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Abstract: The surface impedance boundary conditions (SIBCs) for the tangential component of
the electric field and normal component of the magnetic field on the smooth curved surface of a
homogeneous non-magnetic conductor are derived in time- and frequency-domain. Scale factors
for the basic variables are introduced in such a way that, a small parameter, equal to the ratio of
the penetration depth and the body’s characteristic size, appears in the dimensionless Maxwell’s
equations for the conducting region. The perturbation method is then used to represent the SIBCs
in the form of power series in this small parameter and the first four terms of the expansions are
derived. The zero-order, first-order, second-order and third-order terms of the expansions are the
solution of the problem in the perfect electrical conductor limit, the Leontovich approximation,
the Mitzner approximation and in the high order approximation (referred to as Rytov’s
approximation), respectively. Therefore, the accuracy of the proposed conditions exceeds the
accuracy of the SIBC for planar surfaces (Leontovich’s approximation) that are usually used in
the time-domain analysis, by two orders of magnitude. In Part II of this paper, the formulation of
the SIBCs developed here in conjunction with a boundary element method is demonstrated and
applied to the problem of transient skin and proximity effect problems in cylindrical conductors.

1 Introduction

In most electromagnetic problems the space under con-
sideration consists of several media. The electromagnetic
field governing equations written for each region are linked
by the boundary conditions involving values on both sides
of the interface. Thus one has to solve the problem for all
media simultaneously even if the main focus of interest is on
only one of them. However, in some particular cases the
number of regions involved in the solution procedure may
be reduced. A classical example is elimination of a body of
infinite conductivity or perfect electrical conductor (PEC)
from the computational space by enforcing the tangential
electric field or normal magnetic flux to be equal to zero at
the boundary (so-called PEC boundary condition):

~n�~E
��

interface
¼ 0; ~n �~B

��
interface
¼ 0 ð1Þ

In practice, any real material has finite conductivity so that
the perfect electrical conductor is no more than a model of a
good conductor in which the skin depth is assumed to be
zero. Although the PEC condition is very attractive for
implementation, the diffusion of the electromagnetic field

into conductors may be neglected only in a limited number
of cases. For this reason, the application of the PEC limit is
of limited scope. For example, the electromagnetic penetra-
tion depth d in copper at an incident frequency of 1MHz is
about 2� 10�4 m. Is this skin layer thin or thick?
Obviously, the question is meaningful only if another
quantity is specified so that the two can be compared. One
quantity that may be used for this purpose is the
characteristic size D of the conductor. In our example, the
penetration depth in the conductor is definitely not small if
the conductor’s thickness equals 5� 10�5 m (a typical
thickness in printed circuit board technology) and the PEC
condition may not be applied in this case. One may expect
that the use of the PEC condition will lead to errors
proportional to d/D.

Since the PEC is a limiting case of a real conductor, it is
natural to expect that the PEC condition is also a particular
case of a more general approximate boundary condition
relating electromagnetic quantities at the conductor/di-
electric interface. Existence of this approximate boundary
condition follows directly from Snell’s law of refraction: if
the electromagnetic wave propagates from a low conduc-
tivity medium to a high conductivity medium, the reflection
angle is about 90 degrees and is practically independent of
the angle of incidence. Suppose the conducting region is so
large that the wave attenuates completely inside the region.
Then the electromagnetic field distribution in the conduc-
tor’s skin layer can be described as a damped plane wave
propagating into the depth of the conductor, normal to its
surface. In other words, the behavior of the electromagnetic
field in the conducting region may be assumed to be known
a priori as in the case of the PEC. The electromagnetic field
is continuous across the real conductor’s surface so the
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intrinsic impedance of the wave remains the same at the
interface. Therefore, the ratio Ex=Hy at the xy-plane of the
dielectric/conductor interface is assumed to be equal to
the intrinsic impedance of the plane wave propagating in
the conductor in the positive z-direction:

Ex

Hy

����
interface

¼ Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

josourcemcond

scond þ josourceEcond

s �����
s�oE

� 1þ j
2

osourcemcondd; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

osourcescondmcond

s ð2Þ

The relationship in (2) does not depend on coordinates and
therefore the surface impedance is assumed to be constant
over the conductor’s surface.

The surface relationship in (2), taking into account the
parameters of the conductor’s material and the source,
contains all necessary information about the field distribu-
tion in the conductor’s volume. Thus it may be used as a
boundary condition to the governing equations for the
dielectric space thereby excluding the conductor from the
region of solution. This is the basic idea of the surface
impedance concept. Historically (2) is associated with the
name of Leontovich although he proposed a more accurate
condition with first order correction terms that accounted
for the curvature of the interface [1]. The actual term
‘surface impedance’ was introduced by Schelkunoff [2] by
analogy with the ratio of voltage and current in circuit
theory. The surface impedance vanishes as the conductivity
tends to infinity and the skin depth tends to zero. In this
limiting case (2) reduces to the PEC condition. The presence
of d in (2) leads us to expect that the approximation error of
Leontovich’s condition should be of the order of magnitude

d2=D2.
From the point of view of mathematical physics, the

surface impedance concept means that in the skin layer the
variation of the field along the surface is assumed small
compared to the variation in the normal direction. Thus the
field derivatives in the directions tangential to the surface
may be neglected compared to the normal derivative and
the original 3-dimensional equation of the field diffusion
into the conductor is reduced to a 1-dimensional problem
[3]. This is frequently referred to as the skin effect
approximation [4]. Note that the same approximation is
at the root of the theory of boundary layers in fluid
mechanics. In contrast to (1), which is a Dirichlet boundary
condition, (2) can be considered as an additional equation
relating different unknowns at the interface.

Although the idea is rather transparent, several genera-
tions separate Snell’s laws and the surface impedance
concept, which has been formulated only in the late 1930 s
when the then newly emerging radio technology required
the development of a theory of propagation of electro-
magnetic waves of an antenna over the earth’s surface [5, 6].
An analytic solution for the particular case of a vertical
dipole radiating over the conducting half-space was
obtained by Sommerfeld [7], but the general problem
involving layered media separated by curved interfaces has
not been solved so far. Leontovich proposed a different
approach, namely to restrict the general problem by
considering the practically important air region using the
surface impedance boundary condition (SIBC) at the air/
earth interface. Of course, the earth is not a good conductor
in the common sense. However, the characteristic dimen-
sions in this class of electromagnetic problems are large
enough for attenuation of the wave in the earth so that the
surface impedance technique may be applied.

