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Abstract - Various mixed or conventional dual formulations
in magnetostatics can be derived via minimization of the error
functional of the constitutive law written in energy terms and
different ways of considering Maxwell’s equations. This
demonstration allows a better understanding of the equivalence
and the differences between these formulations. The
computational effort and performance of different formulations
are described.

Index terms — Magnetostatics, finite element modeling, dual
formulations, Whitney elements.

I. INTRODUCTION

The interest in dual formulations in electromagnetic field
computation is numerous. In static fields, dual formulations
provide complementary energy bounds which permit
calculation of global quantities such as impedances with
minimum computational cost. Regarding the accuracy of
results, there exists also a complementary feature: one
formulation gives good results of the magnetic flux or the
electromotive forces while the other provides better results
for magnetomotive forces or currents. In addition, the dual
formulations provide an efficient tool for the estimation of
the local computation errors. This is helpful for adaptive
mesh refinement.

Different dual formulations in terms of potential or field
variables have been developed. The most commonly used
formulations are the conventional scalar potential and the
vector potential formulations. Mixed dual formulations have
drawn much attention of some authors in recent years. They
work directly with the field variables whereas the potentials
are introduced in weak forms [1]. The dual mixed systems
can be solved either simultaneously [2] or separately [3].

In this paper, we intend to show that all these formulations
can be derived from the minimisation of the error function of
constitutive laws via the energy approach. Another type of
dual formulations based on the use of the tree technique to
ensure Maxwell’s equations, can also be established. These
formulations, having advantage of reduced number of
unknowns and no need of gauge condition, do not however
attract much attention in the community.

The present work allows a better understanding of the
theoretical and numerical equivalence as well as differences
of these diverse formulations. The computation effort and the
performance of these formulations can be compared.
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II. MINIMISATION OF ERROR FUNCTIONAL

Consider a magnetostatic problem in a bounded region .
The boundary of Q is split in two: 0Q = TI,UIy, and the
intersection of T, and T is empty. For simplicity of
description, we assume the following boundary conditions
hold : n-b=0 on I', and nxh=0 on T7. This problem can be
solved by minimising the following functional:

iew(h,b)d9=£{j:h-db +j0hb-dh—b-h}d§2=min, M

where €, is an error function of the constitutive law [4] as
illustrated in the cross-hatched region in Fig.1.
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Fig.1. Error function of the constitutive law.

Taking the variation of (1) with respect to b and h,
respectively, leads to two coupled equations:

jlb-deQ—jhﬁbdQ:O 2.2)
Qu Q

—Jb-&th+Iuh-8th=O 2.b)
Q Q

Considering the continuity of the fields, b and h should be
solved in the div-conform and curl-conform spaces,
respectively,

Sav = {b € ILXQ), divb e L? (Q)},
Seun = {h € ILA(Q), curl h e IL? (Q)},

where L? and IL? are the Hilbert spaces of square integrable
scalar and vector fields over 2, respectively.

Equations (2) must hold for any variation of b and h.
Using the Galerkin approach, the variations Sb and 8h can be
replaced, respectively, by the test functions b' € Sy and h' €
Scut- The spaces Sgy and S.q are to be approximated by
appropriate finite elements.

There exists a set of natural adapted elements, named
Whitney elements, to interpolate different electromagnetic
variables [5]. They are the first order nodal elements WP,
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which ensure C° continuity of a scalar variable: the edge
elements W' and the facet elements W? which match,
respectively, the tangential continuity and the normal
continuity of a- vector variable; and the piecewise constant
volume elements W’. To approximate Sy, and S., the
Whitney face and edge elements W? and W' are two suitable
spaces.

Equations (2) must be solved together with Maxwell’s
equations in magnetostatics: div b = 0, curl h = j and the
boundary conditions. Depending on how the Maxwell
equations are matched, we obtain different formulations.

