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Abstract - Efficient implementation of the time domain surface
impedance boundary conditions on the surface of a
homogeneous lossy dielectric body for the space-time domain
surface integral equations for the electric and magnetic fields
is proposed. The governing equations are transformed by using
the perturbation techniques in the small parameter, equal to
the ratio of the penetration depth and body’s characteristic
dimension. As a result, the terms, containing time-convolution
integrals, are moved from the left-hand side to the right-hand
side of the integral equations, so that the computer resources
required for numerical realisation of the formulations are
greatly reduced. A numerical example is included to illustrate
the theory.

Index terms - Transient scattering, integral equations, time
domain analysis, surface impedance boundary condition, skin
effect, boundary element methods, transient analysis.

1. INTRODUCTION

For many engineering problems, the transient response
from a lossy dielectric body, excited as electromagnetic
scatterer, need be calculated. With the advent of fast
computers, the time domain integral equation techniques are
gaining acceptance. However, until now, they remain
computationally expensive in most cases. The problem can
be essentially simplified, if the electromagnetic penetration
depth into the body is small when compared with the
thickness of the body. Then the conducting region may be
replaced by appropriate boundary relations (surface
impedance boundary conditions - SIBCs) and eliminated
from the numerical procedure.

Recently, the time domain SIBCs were successfully
implemented into the finite-difference time domain method
[1] and the finite element method [2]. Although it is natural
to couple the time domain SIBCs with the time domain
surface integral equations (SIEs), surprisingly, only a limited
amount of work has been reported [3-5]. The reason in
probably that Teshce, who first formulated a time domain
integral equation enforcing the time domain SIBC, pointed
out that direct coupling SIBC and SIE in the time domain is
impractical due to large computation time and storage
required. Indeed, the time domain SIBC necessarily includes
the time-convolution integral that should be calculated at
every time step together with the integral equation. However,
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the computational expense could be greatly reduced if the
time-convolution integrals are moved from the lefi- hand
side of the SIE to the right-hand side. In this case the time-
convolution integrals can be calculated and tabulated in
advance for some time-points and then the result for the
required instant can be obtained by the interpolation. The
objective of this paper is development of the time domain
surface integral equation formulations of the problem in
which the approach, described above, is implemented.

1. STATEMENT OF THE PROBLEM AND GOVERNING EQUATIONS

Consider a homogeneous lossy dielectric body surrounded
by the non-conductive medium. Let the time variation of the
incident field be such that the penetration depth & into the
body remains small as compared with the characteristic
dimension D of the body surface

t/ou, <<D 1)
where 7 is the incident pulse duration. The distribution of the
electric £ and magnetic H fields can be described by
Maxwell’s equations in the differential and integral form:

Inside the body:

VxH =oE +£dE |t (2);

Outside the body:

He - H{Raf("XEe)J’L[ H“]——+

VxE' =—y dl' | (3)

+L[Ax H]x —} ds =27 x H™ )
t'=t-Ric
AxE+ jj{ ( xHe) [ﬁ.Ee]f_
R & R
—L[ane]x—} ds =2nx E™ )
t'=t-Rlc

where c¢ is the velocity of light, S is the surface of the body
the operator L is defined as follows

Lf]=R*+(R) ' & |2
Boundary relations:
(-a) =(7-7):  ax(ixE) =ix(ixE) ©
where superscripts “e”, “i”” and “s” denote the field outside
the body, inside the body and at the body’s surface,

respectively. The superscripts “e” and “/” will be omitted
below to simplify the description of the transformations.
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111. TIME DOMAIN SURFACE IMPEDANCE BOUNDARY CONDITIONS

Condition (1) enables consideration of the problem (2)-(3)
by using the surface impedance concept. As a result, the
following expressions for the tangential component of the
electric field and the normal component of the magnetic
field on the body’s surface were obtained [5,7]:

E, =(-)"*FHL *(T 45 -diDT), k=12, ()

H Z(ﬁHs Joe)¥(T, +(d -3 )T ) (8)

where * denotes a time convolution product, d,, k= 1 2, are
the local radii of curvature, while (&,&,,1) are the principal
curvature coordinates defined as

€ xe, =€, =-n
where Eé ,'é‘:2 ,'é” are the basis unit vectors of the system and
the unit normal vector 7 'is directed outside the body (Fig.1).
The time functions 7,,, 7, , m=0,1, are defined as

T (0) = (s )" Io(0t/(28))exp(- ot/ (2¢))

T(t)= (0[10)_1[1 - exp(— Gt/e)]

0-(&) oo 2l 2)- 1) ol -52)

T(1) =& exp(—ot/¢)
Here I,(x) is the modified Bessel function of order », and
&(?) is the unit step function.

