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Abstract-The problem of diffusion of transient electromagnetic '
field into a lossy dielectric homogeneous body is solved by using
the perturbations method in the small parameter p, equal to the
ratio of the electromagnetic penetration depth and
characteristic dimension of the body. Time and frequency
domain solutions for the tangential component of the electric
field and the normal component of the magnetic field on the
smooth curved surface of the body (the surface impedance
boundary conditions - SIBCs) are obtained with the accuracy
up to O(p*). It is shown that the proposed SIBCs in the
frequency domain generalize well-known Leontovich’s and
Mitzner’s boundary conditions that provide approximation
errors O(p®) and O(p*), respectively. A numerical example
of using the high order SIBCs with the surface integral
equations in time domain is considered to illustrate the method.

Index terms - Transient scattering, integral equations, time
domain analysis, surface impedance boundary condition, skin
effect, transient analysis, perturbation methods.

I. INTRODUCTION

There is a class of electromagnetic problems in which the
electromagnetic penetration depth in the conducting body is
so short that the variation of the field in the direction
tangential to the body’s surface is much less than the field
variation in the normal direction, so that the complete
equation of the electromagnetic field diffusion into the body
can be replaced by 1-D equation in the direction normal to
the surface of the body. The solution of the reduced equation
can be then used to derive so-called surface impedance
boundary conditions (SIBCs) involving only the external
fields imposed on the outer surface to simulate the material
propetties of the body and to convert thereby a two (or more)
media problem into a one media problem.

In practice, the following SIBC is usually used [1-3]

ﬁxE(t)=—z,*(ﬁxﬁ(t))xﬁ (1)

z - (fj/ {6(:) + %{1 ! [%j h (%H exp(— %J}

where * denotes a time domain convolution product, ,(x)

is the modified Bessel function of the order n and 8(#) is the
unit step function. Note that (1), obtained from well-known
frequency domain SIBC for the planar surface (Leontovich’s
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approximation), is the condition of low order approximation
since it does not take into account the following important
factors: the curvature of the body surface and the field
diffusion in the direction tangential to the body surface. In
frequency domain analysis, SIBCs of high order of
approximation, allowing for both these factors, were
developed by Mitzner [4] and Rytov [5]. Increase of the SIBC
approximation order allows extention of the range of
problems for which the formulations based on the surface
impedance concept can be applicable. Therefore, the
objective of this paper is development of the time domain
SIBCs of high order of approximation, taking into account
both factors.

II. STATEMENT OF THE PROBLEM

Consider a homogeneous body of finite conductivity
surrounded by the non-conductive medium. Let the time
variation of the incident field be such that the penetration
depth 8 into the body remains small as compared with the
characteristic dimension D of the surface of the body.

6 = .jtjop, << D (2)

where 7 is the incident pulse duration. The electric E and

magnetic H fields inside the body can be described by the
Maxwell equations in the following form
V x H=cE+¢,¢,0E/0t 3
VxE=-pdHlt (4 V-H=0 5)
Presence of the condition (2) allows transformation of
equations (3)-(5) by using asymptotic expansion techniques
with the purpose of deriving the normal component of the

magnetic field and the tangential component of the electric
field at the body’s surface in explicit form.

II1. LocAL COORDINATES

Following Mitzner’s approach of deriving the SIBCs
allowing for the curvature of the body surface, we re-write
(3)-(5) in the local quasi-spherical orthogonal curvilinear
system (x,,x,,x,), related to the body surface (Fig. 1):

ANe,H,)) deH,) E,

;xz - ;c3 =e,¢| E, +5,.8& _d_ (6a)
deE,, ) deE,) OH,

(;xz T ;x} = —pee &1 (72)
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where ¢, e, and e, are the Lame coefficients. Equations
(6b)-(6¢) and (7b)-(7c) can be obtained by cyclic permutation
of indexes. The coordinates x, and x, are defined as angles

axi(eleszg )=0 ®)
3

and the coordinate x, is defined as “length” coordinate
directed from the surface inside the body, therefore the Lame
coefficients are written as follows:

e =d, ~x3; e =dy—x;; e =1 ®
where d,, k=12, are the local radii of curvature of the
corresponding coordinate line.