The first rigorous mathematical analysis has been done
by Rytov who sought the solution in the form of power

series in the skin depth d [8]: ~E ¼
P1

i¼0 d
i~eið~rÞ exp f Z=dð Þ½ �;

~H ¼
P1

i¼0 d
i~hið~rÞ exp f Z=dð Þ½ � where Z is the co-ordinate

directed into the conductor normal to its surface,~ei and~hi
are unknown coefficients and f is an unknown function.
Substituting the expansions in Maxwell’s equations and
equating the coefficients of equal powers of d, the solutions
for~ei,~hi and f are obtained. It is easy to see that the Rytov
expansions generalise the solution of the 1-dimensional
problem of the magnetic field diffusion into the conductor
normal to its surface. It is important to emphasise that this
solution must be known a priori. The first order terms of the
expansions (actually, first non-zero terms) gave Leontovi-
ch’s condition. Thus improvements in Leontovich’s condi-
tion can be obtained by derivation of the next higher
order terms of the expansions. Rytov also stated the
problems of calculation of the surface impedance at curved
interfaces and non-homogeneous conductors. Unfortu-
nately, Rytov’s contribution is not as well known as
Leontovich’s work.

A further improvement of practical importance has been
introduced by Mitzner, [9] who developed an SIBC, known
by his name, to any smooth conducting surface by

introducting terms of the order ðd=DÞ2, allowing for the
conductor’s curvature. Although Mitzner derived the SIBC
in his own way, calculation of the second order terms in
Rytov’s expansions leads to the same result. A fundamen-
tally different case is the vicinity of a conducting edge where
the magnetic field distribution is singular and the diffusion
may not be described by a one-dimensional equation.
Numerous semi-empirical attempts have been made to
modify Leontovich’s condition near corners [10–13], but a
rigorous asymptotic solution was obtained using the
perturbation approach [14] where the field distribution
around a perfectly conducting edge is used as a boundary
condition to the 2-D or 3-D problem for the field inside the
real conductor to derive the first-order SIBC near the edge.
Another family of surface impedance boundary conditions
has been developed for layered structures [15–18] but its
application area is limited to high frequency problems and
therefore is outside the scope of this paper.

The surface impedance concept can also be used in
transient problems, when, for instance, the current pulse
duration is so short that the field has no time to diffuse deep
into the conductor and remains concentrated near the
surface [19]. There are two basic approaches to solve
transient problems: (a) by obtaining the solution in the
frequency domain for the time-harmonic exciting source
and using inverse Fourier transform techniques to calculate
the required transient data and (b) by formulating the
problem directly in the time domain. The second method is
gaining acceptance with the advent of fast computers.
Moreover, in some cases the time domain approach is
more natural from a physical point of view as it takes place
in nonlinear problems. In the general case neither magnetic
nor electric fields in the conductor with nonlinear properties
of materials are actually harmonic so that use of models
based on a single frequency is not feasible and recently
time domain SIBCs for nonlinear problems have been
developed [20].

The time domain form of Leontovich’s condition is
obtained from (2) using the Laplace transform:

Exjinterface¼ Z�t Hy

��
interface; Ztjs�oE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= 2pst3ð Þ

q
ð3Þ
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where the sign ‘�’ denotes a time domain convolution
product.

Surprisingly, the low order SIBC (3) is widely used to the
present day despite the fact that higher approximation order
allows extension of the range of problems for which the
surface impedance concept can be applied.

The purpose of this paper is a rigorous derivation and
analysis of the surface impedance boundary conditions of
high order of approximation for any time-dependence of
the electromagnetic source in the low frequency case. In this
work we generalise the Rytov approach by using the small
parameter based on the duration of the incident pulse of an
arbitrary shape. In this case not only the distribution of the
field inside the conductor normal to its surface may not be
known a priori unlike the time harmonic case considered in
the Rytov work, but even the 1-D equation of diffusion
must be derived as part of the solution process. It extends
the application area of the proposed approach allowing
rigorous derivation of the SIBCs for non linear and non-
homogeneous conductors. The following basic steps are
developed below:

1. We introduce the dimensionless variables related to the
boundary layer near the body’s surface in such a way, that
the small parameter p, equal to the ratio of the transient
electromagnetic penetration depth and the characteristic size
of the body, appears explicitly in the governing differential
field equations for the conducting region and in the surface
integral equations for free space (Sections 3 and 4).

2. We represent the electric and magnetic fields inside the
body as a power series in the small parameter p. The
expansions are substituted into the equations for the initial
functions and the 1-D reduced problems for the terms of
expansions are obtained (Section 5).

3. From the formulations for the terms of the order p, p2

and p3 we obtain the tangential component of the magnetic
field and the normal component of the electric field on the
surface of the body in the Laplace domain (Section 6).

4. By using the inverse Laplace transform, the time domain
SIBC of the order p, p2 and p3 are obtained (Section 7).

2 Statement of the problem and basic equations

Consider a homogeneous body of finite conductivity
ðE1; m1; s1Þ, surrounded by a non-conductive medium
ðE2; m2; s2 ¼ 0Þ. The parameters of the conducting material
are assumed to be constant. Let the characteristic dimension
of the problem be small compared with the wavelength of

the incident electromagnetic field. Thus the electric field ~E
and magnetic field ~H inside the body can be described by
Maxwell’s equations neglecting the displacement current
density:

r�~E ¼ �m1
@~H
@t

ð4Þ

r� ~H ¼ s~E ð5Þ

r � ~H ¼ 0 ð6Þ
The exact boundary conditions at the surface of the
conductor are

~n� ~H
��
cond¼~n� ~H

��
diel; m1~n � ~H

��
cond¼ m2~n � ~H

��
diel;

~n�~E
��
cond¼~n�~E

��
diel; ~n �~E

��
cond¼~n �~E

��
diel

ð7Þ

Let the time variation of the incident field be such that the
electromagnetic penetration depth d into the body remains

small compared with the characteristic dimension D of the
surface of the body

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t=sm1

p
� D ð8Þ

where t is the ratio 2/o in the case of time-harmonic fields
or the incident pulse duration in the case of transient
sources. The presence of the condition (8) makes it possible
to transform (4)–(6) by using asymptotic expansion
techniques with the purpose of deriving the normal
components of the magnetic field and the tangential
components of the electric field at the surface of the body
in explicit form.

