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Abstract: A time domain boundary element formulation employing the surface impedance
boundary conditions (SIBCs) is developed for the 3-dimensional transient eddy current problem of
cylindrical conductors. SIBCs of different orders of approximation are implemented using the
perturbation technique in the small parameter proportional to the ratio of the skin depth and
characteristic size of the conductor cross-section. The formulation consists of a set of time domain
surface integral equations that have identical left-hand sides and can be solved using the same
program procedure. The number of equations is determined by the order of approximation of the
SIBC, namely: solutions in the perfect electrical conductor (PEC) limit (lowest order) and in the so-
called Rytov approximation (highest order) are given by one and four equations, respectively. It is
demonstrated that each equation admits separation of variables into space and time components, a
property that significantly reduces computational costs compared with traditional time domain
formulations that require the integral equations to be solved at each time step. For the purpose of
validation, a test problem is solved by the proposed formulation and by the ‘original’ BEM based
on the time-dependent fundamental solution. Conditions of applicability are discussed and the
effect of such factors as the shape of the incident current pulse and proximity effect are considered.

1 Introduction

In Part I of this two part paper [1] we developed surface
impedance boundary conditions in the time- and frequency-
domain on the smooth curved surface of a homogeneous
conductor. Scale factors for the basic variables were
introduced with the end result that a small parameter,
equal to the ratio of the depth of penetration and the body’s
characteristic size, appears in the dimensionless Maxwell’s
equations for the conducting region. This fact is then
exploited using perturbation techniques to represent the
SIBCs in the form of power series in this small parameter.
The first term (zeroth order term) of the expansion was
shown to be the solution in the perfect electric conductor
(PEC) limit which does not allow penetration of electro-
magnetic fields into the conductor. The second term (first-
order term) was shown to be the solution of the problem in
the Leontovich approximation, which allows penetration
and diffusion into the conductor perpendicular to the
interface. The interface itself is planar and the fields do not

vary on the interface. The third term (second-order term)
was shown to be the solution in theMitzner approximation.
In this approximation the curvature of the body is taken
into account but the diffusion is again normal to the
interface and no variation of the fields on the interface is
allowed. The third-order term and higher allow for diffusion
of fields in tangential and normal directions on curved
interfaces. This was referred to as the Rytov approximation.

For completeness, and to set the stage for the formulation
and results that follow, we summarise here the main results
together with the assumptions used to obtain them as
described in Part I of this paper. For the sake of brevity,
only those relations referred to in this part are given
explicitly. For the derivation of these relations the reader is
referred to [1].

First and foremost we have assumed that the time
variation of the incident field is such that the skin depth d
remains small compared with the characteristic dimension
D of the body’s surface

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t=sm1

p
� D ð1Þ

where t is the ratio 2/o in the case of time-harmonic fields
or the incident pulse duration in the case of transient
sources, s and m1 are the conductivity and permeability of
the conducting medium, and D is taken as the minimum
radius of curvature on the surfaces of the conducting media.
Displacement currents are neglected. Further, it is assumed
that the conducting body is surrounded by a non-
conducting medium, that the source of the field is in this
medium outside the conductors and all media are homo-
geneous. A system of local coordinates is used whereby x1
and x2 are tangential to the surface of the conductor and Z is
perpendicular and pointing into the conductor.
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The condition in (1) allows us to transform Maxwell’s
equations by using asymptotic expansion techniques from
which we derived the normal components of the magnetic
field and the tangential components of the electric field at
the body’s surface in explicit form. To do so we introduce
characteristic scale factors for the variables of the problem.
The characteristic size D is used as a scale for the surface
coordinates x1 and x2 whereas for the coordinate Z we use
the skin depth d. Additional scale factors are needed for the
field variables. With these scale factors, the following non-
dimensional variables are obtained:

~xk ¼ xk=D; ~t ¼ t=t; ~Z ¼ Z=d; ~E ¼ E=E�;

~H ¼ H=H �
ð2Þ

where H* and E* are the scale factors for the electric and
magnetic field, respectively. It is further shown in [1] that
these two scale factors are not independent and may be
expressed in terms of a single scale factor, which in many
cases may be chosen as the total input current I* but, in
general, the scale factor is based on the inputs of the
problem to be solved. In all, only three independent scale
factors are required. If we choose I* as the scale factor for
fields, we have from the Biot-Savart law:

H � ¼ I�= 4pD�ð Þ ð3Þ

The scale factor may be similarly expressed in terms of I*

directly from Maxwell’s equations in non-dimensional
form.

From (1) and (2) we can write the following:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t= sm1ð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t= sm1D2ð Þ

q
D ¼ pD;

p ¼d=D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t= sm1D2ð Þ

q
� 1

ð4Þ

where the parameter p is clearly small and is proportional to
the ratio of the skin depth and the characteristic size of the
conductor’s surface.

With these assumptions and definitions we then proceed
to write the time-dependent Maxwell’s equations in non-
dimensional form and transform them into the Laplace
domain to eliminate explicit time dependency. Then, we
represent the variables for which solutions are sought in the
form of asymptotic expansions in the small parameter p.
The terms of these expansions then provide the various
order SIBCs in the Laplace domain. We specifically identify
the zeroth-, first-, second- and third-order expansions as the
PEC, Leontovich, Mitzner and Rytov surface impedance
boundary conditions respectively.

