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Approximate time-domain relations between the electric field integrated along the edge and the magnetic flux density integrated over
the facet of the computational cell at the dielectric/conductor interface are derived and implemented into the finite integration tech-
nique to accurately eliminate the conducting region from the computational mesh. Both Cartesian and tetrahedral grids are considered.
A numerical example is included to illustrate the method.
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I. INTRODUCTION

THE surface impedance concept has proven an efficient tool
in computational electromagnetics. It provides approxi-

mate relations between the parameters of the electromagnetic
field at the surface of the conductor. Thus, the conducting region
does not need to be included in the mesh and can be “replaced”
by surface impedance boundary conditions (SIBCs) in the nu-
merical procedure. Originally SIBCs were developed in terms
of the electric and magnetic field intensities, so they have been
naturally implemented and widely used with the method of mo-
ments, the finite-difference time-domain (FDTD) method, and
the node-based finite-element method.

In the past ten years, alternative formulations employing cir-
culations and fluxes as state variables have gained acceptance.
In particular, the “sister” method to the FDTD method is the
finite integration technique (FIT) [1], and in both methods stag-
gered dual grids are used for approximation of the electric- and
magnetic-related parameters. Both the FDTD method and FIT
are currently widely used to model high-frequency electromag-
netic problems. FDTD-SIBC formulations have also become
very popular [2]–[5], but the coupling of SIBCs and FIT does
not seem to have been done. One possible reason is that the
FIT requires SIBCs being represented in terms of the electric
field integrated along the edge of the computational cell and the
magnetic flux density integrated over the facet (differential 1-
and 2-forms, respectively [6]). Thus, the purpose of this paper
is derivation of time-domain SIBCs in terms of state variables
used in FIT for Cartesian and tetrahedral grids.

II. TIME-DOMAIN SURFACE IMPEDANCE CONCEPT

Consider a homogeneous body of finite conductivity sur-
rounded by a nonconductive medium and illuminated by a
pulsed electromagnetic field. Let the time variation of the inci-
dent field be such that the electromagnetic penetration depth
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into the body remains small compared with the characteristic
dimension of the surface of the body

(1)

where is the incident pulse duration, and and are con-
ductivity and permeability of the body, respectively. It means
that the conducting region is so large that the wave attenuates
completely inside the region. Then, the electromagnetic field
distribution in the conductor’s skin layer can be described as
a damped plane wave propagating in the bulk of the conductor
normal to its surface. In other words, the behavior of the electro-
magnetic field in the conducting region may be assumed to be
known a priori. The electromagnetic field is continuous across
the real conductor’s surface so the intrinsic impedance of the
wave remains the same at the interface. Therefore, the relations
between tangential ( - and -) components of the electric field

and magnetic flux density or normal ( -) and tangential ( -
and -) components of the magnetic flux density at any point of
the conductor/dielectric interface can be written in the form [7]

(2a)

(2b)

(3)

where time-domain functions and are defined as

(4)

(5)

and where is the -order modified Bessel function.
The conditions in (2) and (3) are of the Leontovich order of

approximation. Note that they are the first nonzero terms in the
asymptotic expansions representing high-order SIBCs [7].

III. FIT

The example of the orthogonal dual mesh used in FDTD and
FIT is shown in Fig. 1. In FDTD, the nodes, where electric and
magnetic fields are calculated, are located at the middle of edges
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Fig. 1. Cartesian computational cell used in the FIT and FDTD method.

and in the middle of facets, respectively. In FIT, state variables
are the so-called grid voltages and grid fluxes related with edges
and facets [1]

(6a)

(6b)

Here, and are the cell’s edge and facet, respectively, and
the vectors and are directed along the edge and normal to
the facet, respectively.

Faraday’s law in integral form applied to the facet ABCD
of the computational cell shown in Fig. 1 can be written with
variables (6) as follows:

(7)

Material relations between and are obtained by introduc-
tion of a virtual continuous component at the intersection
point of the dual and primary grids [1]. Since the normal vector
to the dual facet is collinear with the direction of the intersecting
primary edge, one obtains

(8a)

Similarly, a virtual magnetic flux density is allocated as a
continuous normal component at the center of the primary facet
so that

(8b)

IV. SIBC-FIT FORMULATION FOR CARTESIAN GRIDS

Suppose facet ABCD of the cell shown in Fig. 1 belongs to the
dielectric/conductor interface. To truncate the mesh, additional
equations relating , and and containing material
properties of the conductor are needed.