3 Local co-ordinates

Following Mitzner’s approach of deriving the SIBC with
allowance for the curvature of the body’s surface, we re-
write (4)–(6) in the local quasi-spherical orthogonal curvi-
linear system ða1; a2; ZÞ, related to the body surface (Fig. 1):

@ eak Hakð Þ
@Z

�
@ eZHZ
� �
@ak

¼ �1ð Þ3�keak eZsEx3�k
; k ¼ 1; 2;

X2
i¼1
�1ð Þi @ eai Haið Þ

@aa3�i

¼ ea1ea2sEZ

ð9Þ

@ eak Eakð Þ
@Z

�
@ eZEZ
� �
@ak

¼ �1ð Þkeak eZm1
@Hx3�k

@t
; k ¼ 1; 2;

X2
i¼1
�1ð Þ3�i @ eai Eaið Þ

@aa3�i

¼ ea1ea2m1
@HZ

@t

ð10Þ

X2
i¼1

@ eai eZHai

� �
@aa3�i

þ
@ ea1ea2HZ
� �

@Z
¼ 0 ð11Þ

where ea1 ; ea2 ; eZ are the Lame coefficients. The co-ordinates
a1 and a2 are defined as angles whereas the co-ordinate Z is
defined as the distance measured from the surface to a
current point inside the body. The Lame coefficients of the
co-ordinates ða1; a2; ZÞ are written in the form:

ea1 ¼ d1 � Z; ea2 ¼ d2 � Z; eZ ¼ 1 ð12Þ

where dk; k ¼ 1; 2, are the local radii of curvature of the
corresponding co-ordinate line.

In analysis of the skin effect problem using the pertur-
bation technique, it is natural to perform derivations in the
system where all co-ordinates are of the same dimension-
ality. For this purpose we replace the co-ordinates a1 and a2
(angles) by x1 and x2 (distances) (Fig. 1). The characteristic
lengths associated with the co-ordinates xi and Z are D and

�2
�1

�2

�1

d2

d1

�

Fig. 1 Local orthogonal curvilinear co-ordinate systems related to
the surface
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d, respectively. The two co-ordinate systems are related as
follows:

x1 ¼ d1a1; x2 ¼ d2a2 ð13Þ
Equations (9)–(11) with the co-ordinates in (13) are written
in the form

@Hxk

@Z
� dk

dk � Z
@HZ

@xk
� Hxk

dk � Z
¼ ð�1Þ3�ksEx3�k

; k ¼ 1; 2;

X2
i¼1
�1ð Þi d3�i

d3�i � Z
@Hxi

@x3�i
¼ sEZ

ð14Þ

@Exk

@Z
� dk

dk � Z
@EZ

@xk
� Exk

dk � Z
¼ ð�1Þkm1

@Hx3�k

@t
; k ¼ 1; 2;

X2
i¼1
�1ð Þ3�i d3�i

d3�i � Z
@Exi

@x3�i
¼ m1

@HZ

@t

ð15Þ

@HZ

@Z
þ
X2
i¼1

di

di � Z
@Hxi

@xi
¼ HZ

X2
i¼1

di � Zð Þ�1 ð16Þ

4 Dimensionless variables

Following perturbation theory methods, we introduce the
characteristic scale factors for the variables of the problem.
The choice of the scale factors for co-ordinates x1; x2; Z is
evident, namely the characteristic size D ¼ minðd1; d2Þ of
the conductor’s surface for x1 and x2, and the penetration
depth d for Z. The quantity t was introduced in (8) as the
ratio 2/o in the case of time-harmonic fields or the incident
pulse duration in the case of transient sources and is
therefore the natural scale factor for time. We denote for
now the scale factors for the electric and magnetic fields as
E� and H �, respectively.

Let us now switch to the following non-dimensional
variables:

~xk ¼ xk=D; ~t ¼ t=t; ~Z ¼ Z=d; ~E ¼ E=E�; ~H
¼ H=H � ð17Þ

Here and below, the sign ‘B’ denotes non-dimensional
quantities.

Substitution of (17) into (14)–(16) gives

H�

d
@ ~Hxk

@~Z
� d

D
dk

dk � d~Z
@ ~HZ

@~xk

�
~Hxk

dk � d~Z

� �

¼ �1ð Þ3�kE�s~Ex3�k
; k ¼ 1; 2

ð18aÞ

H�

D

X2
i¼1
�1ð Þi d3�i

d3�i � d~Z
@ ~Hxi

@~x3�i

¼ sE�~EZ ð18bÞ

E�

D
D
d
@~Exk

@~Z
� dk

dk � d~Z
@~EZ

@~xk

�
~Exk

dk � d~Z

� �

¼ �1ð Þkm1
H�

t
@ ~Hx3�k

@~t
; k ¼ 1; 2

ð19aÞ

E�

D

X2
i¼1
�1ð Þ3�i d3�i

d3�i � d~Z
@~Exi

@~x3�i

¼ m1
H �

t
@ ~HZ

@~t
ð19bÞ

D
d
@ ~HZ

@~Z
þ
X2
i¼1

di

di � d~Z
@ ~Hxi

@~xi

¼ D ~HZ

X2
i¼1

di � d~Zð Þ�1 ð20Þ

Note that not all scale factors in (18)–(20) are actually
independent. Indeed, from (8) it follows that

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðsm1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðsm1D2Þ

q
D ¼ pD;

p ¼ d=D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðsm1D2Þ

q
� 1

ð21Þ

where the parameter p is proportional to the ratio of the
penetration depth and characteristic size of the conductor’s
surface. The relation between E� and H� follows from (19):

E� ¼ m1D
t

H � ð22Þ

Therefore, the total number of basic scale factors is 3, for
example: t, D and H�. The practical selection of the scale
factors should be based on the input data of a given
problem [21]. Sometimes the total current is used as input
data. In such cases it is natural to use the characteristic
current I� as one of the basic scale factors instead of E� or
H �. The relation between I� and H� can be obtained using
the Biot-Savart law