Applying the inverse Laplace transform provides the time
domain SIBCs in non-dimensional variables. Finally,
returning to dimensional variables we obtain the SIBCs of
the various orders. These are:

Eb
xk
¼ð�1Þ3�k

(
T̂1 � H b

x3�k
þ dk � d3�k

2dkd3�k
T̂2 � Hb

x3�k

þ 3d2
k � d2

3�k � 2dkd3�k

8d2
k d2

3�k

T̂3 � Hb
x3�k

þ T̂3

2
� �

@2H b
x3�k

@x2k
þ
@2H b

x3�k

@x23�k

þ 2
@2H b

xk

@xk@x3�k

 !)

þ . . . k ¼ 1; 2

ð5aÞ

H b
Z ¼

X2
i¼1

@

@xi

(
T1 � Hb

xi
þ d3�1 � d1

2did3�i
T2 � Hb

xi

þ 3d2
3�i � d2

i � 2did3�i

8d2
i d2

3�i

T3 � H b
xi

þ T3

2
� �

@2Hb
xi

@x23�i

þ
@2H b

xi

@x2i
þ 2

@2Hb
x3�i

@xi@x3�i

 !)
þ . . .

ð5bÞ
where the sign ‘*’ denotes a time convolution product. In
these relations

T1 tð Þ ¼ psm1ð Þ�1=2t�1=2; T2 tð Þ ¼ U tð Þ= sm1ð Þ;

T3 tð Þ ¼2 ps3m3
� ��1=2

t1=2;

T̂1 tð Þ ¼ � 4ps=m1ð Þ�1=2t�3=2;

T̂2 tð Þ ¼U2 tð Þ=s; and T̂3 tð Þ ¼ ps3m1
� ��1=2

t�1=2: ð5cÞ

The time domain surface impedance boundary conditions
in (5) include the first four terms of the expansion (that is,
they represent the Rytov SIBCs). Lower order SIBCs may
be obtained by neglecting the appropriate terms in the
expansions. These SIBCs will now be employed for solution
of skin and proximity effect problems in cylindrical
conductors for the purpose of comparing the accuracy of
the various order SIBCs.

The numerical method best suited for use with surface
impedance boundary conditions is the boundary element
method because in BEM and SIBC the functions are
approximated at the same points on the interface between
the media. Being applied to an eddy current problem
consisting of conducting and non-conducting regions, the
boundary element method yields a system of two integral
equations over the conductor’s surface with respect to
two unknowns: the required function and its normal
derivative at the conductor/dielectric interface [2]. Under
the conditions of the skin effect, the electromagnetic field
behaviour in the conductor is known, the surface impedance
concept may be applied and the formulation can be reduced
to a single integral equation employing the fundamental
solution of the Laplace equation. The extra unknown is
eliminated using the surface impedance boundary condi-
tion(s) relating the function and its normal derivative at
the conductor’s surface. This approach is almost ideal
for solution of time harmonic problems and BEM-SIBC
formulations have been widely used for analysis of skin
and proximity effect problems of multiconductor
systems [3–9].

In the general case of transient excitation, the surface
integral equation including the time domain SIBC in the
form (5) has to be solved at every time step due to the time
convolution terms. It leads to a significant increase in
the computational cost required for solution and for
all practical purposes renders impractical its numerical
implementation. The best way to avoid this difficulty is
separation of variables in the formulation into space and
time components. In this case the integral equation for the
space component needs to be solved only once for a given
system of conductors and the result multiplied by the time
component to obtain the solution of the problem for any
time dependence of the source.

It is easy to see that the variables in (5) cannot be
separated because the functions Tm are different. However,
each term in (5) being considered independently admits
separations of variables. This circumstance and the fact that
the SIBC in (5) can be represented as power series in the
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small parameter are keys to the development of the desired
formulation. Indeed, it is natural to suppose that use of the
perturbation technique, as described in Part I of this work,
will lead to a set of integral equations so that every equation
includes only one term of (5) and, consequently, admits
separation of variables. Such a formulation has clear
physical meaning: the zero-order integral equation gives
the solution in the well-known perfect electrical conductor
limit and other equations yield corrections of the order of
Leontovich’s, Mitzner’s and Rytov’s approximations. Thus
the total number of integral equations in the formulation
will not exceed four. In fact, it may be even less depending
on the problem [10]. Derivation of such a formulation is the
first aim of this work.

Another goal is numerical validation of the formulations
employing time domain surface impedance boundary
conditions to clarify the limits of applicability of the
concept. This problem has been already considered in the
past [11–13] but the reported works focused on the classical
single-frequency SIBC. Investigation of the impact of such
factors as shape of the incident pulse and the proximity
effect on the approximation error of the time domain BEM-
SIBC formulations is another aim of the work.