Performing integration on both sides of (3) over the facet
ABCD and applying vector identities, we obtain

(9)

where the quantity is assigned to the facet ABCD.

Application of Stoke’s theorem to the last equation yields

(10)

From Fig. 1, it follows that

(11)

where and are unit vectors of the global Cartesian
coordinate system shown in Fig. 1 and . Substituting
(11) into (10) and taking into account that

we obtain

L

(~n� ~B) � d~l = �

L

( ~BDA)ydlDA = �B
virt

1 Le = �
L

S
b1

L

(~n� ~B) � d~l = �

L

( ~BAB)xdlAB = �B
virt

2 Le = �
L

S
b2

L

(~n� ~B) � d~l =
L

( ~BBC)ydlBC = �B
virt

3 Le = �
L

S
b3

L

(~n� ~B) � d~l =
L

( ~BCD)xdlCD = �B
virt

4 Le = �
L

S
b4

(12)
where

Substitution of (12) into (10) yields the SIBC (3) in variables of
FIT

(13)

Substituting (13) into the Faraday law (7) we obtain the
analog of (2)

(14)

The relations in (13) and (14) are the desired SIBCs in terms of
circulation of the electric field and magnetic flux.

V. SIBC-FIT FORMULATION FOR TETRAHEDRAL GRIDS

The conditions in (13) and (14) can be generalized for tetra-
hedral grids. Let facet ABC of the tetrahedron, shown in Fig. 2,
be a part of the conductor/dielectric interface.

In this case, the SIBCs can be written in the form:

(15)

(16)
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Fig. 2. Tetrahedral computational cell.

Fig. 3. Geometry of the test problem.

where

, is the angle between facets and is
the angle between facets and , and is the angle
between facets ABC and ACD.

VI. NUMERICAL EXAMPLE

In order to test the formulation on a simple example, we
considered the two-dimensional problem of a line current
placed at point radiating over a half-space (Fig. 3). The
electric field was observed in point .

The field was computed by means of an FIT code. The com-
putational domain was discretized into a 100 100 Cartesian
grid made of one layer of three-dimensional Yee cubic cells with
side length m. We implemented condition (13) over
the interface, using recursive formulas given in [4] for the con-
volution. Mur’s first-order absorbing boundary conditions were
used at the other boundaries.

The following current pulse was considered (Fig. 4):

(17)

with , where the time step was chosen
as .

The computed results were compared with the exact solution
of the problem in the time domain, obtained from the solution
in the frequency domain reported in [2] by means of the inverse
fast Fourier transform algorithm.

The Fourier transform of in (17) was derived analytically

(18)

Fig. 4. Current pulse I(t).

Fig. 5. Electric field at the observation point for y = 20�; x = 10�;� =
10 S/m; (k � ) = 0:0279; (� =y ) = 1:105e .

and then substituted in the expression of the electric field at the
observation point [2]

(19)

where .
Following [2] and [8], we described the problem using two

parameters: and , where is the wavenumber
at the peak of the spectrum of the current pulse and is the
skin depth also at the peak of the spectrum. The condition

assures we deal with a good conductor. The
condition implies that within the conductor
the variation of the electromagnetic field in directions along
the surface is small compared to the variation in the normal
direction so that the surface impedance concept can be applied
[8]. Both conditions must be satisfied in order to obtain accurate
results from the developed code, as in Figs. 5 and 6. Differences
between the exact and the computed field were noted at low
values of conductivity, as in Fig. 7, when .

The discussion of the computational saving when using
SIBC for the case of FDTD can be found in [2]. Since FIT
over Cartesian grid is computationally equivalent to FDTD, as
shown in [1], the same analysis is valid here. More specifically,
the presented numerical example was solved using 54 MB of
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Fig. 6. Electric field at the observation point for y = 20�; x = 10�;� =
1 S/m; (k � ) = 0:2796; (� =y ) = 0:0111.

Fig. 7. Electric field at the observation point for y = 40�;x = 10�;� =
0:1 S/m; (k � ) = 27:96; (� =y ) = 0:2763.

memory and each time step was computed in 0.4375 s using a
Pentium IV 1.8-GHz PC with 1.5-GB RAM.

VII. CONCLUSION

Time-domain SIBCs have been obtained in terms of circula-
tion of the electric field and the magnetic flux. The proposed
representation made possible natural implementation of SIBCs
into the numerical techniques employing 2-forms as state vari-
ables for both Cartesian and tetrahedral elements.
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