~H ¼ 4pð Þ�1
Z

L

~I � ~R=R3
� �

dl ð23Þ

Transfer to the non-dimensional variables in (23) gives:

~~HH� ¼ I� 4pDð Þ�1
Z

L

~~I � ~~R=~R3
� �

d~l ð24Þ

Thus

H � ¼ I�= 4pD�ð Þ ð25Þ

Substitution of (21)–(22) into (18)–(19) gives

p
@ ~Hxk

@~Z
� p2 ~Hxk

~dk � p~Z
� p2~dk

~dk � p~Z

@ ~HZ

@~xk

¼ ð�1Þ3�k ~Ex3�k
; k ¼ 1; 2;

p2
X2
i¼1
�1ð Þi

~d3�i

~d3�i � ~Z

@ ~Hxi

@~x3�i

¼ ~EZ

ð26Þ

@~Exk

@~Z
� p~Exk

~dk � p~Z
� p~dk

~dk � p~Z

@~EZ

@~xk

¼ ð�1Þkp
@ ~Hx3�k

@~t
; k ¼ 1; 2;

p2
X2
i¼1
�1ð Þ3�i

~d3�i

~d3�i � ~Z

@~Exi

@~x3�i

¼ @
~HZ

@t

ð27Þ

@ ~HZ

@~Z
� p ~HZ

X2
i¼1

1

~di � p~Z
¼ �p

X2
i¼1

~di

~di � p~Z

@ ~Hxi

@~xi

ð28Þ

where ~dk ¼ dk=D; k ¼ 1; 2. Equations (26)–(28) do not
contain the scale factors for the electric and magnetic fields
anymore. The remaining scale factors for the co-ordinates
are included only in the form of the ratio d/D which is the
small parameter of the problem.

5 Expansions in the small parameter

We now apply Laplace’s transform following the rule

ef ðesÞ ¼ R10 ef ðetÞ expð�esetÞdet. Here f denotes an arbitrary
function. In the Laplace-domain, (26)–(28) are written

178 IEE Proc.-Sci. Meas. Technol., Vol. 152, No. 4, July 2005



in the form:

p
@ ~H xk

@~Z
� p2 ~H xk

~dk � p~Z
� p2~dk

~dk � p~Z

@ ~H Z

@~xk

¼ ð�1Þ3�k ~Ex3�k
; k ¼ 1; 2;

p2
X2
i¼1
�1ð Þi

~d3�i

~d3�i � ~Z

@ ~Hxi

@~x3�i

¼ ~EZ

ð29Þ

@~Exk

@~Z
� p~Exk

~dk � p~Z
� p~dk

~dk � p~Z

@~EZ

@~xk

¼ ð�1Þkp~s ~H x3�k
; k ¼ 1; 2;

p2
X2
i¼1
�1ð Þ3�i

~d3�i

~d3�i � ~Z

@~Exi

@~x3�i

¼ ~s ~HZ

ð30Þ

@ ~HZ

@~Z
� p ~HZ

X2
i¼1

1

~di � p~Z
¼ �p

X2
i¼1

~di

~di � p~Z

@ ~Hxi

@~xi

ð31Þ

Since the parameter p is small, we represent the functions,
for which the solutions are sought, in the form of
asymptotic expansions in the parameter p:

~~H ¼
X1
m¼0

pm~~Hm;
~~E ¼

X1
m¼0

pm~~Em ð32Þ

The following functions can also be represented as
expansions in the small parameter p:

1

~dk � p~Z
¼ 1

~dk
þ p

~Z
~d2

k

þ p2 ~Z2

~d3
k

þ Oðp3Þ

~dk

~dk � p~Z
¼ 1þ p

~Z
~dk
þ p2 ~Z2

~d2
k

þ Oðp3Þ
ð33Þ

Substituting the expansions (32) and (33) into (29)–(31)
and equating the coefficients of equal powers of p, the
following equations for the expansion coefficients are
obtained:

m¼ 0:

ð~~E0Þx1 ¼ ð
~~E0Þx2 ¼ ð

~~E0ÞZ ¼ ð
~~H0ÞZ ¼ 0 ð34Þ

m¼ 1:

@ð~~E1Þxk

@~Z
¼ ð�1Þk~sð~~H 0Þx3�k

k ¼ 1; 2 ð35aÞ

ð~~E1Þxk
¼ ð�1Þk

@ð~~H0Þx3�k

@~Z
k ¼ 1; 2 ð35bÞ

X2
i¼1
ð�1Þi

@ð~~E1Þx3�k

@~xi

¼ ~sð~~H1ÞZ ð35cÞ

@ð~~H1ÞZ
@Z

¼ �
X2
i¼1

@ð~~H 0Þxi

@xi
ð35dÞ

ð~~E1ÞZ ¼ 0 ð35eÞ

m¼ 2:

@ð~~E2Þxk

@~Z
¼
ð~~E1Þxk

~dk
þ ð�1Þk~sð~~H 1Þx3�k

k ¼ 1; 2 ð36aÞ

ð~~E2Þxk
¼ ð�1Þk

@ð~~H1Þx3�k

@~Z
�
ð~~H 0Þx3�k

~d3�k

2
4

3
5 k ¼ 1; 2 ð36bÞ

X2
i¼1
ð�1Þi

@ð~~E2Þx3�i

@~xi

þ ~Z
~di

@ð~~E1Þx3�i

@~xi

2
4

3
5 ¼ ~sð~~H 2ÞZ ð36cÞ

ð~~E2ÞZ ¼
X2
i¼1
ð�1Þ3�i @ð~H0Þx3�i

@xi
ð36dÞ

@ð~~H2ÞZ
@~Z

¼ ð~~H 1ÞZ
X2
i¼1

~d�1i �
X2
i¼1

@ð~~H1Þxi

@~xi

þ ~Z
~di

@ð~~H0Þxi

@~xi

2
4

3
5

ð36eÞ
m¼ 3:

@ð~~E3Þxk

@~Z
¼
ð~~E2Þxk

~dk
þ ~Z
ð~~E1Þxk

~d2
k

þ
@ð~~E2ÞZ
@~xk

þ ð�1Þk~sð~~H2Þx3�k

k ¼ 1; 2

ð37aÞ

ð~~E3Þxk

¼ ð�1Þk
@ð~~H2Þx3�k

@~Z
�
ð~~H 1Þx3�k

~d3�k
� ~Z
ð~~H 0Þx3�k

~d2
3�k

�
@ð~~H 1ÞZ
@~x3�k

2
4

3
5

k ¼ 1; 2

ð37bÞ

X2
i¼1
ð�1Þi

@ð~~E3Þx3�i

@~xi

þ ~Z
~di

@ð~~E2Þx3�i

@~xi

þ ~Z2

~d2
i

@ð~~E1Þx3�i

@~xi

2
4

3
5

¼ ~sð~~H 3ÞZ ð37cÞ

ð~~E3ÞZ ¼
X2
i¼1
ð�1Þ3�i @ð~~H 1Þx3�i

@~xi

þ ~Z
~di

@ð~~H 0Þx3�i

@~xi

2
4

3
5 ð37dÞ

@ð~~H 3ÞZ
@~Z

¼ ð~~H2ÞZ
X2
i¼1

~d�1i þ ~Zð~~H 1ÞZ
X2
i¼1

~d�2i

�
X2
i¼1

@ð~~H 2Þxi

@~xi

þ ~Z
~di

@ð~~H 1Þxi

@~xi

þ ~Z2

~d2
i

@ð~~H 0Þxi

@~xi

2
4

3
5

ð37eÞ

The procedure described above can be continued and the
equations for the following terms of expansions can be
derived. However, in the present paper we restrict ourselves
to four terms of the expansions (m¼ 3) and neglect the
terms of the order O(p4). Note that the use of higher order
SIBCs for practical computations is restricted, because one
has to compute (or a priori know) the principal curvatures
at every point.

The representation (32) has clear physical meaning,
namely:

(1) The zero-order terms of the expansions (32) give the
solution of the problem in so-called perfect electrical
conductor limit (PEC), in which the magnetic field diffusion
into the body is neglected.
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(2) The first-order terms describe the diffusion in the well-
known Leontovich approximation, in which the body’s
surface is considered as a plane and the field is assumed to
penetrate into the body only in the direction normal to the
body’s surface.

(3) The second-order terms provide a correction that takes
into account the curvature of the body’s surface, but the
diffusion is assumed to be only in the direction normal to
the surface as in the Leontovich approximation. This is
Mitzner’s approximation.

(4) The third-order terms and higher allow for the magnetic
field diffusion in directions tangential to the body’s surface.
This approximation will be referred as Rytov’s approxima-
tion.

Below, the problems described by (35)–(37) are solved
sequentially to derive the first-, second- and third-order
terms in explicit form.

6 Surface impedance boundary conditions in the
Laplace domain

6.1 Leontovich’s approximation
The first-order terms of the expansions of the electric and
magnetic fields at the body’s surface (Z¼ 0) can be
expressed directly from (35b) and (35c) as follows:

ð~E1Þbxk
¼ ð�1Þk

@ð~~H0Þx3�k

@~Z

������
~Z¼0

k ¼ 1; 2 ð38aÞ

ð~~H 1ÞbZ ¼
1

~s

X2
i¼1
ð�1Þi

@ð~~E1Þbx3�i

@~xi

ð38bÞ

Here and below, the superscript ‘b’ denotes quantities on
the surface of the conductor. The distribution of the

functions ð~~H 0Þxi
in the direction normal to the body’s

surface is described by the following 1-dimensional diffusion
equation obtained from (35a) and (35b):

@2ð~~H0Þxk

@~Z2
� ~sð~~H 0Þxk

¼ 0 k ¼ 1; 2 ð39Þ

Equation (39) must be supplemented by the following
conditions:

~Z ¼ 0 : ð~~H0Þxk
¼ ð~~H0Þbxk

; Z!1 : ð~~H 0Þxk
! 0 ð40Þ

The solution of (39) and (40) is written in the form:

ð~~H 0Þxk
¼ ð~~H 0Þbxk

exp �~Z
ffiffi
~s
p� �

; k ¼ 1; 2 ð41Þ

By substituting (41) into (38a) and (38b), the functions

ð~~E1Þbxk
and ð

~~~H1ÞbZ are obtained:

ð~~E1Þbxk
¼ ð�1Þ3�k

ffiffi
~s
p
ð~~H0Þbx3�k

; k ¼ 1; 2 ð42aÞ

ð~~H 1ÞbZ ¼
1ffiffi
~s
p
X2
i¼1

@ð~~H 0Þbxi

@~xi

ð42bÞ

Since the zero-order terms of the expansions of the

functions ~E
b

xi and
~H

b

Z are zero, the Leontovich order SIBC

in the Laplace domain can be written from (42a) and (42b)

as follows:

~E
b

xk
¼pð�1Þ3�k

ffiffi
~s
p
ð~~H0Þbx3�k

þ Oðp2Þ

¼pð�1Þ3�k
ffiffi
~s
p

~H
b

x3�k
þ Oðp2Þ k ¼ 1; 2

ð43aÞ

~H
b

Z ¼
pffiffi
~s
p
X2
i¼1

@ð~~H 0Þbxi

@~xi

þ Oðp2Þ

¼ pffiffi
~s
p
X2
i¼1

@ð ~HÞbxi

@~xi

þOðp2Þ ð43bÞ

Note that (42a) and (42b) can also be obtained by
integrating (35a) and (35d) over the boundary layer with
respect to Z:

ð~~E1Þxk

����
~Z¼1

~Z¼0
¼ �ð~~E1Þbxk

¼ ð�1Þk~s
Z 1
0

ð~~H 0Þx3�k
d~Z

k ¼ 1; 2

ð44aÞ

ð~~H1ÞZ
����
~Z¼1

~Z¼0
¼ �ð~~H 1ÞbZ ¼ �

X2
i¼1

@

@~xi

Z 1
0

ð~~H 0Þxi
d~Z ð44bÞ

It is a simple matter to verify that substitution of (41) into
(44a) and (44b) leads to (43a) and (43b).

6.2 Mitzner’s approximation

The functions ð~~E2Þbxk
and ð~~H 2ÞbZ can be derived from (36b)

and (36c) as follows:

ð~~E2Þbxk
¼ ð�1Þk

@ð~~H1Þx3�k

@~Z

������
~Z¼0

�
ð~~H 0Þbx3�k

~d3�k

2
64

3
75

k ¼ 1; 2

ð45aÞ

ð~~H2ÞbZ ¼
1

s

X2
i¼1
ð�1Þi

@ð~~E2Þbx3�i

@~xi

ð45bÞ

The diffusion equation for the functions ð~~H1Þx1 can be

obtained from (36a) and (36b) and written in the following
form:

@2ð~~H 1Þx3�k

@~Z2
� ~sð~~H 1Þx3�k

¼ ~d
�1
3�k

@ð~~H0Þx3�k

@~Z

þ ð�1Þk~d�1k ð
~~E1Þxk

; k ¼ 1; 2

ð46Þ

Note that the right-hand side of (46) is not zero unlike the

diffusion equation (39) for ð~~H0Þx1 in the Leontovich

approximation. Taking into account (41) and (35b), one
obtains:

ð�1Þkð~~E1Þxk
¼
@ð~~H0Þx3�k

@~Z
¼ �

ffiffi
~s
p
ð~~H 0Þbx3�k

expð�~Z
ffiffi
~s
p
Þ

k ¼ 1; 2

ð47Þ
Substitution of (47) into (46) yields:

@2ð~~H1Þx3�k

@~Z2
� ~sð~~H 1Þx3�k

¼ �~d12
ffiffi
~s
p
ð~~H 0Þbx3�k

expð�~Z
ffiffi
~s
p
Þ k ¼ 1; 2

ð48Þ
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where ~d12 ¼
P2
i¼1

~d�1i . Equation (48) must be supplemented

by the following conditions:

~Z ¼ 0 : ð~~H 1Þxk
¼ ð~~H 1Þbxk

ð~x1; ~x2;~sÞ;

~Z!1 : ð~~H 1Þxk
! 0 k ¼ 1; 2

ð49Þ

The solution of (48) and (49) is written in the form

ð~~H 1Þx3�k
¼ ð~~H1Þbx3�k

þ ~Z
2

~d12ð
~~H0Þbx3�k

	 

expð�~Z

ffiffi
s
p
Þ

k ¼ 1; 2

ð50Þ

By substituting (50) into (45), the functions ð~~E2Þb ð
~~H2ÞbZ are

finally obtained:

ð~~E2Þbxk
¼ ð�1Þ3�k

ffiffi
~s
p
ð~~H1Þbx3�k

þ 1

2
~d�1x3�k

� ~d�1k

� �
ð~~H0Þbx3�k

� �

k ¼ 1; 2

ð51aÞ

ð~~H 1ÞbZ ¼
1ffiffi
~s
p
X2
i¼1

@ð~~H1Þbxi

@~xi

þ 1

2~s

X2
i¼1

~d�1i � ~d�13�i

� � @ð~~H 0Þbxi

@~xi

ð51bÞ

Another way to obtain the formulae in (51) is by
integration of (36a) and (36e) over the boundary layer as
follows:

ð~~E2Þbxk
¼ �~d�1k

Z 1
0

ð~~E1Þxk
d~Z

þ ð�1Þ3�ks
Z 1
0

ð~~H 1Þx3�k
d~Z

k ¼ 1; 2

ð52aÞ

ð~~H 1ÞbZ ¼�
X2
i¼1

~d�1i

Z 1
0

ð~~H 1ÞZd~Z

þ
X2
i¼1

@

@~xi

Z 1
0

ð~~H1Þxi
þ ~d�1i ~Zð~~H0Þxi

	 

d~Z

ð52bÞ

Substitution of (52) into (45) leads to (51).

By combining (43) and (51) the Mitzner order SIBCs in
the Laplace domain are written in the following form:

�~E
b
xk
¼ð�1Þ3�kp

ffiffi
~s
p
ð~�~H0Þbx3�k

þ
�

p ð~�~H 1Þbx3�k

	

þ 1

2
ffiffi
~s
p ~d�13�k � ~d�1k

� �
ð~�~H0Þbx3�k


�
þ Oðp3Þ

¼ð�1Þ3�kp
ffiffi
~s
p

1þ p

2
ffiffi
~s
p ~d�13�k � ~d�1k

� �� �
~�~H

b

x3�k

þ Oðp3Þ k ¼ 1; 2

ð53aÞ

�~H
b
Z ¼

pffiffi
~s
p
X2
i¼1

@

@~xi

�~H 0

� �b

xk

�

þ p �~H1

� �b

xi

þ 1

2
ffiffi
~s
p ~d�1i � ~d�13�i

� � �~H 0

� �b

xi

	 
�
þ Oðp3Þ

¼ pffiffi
~s
p
X2
i¼1

1þ pffiffi
~s
p

� �
~d�1i � ~d�13�i

� � @ �~H
b
xi

@~xi

þ Oðp3Þ

ð53bÞ

6.3 Rytov’s approximation
From (37b) and (37c) one obtains:

ð~~E3Þbxk
¼ ð�1Þk

@ð~~H 2Þx3�k

@~Z

������
~Z¼0

�
ð~~H 1Þbx3�k

~d3�k
�
@ð~~H 1ÞbZ
@~x3�k

2
64

3
75

k ¼ 1; 2

ð54aÞ

ð~~H3ÞbZ ¼
1

~s

X2
i¼1
ð�1Þi

@ð~~E3Þbx3�i

@~xi

ð54bÞ

The distribution of the functions ð~~H2Þxi
over the boundary

layer is described by the following 1-dimensional problem
obtained from (37a) and (37b):

@2ð~�~H2Þx3�k

@~Z2
� ~sð~�~H 2Þx3�k

¼ ð�1Þ
k

~dk
ð~�~E2Þxk

þ ð�1Þ
k

~d2
k

~Zð~�~E1Þxk

þ ð�1Þk
@ð~�~E2ÞZ
@~xk

