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ABSTRACT: In many test situations, a known measurement is expected or a type of defect
can be anticipated. Aknowledge of the expected results (a template) allows asking the perti-
nent question: “Given the data taken, and given knowledge of the template, what is the prob-
ability that the expected object (or event) is present?” Two examples of the usefulness of this
approach are presented. The first is a test for the presence of wires in tire belting (Roemer,
1991), based on the knowledge of how a single wire behaves under the given test. The instru-
mentation is an eddy current bridge. The second example is testing for a known type of defect
(created for illustration of the test) in a steel bar. The magnetic field surrounding the bar
(when direct current is passed through the bar) is used as the tested quantity; the template
is the computed ( by the finite element method [FEM]) magnetic field normal to the bar
surface (Silvester, 1990). In both cases, the expected location of the object is identified, along
with related information on the tested object. In both cases, the Bayesian approach focuses
attention to the question of interest, “What is the probability that the test hypothesis is true?”

1. Introduction

Many measurements made of physical structures result in the need to sense a large volume
of space. Quite often, measurements extend to regions far removed from the source of the
signal which is sensed. Though we might normally expect a localized signal to be necessary
to locate a physical structure, a diffuse signal of known variation can also be effective inlocat-

ing a structure.

The starting point in all problems is Bayes’ theorem (Bretthorst, 1988), which is:
’ P(D|I)

where H=Hypothesis to be tested

I= prior information

D=data. The termsin Bayes’ theorem are identified as the prior probability, P(H|I), which
carries a weight due to prior information. If we profess complete ignorance of any prior infor-
mation, then the prior is identified as the J effreys’ (or the uniform) prior. The denominator
term, P(D|I), the prior probability of the data, does not depend on the hypothesis; thus it
can be ignored (except as a scale factor) in evaluating the probability (or probability density).
The principal term of interest is the likelihood function, p(D|H.,I), which takes on a gaussian
form as the least restrictive form, for a given second moment of the noise (error). (A second
moment of noise corresponds to a noise power). Lower case p respresents probability densi-
ty, and an upper case P respresents probability. The liklihood function is

1 _Swy_r
p(D|H,I) = e > i~fp e

where o is the standard deviation. When the data terms, d;, take on values close to the hy-
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pothesized dependence, f; the exponential term contributes a heavy weight to those terms.
Large differences between the expected function and the observed data, in contrast, will
weight the contributions lightly, due to the large value which appears in the negative expo-

nent.

2. Test Description, tire belting

Tire belting consists of many parallel steel wire bundles, embedded in a rubber medium. The
wire bundles are irregular in cross section to encourage bonding of the rubber to the wires.
Typically, some of the nonuniformity would be due to a wire which would be spiraled about
a bundle of parallel wires. The position of the bundle of wires is to be inferred by using eddy
current apparatus; an alternating current bridge formed by two inductors which are also
probes. Such a bridge is shown in Figure 1.
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Figure 1. Schematic Diagram of Eddy Current Test Instrument

When the wire bundle enters the vicinity of one of the coils, the inductance and loss of that
coil increases, causing an unbalance in the bridge. The effect of this unbalance is sensed at
the detector terminals as a voltage, V. The expected variation of voltage, based on a model
for a single wire (Zatsepin, 1966) is

- kx-x)
YO " fany + O

shown in Figure 2. For each position, x=x;, V(x;) is our template value, f;. The measured
values of detector voltage will be our data, d;. The wire depth below the probe is §; the instru-
ment sensivity is k, which accounts for source voltage and any instrument amplification of
the signal.
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Figure 2. Expected Detector Voltage

The test apparatus configuration and parameters of the above equation are shown in Figure
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Figure 3. Physical Arrangement of Measurement
For the single wire template, uniformity of cross section has been assumed, as well as no inter-
action from nearby wires. When the bridge is used to test a piece of wire belting, a curve
such as Figure 4 is obtained.
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Figure 4. Detector voltage versus distance

Here, the interaction of the different wires is observed, as the probes sense several wires si-
multaneously. Before the probe coils leave the vicinity of one wire, another wire is encoun-
tered. If one applies Bayes’ theorem, asking what is the probability density for finding a wire
bundle at position x and depth § below the probe coils (for an instrument sensitivity k), given
the data d; which are measured and the model (template) f; which are expected, we have

P OKIDD [~ el 3 @120

which yields
P, 6,k|D,]) « [1-ak + bI] 5
where a and b have values (independent of k)
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N is the number of data points, and 47 is the average of the square of the data values. Integrat-
ing the nuisance parameter k (since we do not care about the instrument sensitivity value),
using the Jeffrey’s prior, 1/k, we have

px,01D,I) = f i l[1~ak + BRI

by the method which Bretthorst (Bretthorst, 1988) described for integrating over the nuisance
parameters. The result of this computation is shown in Figure 5, a graph of the probability
density versus wire depth below the probe and horizontal location of the probe.
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Figure 5. Probability density versus positon and wire depth.
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Faults, voids, and damage to steel stock often take a similar for
sions and grinding damage. To illustrate the usefulness of

steel bar was modified to place a slot in the surface.
inch) transverse to the bar by 0.64 cm deep by 1.27 cm (0

3. Test Description, fault in a steel bar

Further, we note that the depth info
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ufacturing quality and uniformity.



as shown in Figure 6. A direct current of 125 Amperes was passed through the bar,

slot

current

Figure 6. Steel bar under test

and the magnetic flux normal to the bar was sensed with a Hall effect probe. A graph of the
magnetic flux measured is shown in Figure 8.
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Figure 7. Test Apparatus
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Figure 8. Magnitude of Magnetic Flux Density Normal to Bar Surface

Carrying out the numerical integration of
" (*(~111, 1 )
, ~= (= - 2.4 f; k
ey [ [ = e S-712) do dk as
where 8§ is the probe height above the bar surface, k the instrument sensitivity, and o is the
standard deviation. The instrument sensitivity and the height are parametersin the template,
fj. The variables x andy, distance along the axis of the bar or transverare to it, are specified

by the data point, d;.
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The location of the highest probability density fell at the location of the center of the man-
ufactured crack. Additionally, since the shape of the magnetic flux density varies with height,
it was possible to confirm the probe height above the bar surface.

Probability Density
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Figure 11. Axial probability density. True location occurs at peak value.

One might also look at the volume of space which the highest 90% of the probability occupied
(or some other figure which the investigator chooses) as a test of goodness of fit for the model.
The relatively small volume of space over which the probability density has significant value-
confirms our choice of the FEM model for the magnetic field.
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Probability Density
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Figure 11. Probability Density Transverse to Bar. True location occurs at peak value.

For ease of fabrication, rounded corners were used in the slot and were not expected to mate-
rially modify the magnetic fields. Both the data and template were based on the magnitude
of magnetic flux density normal to the bar. The use of the absolute value of magnetic flux
density was forced by use of a fluxmeter which was not si gn sensitive.

4. Conclusions

In both cases illustrated, using different templates and instrumentation technologies, a clear
indication of object location was obtained. A reasonable template of expected measure-
ments, when compared to the actual measurements, can provide a good measure of object
location. The form which the computations take, based on Bayes’ theorem, use all the infor-
mation available, while assuming only stationary gaussian noise. The method, because of its
generality and directness in answering the question of interest, should have wider use and
acceptance.
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