2 Statement of the problem and basic equations

Consider a system of N cylindrical conductors of arbitrary
cross-sections surrounded by homogeneous non-conducting
space as shown in Fig. 1. The parameters of the conducting
and non-conducting media are assumed to be constants. Let
an external source produce quasi-steady current pulses
flowing through the conductors so that

~Ii ~r; tð Þ ¼~Isp
i ~rð Þ~y0ðtÞ;

I
Ci

~H � d~l ¼ Ii i ¼ 1; 2 . . . N ð6Þ

where ~y0 is a known non-dimensional time dependent

function that is the same for all conductors,~Isp
i , i¼ 1,2yN,

are vectors setting the magnitude and direction of the total
current flowing in the conductor and Ci is an arbitrary path
enclosing the ith conductor. Let the duration of the pulse be
such that the skin layer is thin and condition (1) is met.

Under these conditions the electromagnetic field distribu-
tion in both regions can be described by the following
equations

a. Conducting domain

r�~E ¼ �m1@~H=@t;

r� ~H ¼ s~E; r � ~H ¼ 0; r �~E ¼ 0
ð7aÞ

b. Non-conducting domain

r�~E ¼ �m0@~H=@t;

r� ~H ¼ 0; r � ~H ¼ 0; r �~E ¼ 0
ð7bÞ

Because, in general, this is a three-dimensional problem it
is natural to solve in terms of the scalar potential formalism.
To provide uniqueness of the solution, the magnetic scalar
potential f in the non-conducting domain is introduced:

~H ¼ ~Hfil �rf ð8Þ

~Hfil ¼
XN

i¼1

~Hfil
� �

i ð9Þ

Here ð~HfilÞi is the magnetic field generated by an equivalent
filamentary conductor carrying the current Ii. The field

ð~HfilÞi can be calculated using the Biot-Savart law:

ð~Hfil ð~r; tÞÞi ¼
1

4p

Z
Li

~Iið~r 0; tÞ �
~r �~r 0

~r �~r 0j j3
dl

¼
~y0ðtÞ
4p

Z
Li

~Isp
i ~r 0ð Þ � ~r �~r0

~r �~r 0j j3
dl ¼ ð~Hsp

filð~rÞÞi~y0ðtÞ

ð10Þ
Substituting (8) into the third equation in (7b) yields the
governing equation for the scalar potential:

Df ¼ 0 ð11Þ
The representation (9) and (10) not only ensures satisfaction
of the second condition in (6), but also provides explicit
introduction of the source term containing the total currents
in the scalar potential formulation. Presence of the source
term means that only nontrivial solutions are sought.

Let the duration of the pulses be such that the
electromagnetic penetration depth remains much lower
than the characteristic size D of the conductor’s cross-
section, i.e. condition (1) is met. Thus the electromagnetic
field behaviour inside the conductors can be described using
the surface impedance boundary conditions (5) and the
solution is sought in free space only.

3 Surface integral equation

Since the scalar potential in free space obeys the Laplace
equation, the boundary integral equation method [12] yields
the following surface integral equation:

f
2
þ
XN

i¼1

Z
Si

f
@G
@~n

ds ¼
XN

i¼1

Z
Si

G
@f
@~n

ds;

G ¼ 4p~r �~r0j jð Þ�1
ð12Þ

Here G is the fundamental solution of Laplace’s equation in
free space, Si the ith conductor’s surface, assumed to be
smooth, and the unit normal vector ~n is chosen inwards.
From (8) it follows that

@f
@~n
¼~n � ~Hfil � ~H

� �
ð13Þ

Substituting (13) into (12) gives

f
2
þ
XN

i¼1

Z
Si

f
@G
@~n

ds ¼
XN

i¼1

Z
Si

G~n � ~Hfil � ~H
� �

ds ð14Þ

Equation (14) includes two unknowns and it must be
supplemented by another equation relating the functions

DD

y

node no. 41

node no. 1

L

x

current I2(t )current I1(t )

Fig. 1 Simulation set-up
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f and ~n � ~H , namely the surface impedance boundary
condition (5b). Substitution of (5b) into (14) results in the
following formulation

f
2
þ
XN

i¼1

Z
Si

f
@G
@~n
� G L1 rf½ � þ L2 rf½ � þ L3 rf½ �ð Þ

� �
ds

¼
XN

i¼1

Z
Si

G ~n � ~Hfil � L1
~Hfil
� �

þ L2
~Hfil
� �

þ L3
~Hfil
� �� �

ds

ð15Þ
where

L1
~f
h i
¼ T1 �

X2
i¼1

@fxi

@xi
ð16aÞ

L2
~f
h i
¼ T2 �

X2
i¼1

d3�i � di

2did3�i

@fxi

@xi
ð16bÞ

L3
~f
h i
¼T3 �

X2
i¼1

(
3d2

3�i � d2
i � 2did3�i

8d2
i d2

3�i

@fxi

@xi

þ 1

2
� @

2fxi

@x23�i

þ @
2fxi

@x2i
þ 2

@2fx3�i

@xi@x3�i

 !) ð16cÞ

and the surface coordinates have been introduced in
functions Tm, which are given in (5).

Although the surface integral equation (15) can be
solved with respect to f, it has to be done at every time
step, a process that renders this numerical procedure
impractical. However, (15) can be transformed to the
form suitable for efficient numerical implementation using
the perturbation technique and taking into account
some properties of the SIBCs. These properties are
discussed next.