Note that the time domain SIBCs are related to the
frequency domain SIBCs and are often obtained directly
from the latter by using the inverse Laplace transform. In
particular, (7) can be obtained from the following well-
known frequency domain SIBC named after Mitzner [6]:

. g 1+
B = (-1 ——f 08 1+ ~
& =CD 2lig 431+ jy de bk

2/(ooiy) x =ceofc
The SIBCs (7)-(8) are substituted into (4) and (5) with the
purpose to decouple the integral equations. However, direct
" coupling leads to the formulations in which the terms
containing the time-convolution integrals are on the left
hand side of the equations. To avoid this, we use one of the

basic properties of the SIBCs, namely: that E; and H, on

- ] S d}—k Hs

the body surface are less than H;, "by the order of magnitude

of the skin layer thickness. It should be noted that only the
tangential component of the electric field and the normal
component of the magnetic field contain the time-
convolution integrals.

IV. DIMENSIONLESS VARIABLES

Condition (1) means that the variation of the
electromagnetic field in the tangential directions &,&, is

small compared to the variation in the normal direction 7.
The characteristic lengths associated with these variables are
D and 6, respectively. Because 6/D<<1, we can apply the
perturbation techrique to transform the integral equations
and the SIBCs.

As a first step we sw1tch to dimensionless variables,
choosing the following scale factors:
[&,5,1=D; [77] = (6/D)D =pD;, p= T*/(G,UODZ)} )

[H=1/D; [El=wI [ |
where square brackets denote a scale factor for the
corresponding value; I and 7" are the scale factors for the
current and time, respectively. As the latter it is natural to
choose the duration of the incident pulse.

With the dimensionless variables, the SIBCs and the
integral equations are written in the following form:

Su;face Impedance Boundary Conditions:

,( 1Y+ pit . (T +PMTJ k=12; (10)
2 kd3 k
2 NS . ~ ~
éH % 4 —d; T 11
g E ( Podd, (b

L) = a1, (7 2a))exp(~ 7/2a)
T.(t)=1-exp(-7/a)

.’ZN"O'(t) = 5-53/—2[11 [Eta—j - ]0[—2%]:} exp[—é;] + S(T)a_l/2

ﬁ'(t) =q" exp(—?/a)

where d, =d, /D, a=¢,¢,/(ct) and the sign “~” denotes
dimensionless value. Note that functions T, " are related to

the functions f by Duhamel’s theorem

7@ F =L LD 0+ 707 1=2(R.0r70)

By introducing the scale factors (9), the small parameter p
appears in the SIBCs.

Surface Integral Equations:

. = R
<H- H{EEF["XE)”“[" Al
+L1[an]xE} &5 =27 x i (12)
P gk
.= 14¢. 1R
an+%7§ﬁs{§ﬁ7'(an]—Ll[in E]-%~
—g[nxi]xf:i} &5 = 27 x 5 (13)
F=t-gR

where g =D/ (cr) and the operator L, is defined as follows



Ll[f] = R +qR &F [oF
From Maxwell’s equations for free space
iE =gt [ (VB = g Diviix BYE (14)
By substituting (14) into (13) and introducing the equivalent
surface electric current F=nix , the equations (12)-(13)

are written in the form:

d‘=2ﬁxl~1""c+

ZiF-5

&5 =25 x E™ -

fose],

t'=t ~q§

- :s ;; X E - :s
—AxE —EHS{ExL,[an ]}~ ~ ~ds” (16)
t'=t—qR
According to the vector identities, one writes
Ax(RxJ)=-J(7-K) (since ALJ*) amn
ﬁx(ﬁxg[ﬁxESD=—Ll[ﬁxgil(ﬁ-ﬁ) (18)

Substituting (17)-(18) into (16)-(17) and switching to the
internal normal vector n'= -7 , we obtain

o 1| GR) e o S
J':k +E;J.-‘;{TL\[J§]} &5 =(- 1)3 2H‘ﬂl._

6E ( 'x]:()gk LB,
”{R W ]} & a9
a
jj{l [ Do d?":l} &
=2E - +—jf {(" R)L,[Egk]} & (20

Note that the integral equations (19) and (20) involve the
terms of different order of magnitude, namely: the terms

containing Egk or ﬁ,‘; are of the orders of magnitude O(p)

whereas the terms containing H; gk are O(1). Therefore, it is

possible to transform (19)-(20) by using the perturbation
techniques in the small parameter p.