þ 1

~d3�k

@ð~�~H 1Þx3�k

@~Z
þ
ð~�~H0Þx3�k

~d2
3�k

þ ~Z
~d2
3�k

@ð~�~H 0Þx3�k

@~Z
þ
@2ð~�~H 1ÞZ
@~x3�k@~Z

k ¼ 1; 2

ð55aÞ

~Z ¼ 0 : ð~~H 2Þxk
¼ ð~~H 2Þbxk

ð~x1; ~x2;~sÞ;

~Z!1 : ð~~H 2Þxk
! 0

ð55bÞ

Substituting the solution of the problem in (55) into (54)
and combining the result with (53), the Rytov order SIBC in
the Laplace domain is written in the following form (details
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of this derivation are given in the Appendix):

~E
b

xk
¼ð�1Þ3�k

ffiffi
~s
p

�
(

p þ p2ffiffi
~s
p

~dk � ~d3�k

2~dk
~d3�k

þ p3

~s
3~d2

k � ~d2
3�k � 2~dk

~d3�k

8~d2
k
~d2
3�k

 !
~H

b

x3�k
:

þ p3

2~s
�
@2 ~H

b

x3�k

@x
2

k

þ
@2 ~H

b

x3�k

@x
2

3�k

þ 2
@2 ~H

b

xk

@x3�k@xk

0
@

1
A
)

þ Oðp4Þ k ¼ 1; 2

ð56aÞ

�~H
b
Z ¼

2ffiffi
~s
p
X2
i¼1

@

@~xi

p þ p2ffiffi
~s
p

~d3�i � ~di

2~di
~d3�i

 (

þp2

~s
3~d2

3�i � ~d2
i � 2~di

~d3�i

8~d2
i
~d2
3�i

!
�~H

b
xi

þ p2

2~s
�
@2 �~H

b
xi

@~x23�i

þ
@2 �~H

b
xi

@�x2i
þ 2

@2 �~H
b
x3�i

@�xi@�x3�i

 !)

þ Oðp4Þ

ð56bÞ

The conditions (56) can also be represented in the following
form:

~E
b

xk
¼ ð�1Þ3�k~s~F 3�k k ¼ 1; 2 ð57aÞ

~H
b

Z ¼
X2
i¼1

@~F i

@~xi

ð57bÞ

where the Laplace-domain functions ~F k ¼ ~F kð~x1; ~x2;~sÞ; k
¼ 1; 2; are as follows

~F 3�k ¼
pffiffi
~s
p ~H

b

x3�k
þ p2

~s

~dk � ~d3�k

2~dk
~d3�k

~H
b

x3�k

þ p3

~s
3~d2

k � ~d2
3�k � 2~dk

~d3�k

8~d2
k
~d2
3�k

~H
b

x3�k

þ p3

2~s3=2
�
@2 ~H

b

x3�k

@~x2k
þ
@2 ~H

b

x3�k

@~x23�k

þ 2
@2 ~H

b

xk

@~xk@~x3�k

0
@

1
A

þ Oðp4Þ
ð57cÞ

7 Surface impedance boundary conditions in the
time domain

Using the inverse Laplace transform, the following time-
domain functions Tm are derived [22]:

1ffiffi
~s
p , 1ffiffiffiffiffi

p~t
p ¼ ~T1ð~tÞ;

1

~s
, Uð~tÞ ¼ ~T2ð~tÞ;

1

~s3=2
, 2ffiffiffi

p
p

ffiffi
~t
p
¼ ~T3ð~tÞ

ð58Þ

where U(t) is the unit step function. Substituting (58) into
(57) and applying the Duhamel theorem, one obtains:

~Eb
xk
¼ ð�1Þ3�k @~F 3�k

~@t
ð59aÞ

~H
b
Z ¼

X2
i¼1

@~F i

@~xi

ð59bÞ

~F3�k ¼ p~T1 ~� ~H b
x3�k
þ p2

~dk � ~d3�k

2~dk
~d3�k

~T2 ~� ~H b
x3�k

þ p3 3
~d2

k � ~d2
3�k � 2~dk

~d3�k

8~d2
k
~d2
3�k

~T3 ~� ~Hb
x3�k

þ p3

2
~T3 ~� �

@2 ~Hb
x3�k

@~x2k
þ
@2 ~H b

x3�k

@~x23�k

þ 2
@2 ~Hb

xk

@~xk@~x3�k

 !

þ Oðp4Þ k ¼ 1; 2

ð59cÞ

where the sign ‘~�’ denotes a time convolution product with
respect to non-dimensional time.

The functions Fk describe the perturbation of the external
field surrounding the body owing to the field diffusion into
the body and dissipation of the energy by the body. The
first term on the right-hand side of (59c) gives the
contribution from the field diffusion in the direction normal
to the planar surface. The second and third terms give a
correction due to the curvature. The fourth term takes into
account the field diffusion in the directions tangential to the
planar surface. The functions Tm describe the evolution of
these processes in time.

The SIBC for the tangential electric field can be
represented in a more traditional form than (59a):

~Eb
xk
¼ð�1Þ3�kp ~̂T 1 ~� ~H b

x3�k
þ p

~dk � ~d3�k

2~dk
~d3�k

~̂T 2 ~� ~Hb
x3�k

(

þp2 3
~d2

k � ~d2
3�k � 2~dk

~d3�k

8~d2
k
~d2
3�k

~̂T 3 ~� ~H b
x3�k

þ p2

2
~̂T 3 ~� �

@2 ~H b
x3�k

@~x2k
þ
@2 ~Hb

x3�k

@~x23�k

þ 2
@2 ~Hb

xk

@~xk@~x3�k

 !)

þ Oðp4Þ k ¼ 1; 2

ð59dÞ

where

~̂T 1ð~tÞ ¼ �ð4pÞ�1=2~t�3=2; ~̂T 2ð~tÞ ¼ U 0ð~tÞ;
~̂T 3ð~tÞ ¼ p�1=2~t�1=2

ð60Þ

where U 0ð~tÞ is the delta-function.

Table 1: Quantities and appropriate scale factors

Quantity Scale factor Unit

@=@x1, @=@x2 D�1 m�1

E 4pð Þ�1I�t�1 Vm�1

H 4pð Þ�1I�D�1 Am�1

Tk , k¼1,2,3 ðsm0Þ�k=2tðk�1Þ=2

¼ pkt�1Dk

mks�1

dt (in time convolution product) t s
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Returning to dimensional variables in (59) gives (see
Table 1):

Eb
xk
¼ð�1Þ3�k

(
T̂1 � Hb

x3�k
þ dk � d3�k

2dkd3�k
T̂2 � H b

x3�k
:

þ 3d2
k � d2

3�k � 2dkd3�k

8d2
k d2

3�k

T̂3 � Hb
x3�k

þ T̂3

2
� �

@2H b
x3�k

@x2k
þ
@2H b

x3�k

@x23�k

þ 2
@2H b

xk

@xk@x3�k

 !)
þ . . .

k ¼ 1; 2

ð61aÞ

H b
Z ¼

X2
i�1

@

@xi

(
T1 � Hb

xi
þ d3�i � di

2did3�i
T2 � Hb

xi
:

þ 3d2
3�i � d2

i � 2did3�i

8d2
i d2

3�i

T3 � H b
xi

þ T3

2
�

@2Hb
xi

@x23�i

þ
@2Hb

xi

@x2i
þ 2

@2H b
x3�i