4 Properties of SIBCs

1. We assume that the function ~f ð~r; tÞ can be split into
space and time components as follows

~f ð~r; tÞ ¼~uð~rÞvðtÞ ð17Þ
Then, it follows directly from (16), that the operators
Lm, m¼ 1, 2, 3 can be represented in the form of
superposition of the space operator Cm ~u½ � and the time
operator Om n½ �:

Lm
~f
h i
¼ Om n½ �Cm ~u½ �; m ¼ 1; 2; 3 ð18Þ

where

C1 ~u½ � ¼
X2
i¼1

@uxi

@xi
ð19aÞ

C2 ~u½ � ¼
X2
i¼1

d3�i � di

2did3�i

@uxi

@xi
ð19bÞ

C3 ~u½ � ¼
X2
i¼1

(
3d2

3�i � d2
i � 2did3�i

8d2
i d2

3�i

@uxi

@xi

þ 1

2
� @

2uxi

@x23�i

þ @
2uxi

@x2i
þ 2

@2ux3�i

@xi@x3�i

 !) ð19cÞ

and

O1 n½ � ¼ T1 � n; O2½n� ¼ T2 � n; O3 n½ � ¼ T3 � n ð20Þ

2. The time operators Om n½ � have the following property:

O2 n½ � ¼ O1 O1 n½ �½ � and

O3 n½ � ¼ O2 O1 n½ �½ � ¼ O1 O2 n½ �½ �
ð21Þ

This property is easily proven in the Laplace domain where
the operators in (20) take the form:

�Om �n½ � ¼ �Tm�n; m ¼ 1; 2; 3 ð22Þ
where

�T1ðsÞ ¼ sm1ð Þ�1=2s�1=2; �T2ðsÞ ¼ sm1ð Þ�1s�1;
�T3ðsÞ ¼ sm1ð Þ�3=2s�3=2

ð23Þ

From (23) we obtain

�T2 ¼ �T1
�T1; �T3 ¼ �T1

�T1
�T1 ¼ �T1

�T2 ð24Þ
Thus

�O2 �n½ � ¼ �T2n ¼ �T1
�T1n ¼ �T1

�O1 �n½ � ¼ �O1
�O1 �n½ �
� �

ð25aÞ

�O3 �n½ � ¼ �T3n ¼ �T2
�T1n ¼ �T2

�O1 �n½ � ¼ �O2
�O1 �n½ �
� �

ð25bÞ

�O3 �n½ � ¼ �T3n ¼ �T1
�T2n ¼ �T1

�O2 �n½ � ¼ �O1
�O2 �n½ �
� �

ð25cÞ
Application of the inverse Laplace transform identities to
(25) leads to (21).

5 The perturbation technique

It is natural to perform further transformations using non-
dimensional variables. Switching in (8) to the non-dimen-
sional variables in (2) and denoting the scale factor for the
scalar potential as f*, gives:

~~HH� ¼ ~~H filH � �
f�

D
~r~f ð26Þ

Taking into account (3), f* can be expressed in terms of
other scale factors as follows:

f� ¼ H �D ¼ I�=ð4pÞ ð27Þ
With non-dimensional variables (2), (3) and (27), the
integral equation (15) takes the form:

~f
2
þ
XN

i¼1

Z
Si

~f
@ ~G
@~n
� ~G

X3
m¼1

pm~Lm ~r~f
h i !

d~s

¼
XN

i¼1

Z
Si

~G ~n � ~~H fil �
X3
m¼1

pm~Lm
~~Hfil

h i !
d~s

ð28Þ

where p is the small parameter defined in (4) and the

dimensionless operators ~Lm are written in the form:

~L1
~~f
h i
¼ ~T1 ~�

X2
i¼1

@~fxi

@~xi

ð29aÞ

~L2
~f
� �
¼ ~T 2 ~�

X2
i¼1

~d3�i � ~di

2~di
~d3�i

@~f xi

@~xi

ð29bÞ

~L3
~~f
h i
¼ ~T3 ~�

X2
i¼1

3~d2
3�i � ~d2

i � 2~di
~d3�i

8~d2
i
~d2
3�i

@~fxi

@~xi

(

þ 1

2
� @

2~fxi

@~x23�i

þ @
2~fxi

@~x2i
þ 2

@2~fx3�i

@~xi@~x3�i

 !) ð29cÞ

We represent the function ~f in the form of expansions in
the small parameter p:

~f ¼
X1
m¼1

pm ~fm ð30Þ
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Substituting the expansions (30) into (28) and equating the
coefficients of equal powers of p, the following equations for
the expansion coefficients are obtained:

~f0

2
þ
XN

i¼1

Z
Si

~f0

@ ~G
@~n

d~s ¼
XN

i¼1

Z
Si

~G ~n � ~~H fil

� 	
d~s ð31aÞ

~f1

2
þ
XN

i¼1

Z
Si

~f1

@ ~G
@~n

d~s ¼ �
XN

i¼1

Z
Si

~G~L1
~~Hfil � ~r~f0

h i
d~s

ð31bÞ

~f2

2
þ
XN

i¼1

Z
Si

~f2

@ ~G
@~n

d~s

¼ �
XN

i¼1

Z
Si

~G ~L2
~~H fil � ~r~f0

h i
þ ~L1 � ~r~f1

h i� 	
d~s

ð31cÞ

~f3

2
þ
XN

i¼1

Z
Si

~f3

@ ~G
@~n

d~s

¼ �
XN

i¼1

Z
Si

~G ~L3
~~Hfil � ~r~f0

h i
þ ~L2 � ~r~f1

h i
þ ~L1 � ~r~f2

h i� 	
d~s

ð31dÞ

6 Separation of variables

Taking into account (6), the filamentary magnetic field in
(9) and (10) can be represented as:

~~Hfil ~~r;~t
� 	

¼ ~~H
sp
fil
~~r
� 	

~y0 ~tð Þ;

~~H
sp
fil ¼

XN

i¼1

Z
Li

~~I
sp
i
~~r0
� 	

�
~~r �~~r0

~~r �~~r0



 


3 d~l

ð32Þ

Introducing the following non-dimensional time-dependent

functions ~ym, m¼ 1, 2, 3:

~ymð~tÞ ¼ ~Om
~y0ð~tÞ
h i

¼ ~Tmð~tÞ ~� ~y0ð~tÞ; m ¼ 1; 2; 3 ð33Þ

and using (22) gives

~y2 ¼ ~O2
~y0
h i

¼ ~O1
~O1

~y0
h ih i

¼ ~O1
~y1
h i

ð34aÞ

~y3 ¼~O3
~y0
h i

¼ ~O1
~O2

~y0
h ih i

¼ ~O1
~y2
h i

and

~y3 ¼~O3
~y0
h i

¼ ~O2
~O1

~y0
h ih i

¼ ~O2
~y1
h i ð34bÞ

We seek ~fm
~~r; t
� 	

in the form:

~fm
~~r;~t
� 	

¼ ~fsp
m
~~r
� 	

~ym ~tð Þ; m ¼ 0; 1; 2; 3 ð35Þ

Then the operators Lm, m¼ 1, 2, 3 can be represented in the
following form according to (18), (22) and (33), (34):

~L1
~~H fil � ~r~f0

h i
¼ ~O1

~y0
h i

~C1
~~H

sp
fil � ~r~fsp

0

h i
¼~y1 ~C1

~~H
sp
fil � ~r~fsp

0

h i ð36aÞ

~L2
~~Hfil � ~r~f0

h i
¼~O2

~y0
h i

~C2
~~H

sp
fil � ~r~fsp

0

h i
¼ ~y2 ~C2

~~H
sp
fil � ~r~fsp

0

h i
ð37aÞ

~L1 � ~r~f1

h i
¼ ~O1

~y1
h i

~C1 � ~r~fsp
1

h i
¼ ~y2 ~C1 � ~r~fsp

1

h i
ð37bÞ

~L3
~~Hfil � ~r~f0

h i
¼ ~O3

~y0
h i

~C3
~~H

sp
fil � ~r~fsp

0

h i
¼ ~y3 ~C3

~~H
sp
fil � ~r~fsp

0

h i ð38aÞ

~L2 � ~r~f1

h i
¼ ~O2

~y1
h i

~C2 � ~r~fsp
1

h i
¼ ~y3 ~C2 � ~r~fsp

1

h i
ð38bÞ

~L1 � ~r~f2

h i
¼ ~O1

~y2
h i

~C1 � ~r~fsp
2

h i
¼ ~y3 ~C1 �r~fsp

2

h i
ð38cÞ

where

~C1
~~u
h i
¼
X2
i¼1

@~uxi

@~xi

;

~C2 ~u½ � ¼
X2
i¼1

~d3�i � ~di

2~di
~d3�i

@~uxi

@~xi

; and

~C3 ~u½ � ¼
X2
i¼1

3~d
2

3�i � ~d
2

i � 2~di
~d3�i

8~d
2

i
~d
2

3�i

@~uxi

@~xi

(

þ 1

2
� @

2~uxi

@~x
2

3�i

þ @
2~uxi

@~x
2

i

þ 2
@2~ux3�i

@~xi@x3�i

 !)

Substituting (32), (33) and (36)–(38) into (31), the following

equations for the space components ~fsp
m are obtained:

~f0

sp

2
þ
XN

i¼1

Z
Si

~fsp
0

@ ~G
@~n

d~s ¼
XN

i¼1

Z
Si

~G ~n � ~~Hsp
fil

� 	
d~s ð39aÞ

~f1

sp

2
þ
XN

i¼1

Z
Si

~fsp
1

@ ~G
@~n

d~s

¼ �
XN

i¼1

Z
Si

~G ~C1
~~H

sp
fil � ~r~fsp

0

h i
d~s

ð39bÞ

~fsp
2

2
þ
XN

i¼1

Z
Si

~fsp
2

@ ~G
@~n

d~s ¼

�
XN

i¼1

Z
Si

~G ~C2
~~H

sp
fil � ~r~fsp

0

h i
þ ~C1 � ~r~fsp

1

h i
d~s

� 	
ð39cÞ

~fsp
3

2
þ
XN

i¼1

Z
Si

~fsp
0

@ ~G
@~n

d~s ¼

�
XN

i¼1

Z
Si

~G ~C3
~~H

sp
fil � ~r~fsp

0

h i�

þ ~C2 � ~r~fsp
1

h i
þ ~C1 � ~r~fsp

2

h i	
d~s

ð39dÞ

It is easy to see that (39a) yields the solution in the
perfect electrical conductor limit. The integral equations
(39b)–(39d) give the corrections of the order of
Leontovich’s, Mitzner’s and Rytov’s approximations,
respectively.
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7 Final formulation in dimensional form