Now we replace the system (x,,x,,x,), containing angle
coordinates, by the system (&,&,,n7) in which all coordinates
are linear (Fig.1). The characteristic lengths associated with
coordinates &, and n are D and J, respectively. For the
smooth surface D =min(d,,d,). Both coordinate systems

“are related as follows:

& =dx; & =X (19)
Equations (6)-(8) with the coordinates (10) are written in the
form (k=1,2):

= d,x,

oH oH H o,

. =(—1)3‘{6E;v, 5,5, ]
on dy-nd di—n T a

aH . oH oE

4 5 b g =oF, +¢&,6,— (11b)
d-n o0& d,-n &, ! o
CE éE E OH

& _ dk & — ( ) o (12a)
on -n a‘:k dk -n 23

d, 5E€2 _ d, aE‘il — é)H'I (12b)

-n o di-nadg T a
oH, + d, dH, (13)

d, &H, ( 1 1 ]
+ ~-=H, +
on di-n 8§ d,-n 9§ d-n d,-n
IV. EXPANSIONS IN THE SMALL PARAMETER

Let us transform to dimensionless variables by choosing
appropriate scale factors. We introduce the basic scale factors

current point at the body surface

Fig. 1. Local orthogonal curvilinear coordinate systems related to the surface.

I, D and 7 for the current, surface coordinates &, and time,
respectively. As the latter it is natural to choose the duration
of the incident pulse. The scale factors for other values can
be expressed as combinations of the basic scale factors:

[n]=pD; [H]=—jg; [E]JLI- P

; 14
T o, D’ (4
Here square brackets denote a scale factor for the
corresponding value. The quantity p in (14) is a small
parameter since it is proportional to 8/D.

With the dimensionless Varlables, (11)-(12) are written in
the form (k=1,2):

g g, 27 aH oE
pla s P P =(-1"*| E,  +a—2=
on  d,-p7 d -pn agk o ot
i oH i oH ~  CE
o - o __ & 2 |\= F +a—] (15b)
d—-ph 8 dy-pn o
9 E. d, ok, 1?
6 PR Ph T pTae (1)
on  dy-pn d,-p7 e i
G Py 4 N_an ) (16b)
di—-pn % d,—pn o5& &t
H,& =~ & 1 : 4 A,
L-pH, > ———=—pY S (17
an imd;—pn imdi—pn &

where a=¢,¢,/(ot) and d,=d,/D, k=12. Sign “~”
denotes dimensionless value. By introducing the scale factors

(14), the small parameter p appears in the field equation
inside the body.

Now we can represent the functions £ and H in the
form of the asymptotic expansions in the small parameter p:
H=Y p"H, E=Yp"E, (18)
m=0 m=0
By substituting the expansions (18) into (15)-(17) and
equating the coefficients of equal powers of p, the following
equations for the expansion coefficients are obtained and
written in the Laplace domain as follows:

_ m=0 o (19)
(E> =(E,),, =(Ey), =(H,), =0
=1 (20)
a(E) /ﬁn (-1 s(H s
(1+sa)(E) =(-1)* 4(H, )M/an
Z( -1y a(E, )5},/5§—S(H)
&<E1)n/&ﬁ‘=—za<ﬁ) &
m=2: 21)

1

AE,),, /aﬁ (&), / d, +(-F s,



(1+sa)(E2)¢ =(-1 [ﬁ(ﬁ ), k/ﬁn—(ﬁo)¢3_k /d~3—k:'

[ 7ok, @& )} — s(H),

i=1

NN, [au? e,

(+sa)(Ey), -Z( Ay,

Af), o a|ad). Ay,
n — H d — 9 - — 5f
A T
m=3 ~ ~ 22)
AE), (B, (B, a(i) =
ok = = S . Sk = l H
G g T g W,
(1+sa)(g )54 =(_1)k ;I ﬂ A/an (H )sx A/d3 kT
). A2 -, }
2 ) 5E 5E I~ é’g =
S| Mk, T B, T AB) | 2

P o d, e 2 &

5(ﬁ1)53_i +ié‘(ﬁ0)§3 i
o d,

1+ sa)(Ey), = >

11]

A, 07 = (F), S +7(H), 347 -

~2 3(H)
85, . O& 2d2 Gk,

The representation (18) has clear physical meaning, namely:

a. The zero-order terms of the expansions (18) give the
solution of the problem in the so-called perfect electrical
conductor (PEC) limit, in which the magnetic field
diffusion into the body is neglected.

b. The first-order terms describe the diffusion in the well-
known Leontovich’s approximation, in which the body’s
surface is considered as a plane and the field is assumed
to be penetrating into the body only in the direction
normal to the body’s surface.

c. The second-order terms yield the correction by taking
into account the curvature of the body’s surface, but the
diffusion is assumed to be only in the direction normal to
the surface as in Leontovich’s approximation. This is
Mitzner’s approximation.

d. The third-order terms and higher allow for the magnetic
field diffusion in the directions tangential to the body’s
surface. This approximation can be called Rytov’s
approximation.

