(s) = s − 2

(s + 2)2 + 9
;

F3(s) = 3

(s + 2)2 + 9
. (A2)

To carry out the inverse Laplace transform of eq. (A1), we apply
eq. (23) with N = 60 as suggested by Honig & Hirdes (1984).
While the other two parameters (κ and T) are optimally found in
the algorithm, we use the ε-algorithm and curve fitting method
simultaneously to accelerate the convergence of the Fourier series
expansion. Our code was written in Matlab R© R2014b on a macbook
pro laptop with 2.3 GHz Intel Core i5 processor and 4GB 1333 MHz
DDR3 ram platform. The decaying functions in eq. (A1) versus time
are plotted in Fig. 2 and are compared with the results obtained via
the numerical Laplace inverse transform algorithm of eq. (A2).
The results indicate that the exact and numerical solutions are in
good agreement for these decaying functions. While the maximum
relative error for the Bessel function f1 is about 10−8, the relative
errors for f2 and f3 are about 4.1 × 10−4 and 1.7 × 10−3. It is
observed from Fig. A1 that the maximum relative error for f2 and f3

occurs at the starting time and it decays to zero as the magnitude of
the functions goes to zero. In addition, for each decaying function,
the runtime for 100 discrete time points is also calculated. It is
observed that for the Bessel function f1, the calculation time was
1.03 s while for functions f2 and f3, the runtimes were 0.79 and 0.81
s, respectively. The relative errors and the presented computational
time demonstrate the accuracy and efficiency of the inverse Laplace
transform algorithm. In the examples presented in this paper, the
same procedure as discussed above is used for the numerical inverse
Laplace transform.
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Figure A1. Comparison of the present numerical inverse Laplace transform algorithm based on Honig & Hirdes (1984) with the exact solutions for three
different oscillating decaying functions. The inset shows the relative percentage error (η) of each function f(t) versus dimensionless time t.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Figure S7. Surface deformation versus normalized time (from 0 to
4.5) due to a strike-slip fault in a viscoelastic TIV half-space. The
top row shows the viscoelastic deformation on the surface versus
time and the bottom row shows the difference between the elastic
and viscoelastic deformations versus time.
Figure S8. Surface deformation versus normalized time (from 0 to
4.5) due to a dip-slip fault in a viscoelastic TIV half-space. The top
row shows the viscoelastic deformation on the surface versus time

and the bottom row shows the difference between the elastic and
viscoelastic deformations versus time.
Figure S9. Surface deformation versus normalized time (from 0
to 4.5) due to a tensile fault in a viscoelastic TIV half-space. The
top row shows the viscoelastic deformation on the surface versus
time and the bottom row shows the difference between the elastic
and viscoelastic deformations versus time (http://gji.oxfordjournals.
org/lookup/suppl/doi:10.1093/gji/ggv115/-/DC1)
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directed to the corresponding author for the article.
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