Before the derivation of formulations, we express first the
excitation current j by a source field (current vector potential)
t such that curl t = j. It can be noted that t defined in this way
is not unique, but any field fulfilling curl ¢t = j works. A
particular case is calculating t using Biot-Savart’s law. In this
case, t is calculated in the whole region and this can be time
consuming. The most convenient way is to set t in a simply
connected region €, including the excitation coil with the
boundary condition n X t = 0 on 9, and to calculate it using
a finite element approximation [6]. After doing that, the
magnetic field h is split into a curl free field h, and the source
field t: h = h, + t. Equations (2) become

]
j—b'-bdQ—jb'-h,dQ: jb'-tdQ 2'.2)
Q,’L Q Q

—J-h"bdQ+J.uh'-hr dQ:—J'ph'-tdQ
Q Q Q

1

@2'b)

III. MIXED FORMULATION WITH SIMULTANEOUS SOLUTION

Maxwell’s equations can be imposed as constraints using
Lagrange multipliers. In this case, (2'.a) and (2'.b) are solved
simultaneously together with the constraint equations [2]:

Findbe W2 h,e W,!,ae W,2and ¢ € W’ such that

Jlb'-bdg—jb'-hrdg+jdivb'¢d§z = [btdQ
ot Q Q Q,
Vb'e W, (3.2)
—J.h'-bdQ+juh'-hrdQ+jcurlh‘-adQ =—jph'-td§z
Q Q Q Q

Vhe Whl

@3.b)
Jq"divbdQ =0 VoeW (o
Q

Ja‘-curlhr dQ=0 VaeWsd (3.4

Q

The subscript b on W2 h on W' and on W? means the
boundary conditions are included in Whitney element spaces:

Wyi={be Wzln-b=00nrb}
Wi'={he W'Inxh=0o0nTy}
Wl={ae W!Iin-a=0onT}}

The Lagrange multipliers a and ¢ in (3) are nothing else
but the magnetic vector and scalar potentials. Their
approximation is not conformal because a is approximated in
W2 instead of W' and ¢ is in W* (volume elements) instead of
WP (nodal elements). Therefore the name mixed formulation.

This formulation was reported in [2]. But the multipliers
given there are a/i and u¢ instead of a and ¢. In our opinion,
this introduction of the permeability p in Lagrange
multipliers is not necessary.

The magnetic vector potential a given in this formulation is
not unique. A gauge condition is necessary to ensure its
uniqueness. Two solutions are possible. The first is to impose
the gauge condition div a = 0 as a constraint using again the
Lagrange multiplier [2]. An additional multiplier A is then
introduced. Equation (3.d) is modified to (3'.d), and the
equation (3.e) is added.

J.a“curlhrdQ+Jdiva'de=O' VaeW? (3.d)
Q Q
VAe W

J'w-divadsz =0 (3.¢)
Q

Another possibility is to include the gauge condition div a
= 0 in the facet element space W2, This can be done by
reducing the facet element space to a set of independent
facets [3]; or by further expressing a by the curl of another
potential. The reduction of facet element space can be
achieved using a tree technique as described in section V.

It must be noted that the gauge condition for a is not
indispensable from the numerical point of view. The system
still converges without the gauge condition [7].

The whole matrix system resulting from this formulation is
symmetrical and semi-positive definite. It is a very big
system. The number of unknowns is ned + neh + nd + 2n, if
(3'.d) and (3.e) are used for the uniqueness of a. It is n° + n,"
+ n if the facet elements space is reduced to ensure the
gauge condition, or n® + n." + n" + n, if no gauge condition is
imposed. n®® and n{* are numbers of facets excluding those on
the boundary T, and T}, n." is the number of edges except
those on I', and n, the number of tetrahedra.

IV. DUAL MIXED FORMULATIONS
Let us express h, = — grad ¢ in (2'.a), and solve divb =0
over . We get the following mixed formulation:

Find b € W,”and ¢ € W* such that

jlb'~bd9—fdivb'¢dn= Ib'-tdQ Vb'e W2 (4.2)
Qu Q Q

qudivbdg =0 Ve W (4b)
Q

This formulation ensures the normal continuity of b. The
approximation of ¢ in W? is not conformal. The flux
conservation law div b = 0 is strongly imposed in an average
sense over the domain Q.



Similarly, writing b = curl a in (2'.b), and sol%curl h, =
0, leads to a mixed formulation, dual of the preceding one:

Find h,e W' and a € W, such that

J'uh'-h, dQ—jcurlh'-adQ:—J‘uh“tdQ

Q Q Q, .
Vh'ew,! E

J.a’~curlh, dQ=0 Va'e W’ |

Q
The approximation of h, in W' is conformal and ensures the
tangential continuity of h. The curl free condition of h, is
ensured on average over Q. The approximation of a is not
conformal. A gauge condition such that div a =0 can be
imposed to guarantee the uniqueness of a as described at the
end of the section III.