Returning to dimensional variables in (39) using the scale
factors given in Table 1 gives:

fsp
0

2
þ
XN

i¼1

Z
Si

fsp
0

@G
@~n

ds ¼
XN

i¼1

Z
Si

G ~n � ~Hsp
fil

� 	
ds ð40aÞ

fsp
1

2
þ
XN

i¼1

Z
Si

fsp
1

@G
@~n

ds

¼
XN

i¼1

Z
Si

G C1
~Hsp

fil �rf
sp
0

h i� 	
ds

ð40bÞ

fsp
2

2
þ
XN

i¼1

Z
Si

fsp
2

@G
@~n

ds ¼

�
XN

i¼1

Z
Si

G C2
~H sp

fil �rf
sp
0

h i
þC1 �rfsp

1

� �� 	
ds

ð40cÞ

fsp
3

2
þ
XN

i¼1

Z
Si

fsp
3

@G
@~n

d~s ¼

�
XN

i¼1

Z
Si

G C3
~Hsp

fil �rf
sp
0

h i�
þC2 �rfsp

1

� �
þC1 �rfsp

2

� ��
ds

ð40dÞ

where the operators Cm, m¼ 1, 2, 3, are given in (19).

Thus, the procedure for calculation of the distribution of
the scalar potential over the conductor’s surface, using (6) as
initial data, consists of the following 3 steps:

a. Calculation of the field ~Hsp
fil using the formula

~Hsp
fil ¼

1

4p

XN

i¼1

Z
Li

~Isp
i ~r0ð Þ � ~r �~r0

~r �~r0j j3
dl ð41Þ

b. Obtaining the space functions fsp
m ð~rÞ, m¼ 0,1,2,3, by

solving the surface integral equations (40).

c. Obtaining the scalar potential using the formula

f ¼ fsp
0

~y0 þ
X3
m¼1

fsp
m Tm � ~y0

 !
ð42Þ

where the time functions Tm(t), m¼ 1,2,3 are T1(t)¼
(psm1)

�1/2t�1/2; T2(t)¼U(t)/(sm1); and T3(t)¼2(ps3m3)�1/2t1/2.
At this point it is worth re-emphasising the main

advantages of the formulation developed:

1. The form of integral equations, including the right-hand
side, is independent of the time dependence of the incident
current and is determined solely by the geometric
parameters of the given system of conductors. Therefore,
by solving the integral equations for space components just
once for a given system of conductors and multiplying the
result by the corresponding time components one can
obtain solutions for any time dependence of the incident
current.

2. The integral equations for the various order approxima-
tions differ only in the form of the right hand side and can
be solved by the same programmed routine; therefore new
computational complications do not arise beyond those
involved in solving the problem in the well-known perfect
electrical conductor limit.

8 Conditions of applicability and numerical
example

In the low frequency case the number of conditions
restricting applicability of the surface impedance concept
is reduced as compared with high frequency problems
which were considered in [12, 13]. Clearly, convergence of
the expansions (30) is required for validity of the
formulation (40–42) and therefore condition (1) must be
satisfied. Thus, the introduction of scale factors enables not
only derivation of the formulation but also estimation of its
applicability limits and approximation errors using the
following formula [14]:

em ¼ amþ1t mþ1ð Þ=2; a ¼ ðsm1D2Þ�1=2; m ¼ 1; 2; 3 ð43Þ

where the values of m equal to 1,2,3 denote Leontovich’s,
Mitzner’s and Rytov’s approximations, respectively.

However, the basic scale factors do not contain
information about all features of the problem and the basic
formula (43) is to be improved. In particular, the definition
of the time scale factor as the duration of the pulse does not
take into account the pulse shape. Another example is the
space scale factor D. It has been introduced as the
characteristic size of the conductor’s surface but it ignores
the proximity effect in problems involving more than one
conductor. In order to investigate approximation errors, we
solve the following problem.

Consider a system of two parallel copper conductors
(N¼ 2) of circular cross-section and of radius D¼ 21 mm in
which equal and oppositely directed current pulses flow
from an external source (Fig. 1). The duration t of the
incident pulse has been chosen equal to 2 ms so that
p¼ 0.25. Let the conductors be sufficiently long so that the
problem may be considered 2-dimensional in the plane of
the cross-section of the conductors, far from their ends. The
coordinate x1 is directed along the conductors so that
d1¼N, d2¼D and the integral equations (40) reduce to the
following form:

fsp
0

2
þ
XN

i¼1

Z
Gi

fsp
0

@G
@~n

dx2

¼ �
XN

i¼1

Z
Gi

G ~n � ~Hsp
fil

� 	
dx2 ð44aÞ

Table 1: Non-dimensional quantities and their scale factors

Non-dimensional quantity Scale factor Unit

~fsp
k ; k ¼ 0; 1; 2;3 (4p)�1I*D�k Am�k

~Hsp
fil

(4p)�1I*D�1 Am�1

~G D�1 m�1

@ ~G=@ n! D�2 m�2

d ~s ¼ d~x1d~x2
D2 m2

@=@~x1; @=@~x2
D�1 m�1

~Ck ½ �; k ¼ 1;2;3 D�k m�k

~Tk ; k ¼ 1;2; 3 sm0ð Þ�k=2tðk�1Þ=2

¼ pkt�1Dk

mks�1

d~t (in time convolution product) t s
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fsp
1