The problems (20)-(22) were solved in succession. The results

substituted in the expansions (18) are represented in the form
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Eg =(-)'sFy, (3% = >R

where superscript “o” denotes the values at the body’s
surface. The Laplace domain functions F, = F,(&,&,s),

(24)

k=1,2, have been introduced as follows
2 3 3 —
F, = p H" P - de fz—k o
Vststa 7 s+s’a 2d,d;
P3 3‘71:2 —‘732;k:2gk‘z_k ﬁo
s+s’a 8dld}, ok

£,
93—k

2 50 2 5o 2730
p3 é Héx i g H?;x i o Hik
32
2(s+s2a)

-k +2 +0(p")
& &, &,

The functions F, describe the perturbation of the external
field surrounding the body due to the field diffusion into the
body and dissipation of the energy by the body.

Finally, by using the inverse Laplace transform and
returning to the dimensional variables, the proposed SIBCs
can be written in the following form (k=1,2):

2
Ef =(-D)""aF /o (26) =Y F ok @D
i=1
F, =T, *H; +MT2 i
B 2d,d, Sk
72 2
Mooy Mt
8did:, Sk
1 SPH.  9’H? OH
+—T3 ¥ ;3-‘f 2‘53—1: +2 1 (28)
2 o8, & 608

Here T, ,m=1,2,3, are the time-functions defined as follows
(0 =(aw) " I (ot/(22))exp(~ ot/(2¢))

T,(8) = (o )_][1 — exp(- o-t/s)]

Ty() = 21(op ) (ett0) " L(0t/(28))exp(- ot/ (2¢))

V. NOTES ON THE APPLICABILITY OF THE METHOD

a. The approach developed is based on the assumption that
the variation of the components of the electromagnetic
field in the directions &;,&, is small compared to the

variation in the normal direction n. This approximation
leads to the following basic restrictions:

- the penetration depth should be much less than the
characteristic dimension of the body (see (2));

- the characteristic dimension of the field variation along
the body’s surface must not exceed the characteristic
dimension of the body by more than one order of
magnitude. This restriction can be written in the
following form:

O(ct)2 O(D)
where c is velocity of light in vacuum.
b. The boundary conditions (26)-(28) have been initially
formulated in the form of asymptotic expansions in the
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small parameter, therefore the following conditions
should be necessarily satisfied:

H,>> pH E >>pE, .;

il - m=0,1,2..

Note that, as a rule the terms of the asymptotic
expansions rise with the order of approximation so that
the expansions are nonconvergent. However, the
calculatations demonstrate that our terms are of the same
order of magnitude. Therefore, expansions (18) can have

the radius of convergence as for normal power series.

c. Because in the expansions (18) the terms of order O(p*)
have been neglected, the SIBCs (26)-(28) are valid only
for the penetration depths for which

pt <<l
In practice it means that if the ratio of the penetration
depth and body thickness is 1/3, then the approximation
error due to neglecting the terms m>3 is about 0.8%.

VI. NUMERICAL EXAMPLE

The SIBCs (26)-(28) have been coupled with time-domain
surface integral equations for the magnetic and electric field
using the approach, described in [3], and then solved by the
marching-in-time technique. To illustrate the theory, the
problem of transient scattering from infinitely long straight
cylinder of round cross section illuminated by a Gaussian
pulse (TE case) has been solved. From Fig. 2 it follows that
d, = and d, =D where D is the radius of the cylinder.

Under these conditions &-
component of the equivalent surface electric current

only  the circumferential

J¥ =n'xH° is non-zero. The components of the expansion

of J* are related to I?,‘; by

(Ja)g, ==(H}),
The scale factor Jie D was used as I; here Jyoe is the

maximum of J™ . The width of the incident pulse was taken

to be D, i.e. g=1. The time 7 =0 corresponds to the time
that the pulse reaches the body.

Figure 3 shows the time-distributions of the terms J,
(solid line), J, (dashed line), 7, (short line) and J; (dotted

Einc

Fig.2. The problem of transient scattering from infinitely long cylinder

line) at point ¢. Final time-distributions of the surface
electric current obtained using the PEC-limit (J°=J,),
Leontovich’s approximation (J*=1J, +pJ, ) and Rytov’s
high order approximation (J*=J, +pJ, +p*J, +p*J;) at
point C are shown in Fig. 4. The parameter p is equal 1/3.
From these figures it follows that the proposed time-domain
SIBCs of high order of approximation improves the accuracy
of the calculations by about 10-20% compared with solving
the problem using standard time-domain SIBC (1) of the
order of the Leontovich’s approximation. Thus the range of

problems for which the approach based on the surface
impedance concept is applicable, is extended.

surface electiic current J°

time t

Fig. 3. The time-distributions of the coefficients of the expansions of the surface
electric current at point C on the contour of the cylinder cross section

—_—
T dptpdy
Jotpdy 407 d, 08

surface electric current

time ¢

Fig. 4. The time-distributions of the surface electric current, calculated in the
PEC-limit (dotted line), in the Leontovich’s approximation (dashed line) and the
proposed high order approximation (solid line), at point ¢ of the surface.
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