These mixed formulations are suggested by [1] and
developed in [3]{7]. In reference [1], they are derived from a
bilateral approach using Tonti’s diagram. In [3], it is
mentioned that the formulation (4.a) comes from the weak
form of the equation h = h, — grad ¢, and the formulation
(5.a) is the weak form of the equation b = curl a. A little
difference in (5) can also be noted. In our approach, the
current density is represented by the source field curl t.
Whereas in [1] and [3], the current density is directly
included in the formulation:

Vhe Whl

fuh'-hdﬂ—fcurl h-adQ=0 (5'a)
Q Q

Ia“curlth:ja’-de

Q Q

The two matrix systems of dual mixed formulations (4)
and (5) are symmetrical and semi positive definite. The
number of degrees of freedom of the formulation (4) is n? +
ncand in (5), itis n." + 0" + n, or n." + n" - n, depending how
the uniqueness of a is ensured, or n." + nf if the gauge
condition is not imposed.

VaeW,? (5b)

V. DUAL FORMULATIONS USING TREE TECHNIQUES

Another way of taking into account div b = 0 and curl h, =
0 is by introducing them, respectively, in the spaces W,* and
W,!. These spaces are defined as:

Wk = (be W Idivb=0inQ},
Wi2o={he W,' lcurlh=0in Q}.

Noting that Wy% is the kernel of div in W,? and W,y is the
kernel of curl in W,,!. They are two orthogonal spaces, i.e.

ju-de=0, for ue Wy’ and ve W'y
Q
Solving b in W2, and h, in W5, the two equations (2'.a)
and (2'b) are uncoupled due to the orthogonalty. We get

respectively, a b-oriented formulation and a h-oriented
formulation.

Find b € W2, such that
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flb'-bd9=fb'-td9, VbeW (6)
ot Q,

Find h,e W', such that
J.Mh'-h,dQ=‘fuh"tdQ Vhe Wyy (7)
Q Q

) .. The spaces Wy’ and W'y can be defined using the
* ‘Wkpanning tree technique. Taking first the case of edge element

space W,!. The space Wylo is constructed by a spanning tree,

i.e., a set of edges spanning all nodes but forming no loops.

The degrees of freedom are associated with the branches of

the tree. In a mesh of n, nodes, the number of branches of the

tree is n,—1. Considering the boundary condition on I, the

...spumber of unknowns is nn". This is the number of nodes
k excluding those on T,

The same idea can be applied in W,” to built W%. The
degrees of freedom are a set of independent facets that do not
form a closed surface. It can be proven that the number of
independent facets, in the case of a simply connected domain
containing no cavity, is the number of facets minus the
number of tetrahedra: n; — n. According to Euler’s identity,
this is equal to n,— n, + 1, i.e. the number of branches of the
co-tree. Removing the degrees of freedom from T3, the
number of unknowns is n.’ — n?, n. and n,’ are the number
of edges and nodes except those on the boundary I,

VI. DUAL FORMULATIONS IN TERMS OF POTENTIALS

The space Wb20 can also be approximated by the curl of the
edge element space W', because curl W' is the kernel of the
divergence in W2 Similarly, Wi'o can be approximated by
the gradient of the nodal elements WY, since grad W? is the
kernel of the curl in W'. This approximation amounts to
introducing potential variables such that b = curl a and h, = -
grad ¢. We get the following conventional potential
formulations:

Findae Wbl such that

j curla'- t dQ VaeW, (8)

Jl curla'-curladQ =
ot Q

1

Find ¢ € W2 such that

J”gradcb‘-tdﬂ VoeWS (9

Iugradcp‘ -grad$dQ =
Q Q,

The main inconvenience of the formulation in terms of
potentials is the necessity of a gauge condition to ensure their
uniqueness. The gauge condition in (9) is easy. It is only
necessary to fix the value of ¢ on the boundary TI'. The
number of unknowns is n,", the same as in formulation (7).