V. PERTURBATION TECHNIQUE

We can represent the electric and magnetic fields in the
form of the asymptotic expansions in the small parameter p:
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E:Zp"'fm; = ipmﬁm; e =ip'"5,; @D
m=1 m=1 m=1

By substituting the expansion (21) into the SIBCs (10)-(11),
the SIEs (19)-(20) and equating the coefficients of equal
powers of p, the following time domain surface integral
equations for the terms of expansions are obtained:

Magnetic field surface integral equation formulation:

5, Lpl@R), T,
Ty 45 L[ 1] (G, }}

m=0,1,2,

ds = (F e ), (22)
=F- qR
k=12

where the right-hand sides F™#" are written in the form:

(Epesny, = (-1 42 (23a)
R I T CREEN
+(-1)* 5‘*A[T *Z( 1y é(Jo),gz }} s (23b)
PeTogk
o 5 0.
Resligor e, |
Ko L{TZ( l)k*“a%uf)g,_,}} & (230
- FoT gk

Electric f eld surface integral equation formulation

lﬁ(J ) (AN ~
JL R [ID DinT%), dF } d =
T'=F-qR
=(F)y s  m=012 - k=12 (24)

where the right-hand sides ﬁ,,f’“ are written in the form:

(Fg')y, = 2B (252)
(F™), =T * (), +

UGB [ =,

E;IL{(—E—)A[TO o), }} a5 (25)

7'=F-gR
:eec " :'s g _;{_ il :'s
By =L * (g — =0Ty +
[t 4

i) R T o
+5;JL{-E—A[TO G J+
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-

+ d '_~d3—k (ﬁ';R

- (25¢)
2dd,, R

AL RN

7‘:7—q1~i

In (23) and (25) we used the following relation:

J=(-tHL kL2
The formulations developed have the following basic
advantages: '

1. The integral equations for the terms of the expansions

* differ only in the form of the right-hand side and can be
solved by the same solving procedures, therefore, new
computational complications do not arise as compared

~ with solving the problem using the well-known perfect
electrical conductor (PEC) limit (m=0);

2. The convolution integrals in the integral equations are on
the right-hand sides only and can be calculated and
tabulated before solving the appropriate integral equation
so that the computer resources required for the
computations are greatly reduced as compared with the
formulation developed by Tesche.

VI NUMERICAL EXAMPLE

We consider the problem of transient scattering from an
infinitely long straight cylinder of round cross section
illuminated by a Gaussian pulse (TE case) by using the
magnetic field integral equation formulation (22)-(23). As
shown in Fig. 1, the coordinate & is directed along the

cylinder so d, = . Since the radius 4 of the cylinder cross

section is constant, then &, =D and (72 =1. Under these
conditions only the circumferential & -component of the
surface electric current is non-zero and the vector can be
treated as scalar. The scale factor J™ D is used as I ; here

J™ s the maximum of J"™. The width of the incident

pulse was taken to be D, i.e. g=1. The parameter ¢ was taken
equal to unity. The time 7 =0 corresponds to the time that
the pulse reaches the body.

Figure 2 shows the distributions of the functions
T =TNE), T =T&) and Ji = J5(&) at time 7 =1.
The coordinate EQ has its origin at point 4 and proceeds
around the contour ending at the point B (Fig. 1). The
function .705 is the solution of the problem in the perfect
electrical conductor limit. In this limit, the magnctic ficld
diffusion into the body is neglected and the current is
assumed to be flowing only on the body surface. Therefore,
by keeping only one term in the expansions (21) it is
impossible to describe the redistribution of the current along
the body surface induced by the field diffusion into the body.
The effect of this process is to smooth out nonuniformities in
the surface current distribution. This effect is of the order of
magnitude O(p) and can be taken into account by the next

terms of expansions. From Fig. 2 it follows that the surface
electric current will increase in the regions where the

function J° is positive and decrease where the function T

is negative. The second-order term .72‘ gives the further

correction by taking into account the principal curvature of
the body surface.

Einc

Fig. 1. The problem of transient scattering from infinitely long cylinder
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Fig.2. The distributions of the terms J; (solid line), J¢ (dotted line) and Ji

(dashed line) of the expansion of the surface electric current over one half of the
cross section of the cylinder
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