2
þ
XN

i¼1

Z
Gi

fsp
1

@G
@~n

dx2

¼ �
XN

i¼1

Z
Gi

G C1
~H sp

fil �rf
sp
0

h i� 	
dx2 ð44bÞ

fsp
2

2
þ
XN

i¼1

Z
Gi

fsp
2

@G
@~n

dx2 ¼

�
XN

i¼1

Z
Gi

G C2
~Hsp

fil �rf
sp
0

h i
þC1 �rfsp

1

� �� 	
dx2

ð44cÞ

fsp
3

2
þ
XN

i¼1

Z
Gi

fsp
3

@G
@~n

dx2

¼ �
XN

i¼1

Z
Gi

G C3
~Hsp

fil �rf
sp
0

h i
þC2 �rfsp

1

� ��
þC1 �rfsp

2

� ��
dx2 ð44dÞ

where Gi is the contour of the cross-section of the ith
conductor and the Green function in the 2-dimensional case
takes the form:

G ¼ �2p ln ~r �~r0j jð Þ
To investigate the effect of the mutual location of the
conductors on the approximation error, simulations have
been performed for 3 different distances L between the
centres of the conductors, namely 52.5 mm (2.5D), 63 mm
(3D) and 168 mm (8D).

To investigate the effect of the pulse shape, the following
pulses have been selected:

IaðtÞ ¼I0~yaðtÞ; IbðtÞ ¼ I0~ybðtÞ; ~ya ¼ ðt=tÞ2;
~yb ¼

ffiffiffiffiffiffi
t=t

p
; Iað0Þ ¼ Ibð0Þ; IaðtÞ ¼ IbðtÞ

ð45Þ

A total of 6 problems were solved using the formulation in
(44), the boundary element formulation based on the time-
dependent fundamental solution [2] without use of the
SIBCs (the so-called ‘original BEM’) and a commercial
finite element software [15]. The magnetic field distributions
along the conductor surface at t¼ t are shown in Figs. 2–7.
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Fig. 2 Tangential component of the magnetic field for IaðtÞ ¼
I0~yaðtÞ
The distance L between conductors is 52.5 mm (2.5D)
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Fig. 3 Tangential component of the magnetic field for IaðtÞ ¼
I0~yaðtÞ
The distance L between conductors is 63 mm (3D)
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Fig. 4 Tangential component of the magnetic field for IaðtÞ ¼
I0~yaðtÞ
The distance L between conductors is 168 mm (8D)
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Fig. 5 Tangential component of the magnetic field for IbðtÞ ¼
I0~ybðtÞ
The distance L between conductors is 52.5 mm (2.5D)

IEE Proc.-Sci. Meas. Technol., Vol. 152, No. 5, September 2005 213



Analysis of the results in Figs. 2–7 shows that the
values of the field at the surface of the conductor are
highest when the proximity effect is strongest (Figs. 2 and 5,
node 41). It leads to deeper penetration of the field inside
the conductor near node 41 and, consequently, to an
increase in the role of the tangential derivatives that are

neglected in the skin effect approximation. Thus the
approximation error is highest in cases of strong proximity
effect. Alternatively, when the conductors are located far
from each other, the effect of symmetry may be significant,
especially in our case of circular cross-section. It tends to
smooth out non-uniformities in the field distribution around
the conductor’s surface so that the surface field values are
lowest in Figs. 4 and 7 resulting in a decrease in the
approximation error.

Approximation errors calculated as the maximum
relative error between BEM-SIBC and the ‘original BEM’
solutions can be seen in Table 2 together with results given
by (43). The accuracy of the ‘original BEM’ solution is
estimated to be within 1%.

As can be noted, (43) does not give a good estimation of
the approximation error in cases of strong skin effect. The
disagreement due to proximity effect may be reduced if we
redefine the space scale factor D for the case of multi-
conductor system as follows:

D ¼ minðdmin; hminÞ ð46Þ
where hmin is shortest distance between the conductors of
the system and dmin is the minimum radius of curvature of
the surfaces of the conductors. Application of (46) to the
problems shown in Figs. 2 and 5 leads to new value of D
equal to 10.4 m. Under these conditions, (43) yields more
accurate estimation, shown in Table 3 .

From the results shown in Figs. 2 and 3 and 4 and 5 it
follows that the disagreement between curves given by the
BEM-SIBC and the ‘original BEM’ starts earlier when the
pulse Ib is used. The root of this phenomenon becomes clear
if we consider the 1-dimensional problem of electromagnetic
field diffusion into a conducting half-space. The distribution
of the magnetic field as a function of the distance from the
surface for both pulses at t¼ t is shown in Fig. 8. With
the pulse Ib the field penetrates deeper, and, consequently,
the approximation error related to the thickness of the skin
layer is higher than in the case of Ia. The increase in
penetration depth causes an inductive process resulting
in redistribution of the magnetic field over the surface of
the conductor and in an increase in disagreement between
the results obtained using the PEC limit and other
approximations where the diffusion is taken into account.
Therefore, if the incident pulse is such that the actual

penetration depth is less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=ðsm1Þ

p
, the approximation

error may be less than predicted by (43) but, at the same
time, improvement of accuracy provided by the Leontovich
and other approximations over the PEC limit may not be
significant.