The gauge condition in (8) can be set by a-w = 0, where w
is a field formed by the edges forming a tree [8]. The number
of unknowns is equal to the number of branches of the co-
tree, except those on T n — nl. It is the same as in
formulation (6). We note that the vector potential formulation
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obtained in such a manner is automatically compatible [6],
because the current density is expressed by the curl of a
source field and this source field is projected on the curl of
edge element space. In this case, the system converges when
using an iterative solver without an explicit gauge [6].

VII. DISCUSSION AND CONCLUSIONS

The minimization of the error energy functional leads to
two dual equations in terms of b and h. Depending on how
Maxwell’s equations are taken into account, we get different
formulations. These formulations can be divided in two
categories: the mixed formulations (3) and (4), (5), and the
ordinary unmixed formulations (6), (7) and (8), (9).

In the mixed formulations, Maxwell’s equations are taken
into account either by the constraint equations using
Lagrange multipliers; or by expressing h and b in potential
variables and approximating them in weak forms. In these
formulations, Maxwell’s equations curl h = j and div b = 0
are satisfied, although strongly because no integration by
parts is performed to reduce the order of partial derivatives,
but in average over the domain. The mixed formulation using
Lagrange multiplier method leads to a very big algebraic
system with all field and potential variables as unknowns.
Although we can obtain b and h at once, the computation cost
for the inversion of the system is very high. The system is
split in two ((4) and (5)) if h, in (2'.a) and b in (2'b) are
expressed by potentials. The formulations (4) and (5) are
nearly equivalent to (3), but from the point of view of
computation cost, it is much more economical to solve two
smaller systems than solving one big system.

The advantage of the mixed formulations is that they work
directly with the field variables and avoid some problems
encountered in conventional potential formulations such as
the cuts in the scalar potential formulation. The main
inconvenience is that the number of unknowns is very high.
Appropriate solvers must also used to solve non-positive
definite matrix system. Otherwise, in the mixed formulations,
gauge condition for the uniqueness of the vector potential is a
matter to be considered.

In the ordinary unmixed formulations, the equations curl h,
= 0 and div b = 0 are introduced in the Whitney elements
spaces. This can be done either by introducing potential
variables or by using tree techniques. The introduction of
potentials leads to conventional scalar and vector potential
formulations (9) and (8). The problem to be solved in the
scalar potential formulation is the need of cuts to avoid multi-
valued potentials in the case of multiply connected regions.
This problem can be eliminated if the source field t is set in a
simply connected region containing conductors. In the vector
potential formulation, the most cumbersome problem is the
necessity of gauge to ensure the uniqueness of a. It has been
proven that explicit gauge is. not indispensable when using an
iterative solver and if the system is compatible [6]. Because
in this condition, the system converges to a solution and any
solution of a provides a unique solution of b. However, in the
case of a direct inversion method, a gauge condition is
necessary because the matrix is singular without gauges.

Using the tree techniques to account for the divergence
free of b and curl free of h, leads to the dual formulations (6)
and (7). This enables working directly with field variables.
The number of unknowns is exactly the same as for the
corresponding potential formulations but the cumbersome
gauge condition for the vector potential is avoided. It should
be noted that although the number of unknowns in these
formulations is the same as those of the potential
formulations, the conditioning of resulting matrices may
different. Also, these matrices are denser than those for
potential formulations, because the interaction is between the
branches of the tree which form a loop (or a closed surface)
together with a branch of the co-tree instead of the interaction
between elements in the conventional formulations. The
sparsity of the matrices depends on how the tree is
constructed. The construction of the tree must be optimal in
order to minimize the number of non-zero terms in the
matrix. These formulations are of practical interest, because
no gauge condition is needed and the field quantities are
obtained directly. Moreover, these formulations can be easily
applied to solve problems in multiply connected domain or in
domain containing cavities (case of electrostatic field, for
example), provided that additional components are added in
the tree to form necessary cuts or links [9][10].

It has been shown in this paper that different dual
formulations can be derived from the minimization of the
error energy functional. Maxwell’s equations are strongly
satisfied in different manners in these dual formulations and
the errors lie on the constitutive law. Working with dual
formulations is of considerable interest as indicated in the
introduction. The difference, the equivalence as well as the
efficiency of these formulations have been analyzed and
compared.
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