@xi@x3�i

 !)

þ . . .

ð61bÞ

where T1ðtÞ ¼ psmð Þ�1=2t�1=2; T2ðtÞ ¼ UðtÞ=ðsmÞ;
T3ðtÞ ¼ 2 ps3m3

� ��1=2
t�1=2; T̂1ðtÞ ¼ � 4ps=mð Þ�1=2t�3=2;

T̂2ðtÞ ¼ U ’ðtÞ=s; and T̂3ðtÞ ¼ ps3m
� ��1=2

t�1=2.
The time domain surface impedance boundary condi-

tions in (61) are the first main result of this work.
As a conclusion of this Section let us demonstrate how

the original frequency domain Mitzner’s and Rytov’s
conditions can be obtained from (56). Since the ratio 2/o
is the time scale factor in the time harmonic case, all we
have to do is to replace ~s by 2j as follows:

~_E
b
xk
¼ð�1Þ3�kpð1þ jÞ

(
1þ p

1� j
4

~d�13�k � ~d�1k

� �	
:

þ p2

2j
3~d2

k � ~d2
3�k � 2~dk

~d3�k

8~d2
k
~d2
3�k

#
~_H

b
x3�k

þ p3

2j
�
@2 ~_H

b
x3�k

@~x2k
þ
@2 ~_H

b
x3�k

@~x23�k

þ 2
@2 ~_H

b
xk

@~xk@~x3�k

 !)

þ Oðp4Þ k ¼ 1; 2

ð62Þ

where the sign ‘�’ denotes the amplitude of the function.
Substitution of the scale factors gives the condition in
dimensional form

_Eb
xk
¼ð�1Þ3�k 1þ jð ÞZo

(
1þ 1� j

4
d d�13�k � d�1k

� �	
:

þ d2

2j
3d2

k � d2
3�k � 2dkd3�k

8d2
k d2

3�k



_H b
x3�k

þ d2

4j
�
@2 _Hb

x3�k

@x2k
þ
@2 _H b

x3�k

@x23�k

þ 2
@2 _H b

xk

@xk@x3�k

 !)

þ . . . k ¼ 1; 2

ð63Þ

It is easy to see that by neglecting the terms of the order
Oðp3Þ, the formula (63) reduces to the Mitzner condition

[8]. Alternatively, by setting d1 !1, d2 !1 in (63) the
Rytov condition [7] is obtained.

8 Conclusions

The problem of the diffusion of the transient electromag-
netic field in a conductor has been solved using the method
of perturbations in the small parameter p that is equal to the
ratio of the electromagnetic penetration depth and char-
acteristic dimension of the body. The time domain solutions
for the tangential component of the electric field and the
normal component of the magnetic field on the smooth
curved surface of the body (the surface impedance
boundary conditions) have been obtained with accuracy
up to Oðp4Þ. It was shown that the proposed SIBC in the
frequency domain generalises the well-known Leontovich
boundary condition and Mitzner’s boundary condition,
which provide approximation accuracy within the errors
Oðp2Þ and Oðp3Þ, respectively. In Part II of this paper, we
demonstrate the formulation of the SIBCs developed here
in conjunction with a boundary element method and apply
it to the problem of transient skin and proximity effect
problems in cylindrical conductors.
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10 Appendix

10.1 Calculation of the Rytov order terms of
expansions of the tangential electric and normal
magnetic fields at the conductor’s surface

1. From (36b), (41) and (48) we obtain
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2. From (35b) and (41),
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3. From (36d) and (41),
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4. From (35d) and (41),
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By using (64)–(67), (55a) can be represented in the following
form:
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where the functions ~G3�k and ~W3�k, k¼ 1, 2, are defined as
follows
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The solution of equation (68) with the conditions (55b) is
written in the form:
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Substitution of (69) into (70) leads to the following
results:
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By substituting (72) into (54) and taking into account
(42b), the desired result is obtained and written in the form:

ð~~E3Þbxk
¼ ð�1Þk

(
�

ffiffi
~s
p
ð~~H 2Þbx3�k

þ ð~~H1Þbx3�k

~d3�k � ~dk

~dk
~d3�k

:

þ
ð~~H 0Þbx3�kffiffi

~s
p �3~d2

k þ ~d2
3�k þ 2~dk

~d3�k

8~d2
k
~d2
3�k

�

� 1

2
ffiffi
~s
p �

@2ð~~H0Þbx3�k

@~x2k
þ
@2ð~~H 0Þbx3�k

@~x2
3�k

þ 2
@2ð~~H 0Þbxk

@~x3�k@~xk

2
4

3
5
)

ð73Þ

ð~~H 3ÞbZ ¼
1ffiffi
~s
p
X2
i¼1

@ð~~H 2Þhxi

@~xi

� 1

2~s

X2
i¼1

~di � ~d3�i

~di
~d3�i

@ð~~H 1Þbxi

@~xi

þ 1

~s3=2
X2
i¼1

3~d2
3�i � ~d2

i � 2~di
~d3�i

8~d2
i
~d2
3�i

@ð~~H 0Þbxi

@~x2
i

þ 1

2~s3=2
X2
i¼1

@

@~xi

�
@2ð~~H0Þbxi

@~x23�i

þ
@2ð~~H 0Þbxi

@~x2
i

þ 2
@2ð~~H 0Þbx3�i

@~xi@~x3�i

2
4

3
5

ð74Þ

IEE Proc.-Sci. Meas. Technol., Vol. 152, No. 4, July 2005 185