Since representation (35) enables the function ~y0 be
included explicitly in the power series (30), the role of the
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Fig. 6 Tangential component of the magnetic field for IbðtÞ ¼
I0~ybðtÞ
The distance L between conductors is 63 mm (3D)
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Fig. 7 Tangential component of the magnetic field for IbðtÞ ¼
I0~ybðtÞ
The distance L between conductors equal to 168 mm (8D)

Table 2: Approximation errors calculated for problems shown in Figs. 2–7 and given by (43)

IaðtÞ ¼ I0~yaðtÞ IbðtÞ ¼ I0~ybðtÞ Formula
(43)

L¼ 2.5D
(Fig. 2)

L¼3D
(Fig. 3)

L¼ 8D
(Fig. 4)

L¼2.5D
(Fig. 5)

L¼3D
(Fig. 6)

L¼ 8D
(Fig. 7)

PEC 26% 17% 4% 34% 23% 6% 24.9%

Leontovich’s approx. 11% 3% o1% 24% 7% o1% 6.2%

Mitzner’s approx. 5% 3% o1% 7% 4% o1% 1.5%

Rytov’s approx. 4% 3% o1% 5% 4% o1% 0.4%
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pulse shape in a given problem can be estimated by

analysing the functions ~ym=~ym�1¼ ~Tm � ~y0
� 	

= ~Tm�1 � ~y0
� 	

,

m¼ 1,2,3. For instance, the solution in the PEC limit would

be still accurate if p¼ 0.2 and max ð~y1=~y0Þ ¼ 0:05. Analysis

of distributions of the functions ~ym shown in Fig. 8 for
pulses Ia and Ib, respectively, lead to the following results:

max ð~y1=~y0Þa¼0:58; max ð~y1=~y0Þb¼0:86; max ð~y2=~y1Þa¼
0:59; max ð~y2=~y1Þb ¼ 0:78; max ð~y3=~y2Þa ¼ 0:52; and

max ð~y3=~y2Þb ¼ 0:67.
Figures 9 and 10 show plots of the functions

~ymð~tÞ ¼ ~Tmð~tÞ~�~y0ð~tÞfor both pulses. Finally, in order to
take into account the pulse shape, the following improved
error formula can replace (43) (see Table 4):

em ¼ amþ1t mþ1ð Þ=2 �max ð~Wmþ1=~WmÞ ð47Þ

9 Conclusions

A time domain boundary element formulation employing
the surface impedance boundary conditions (SIBCs) devel-
oped in Part I of this paper was developed and applied for
the computation of 3-dimensional transient fields in
cylindrical conductors. Various order approximations were
used to show the need and indeed the benefit of higher
order SIBCs. These SIBCs were implemented in a surface
integral formalism using the perturbation technique in the
small parameter proportional to the ratio of the skin depth

Table 3: Approximation errors calculated for problems
shown in Figs. 2 and 5 and given by (43) using the
definition in (46)

Fig. 2 Fig. 5 Formula (43)
corrected

PEC 26% 34% 50%

Leontovich’s approx. 11% 24% 25%

Mitzner’s approx. 5% 7% 12%

Rytov’s approx. 4% 5% 6%
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Fig. 8 Distribution of the functions yaðtÞ and ybðtÞ inside the
conductor at t¼ t
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Fig. 9 Functions ~ym for IaðtÞ ¼ I0~yaðtÞ (~y0 ¼ ~ya and
~ym ¼ ~ya � ~Tm, m¼ 1,2,3)
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Fig. 10 Functions ~ym for IbðtÞ ¼ I0~ybðtÞ (~y0 ¼ ~yb and
~ym ¼ ~yb � ~Tm, m¼ 1,2,3)

Table 4: Approximation errors calculated for problems shown in Figs. 2–7 and given by (47)

IaðtÞ ¼ I0~yaðtÞ IbðtÞ ¼ I0~ybðtÞ
L¼ 2.5D L¼3D L¼8D L¼2.5D L¼ 3D L¼ 8D

Error (47) Error (47) Error (47) Error (47) Error (47) Error (47)

PEC 26% 29% 17% 14% 4% 14.4% 34% 42.9% 23% 21.5% 6% 21%

Leontovich 11% 14% 3% 4% o1% 3.6% 24% 19.3% 7% 4.8% o1% 5%

Mitzner 5% 6% 3% 0.8% o1% 0.8% 7% 8.3% 4% 1% o1% 1%

Rytov 4% 6% 3% 0.4% o1% 0.4% 5% 6.2% 4% 0.4% o1% 0.4%
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and characteristic size of the conductor’s surface. The
formulation was tested on the problem of conductors
subject to pulsed currents in the presence of skin and
proximity effects. The various formulations were compared
in terms of approximation errors with respect to a classical
BEM solution and to FEM results, showing clear improve-
ment in errors for the higher order solutions. Conditions of
applicability of the formulation were discussed and the
effect of important factors such as shape of the incident
current pulse and the proximity effect were considered.
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