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Use of the Perturbation Technique for Implementation
of Surface Impedance Boundary Conditions

for the FDTD Method
Sergey Yuferev, Nader Farahat, and Nathan Ida

Abstract—A new approach to implement a surface impedance
boundary condition (SIBC) for the FDTD method is proposed. The
explicit FDTD formulation for the boundary cell closest to the sur-
face of conducting body is obtained using the perturbation tech-
nique in the small parameter proportional to the ratio of the values
of the electric field at the opposite sides of the cell. The condition of
applicability of the technique is obtained. It is shown that an FDTD
code where the PEC-condition has been already implemented can
be easily upgraded using the proposed technique to take into ac-
count properties of the conducting medium and improve accuracy
of the computation. Numerical examples are included to illustrate
the theory.

Index Terms—FDTD, surface impedance boundary condition,
skin effect, perturbation methods, time domain analysis.

I. INTRODUCTION

T HE goal of the surface impedance concept is to provide ap-
proximate relations between tangential electric and mag-

netic fields on the surface of the conductor (lossy dielectric)
under the condition of skin effect. Then the conducting region
may be replaced by the surface impedance boundary condi-
tions (SIBC’s) and eliminated from the numerical procedure
[1], [2]. The original frequency domain conditions for homoge-
neous body (well-known Leontovich’s SIBC) have been trans-
formed to the time domain form and extended to cover nonho-
mogeneous and nonlinear media [3], [4]. Recently, time domain
SIBC’s of high order of approximation have been developed [5].
At present, different SIBC’s are frequently used in combination
with the FDTD method to restrict the computational grid to the
surface of the conducting region [6]–[9].

All time domain SIBC’s contain time-convolution integrals
that makes their implementation rather complicated because
the finite difference algorithm becomes implicit for the
boundary cell whereas it remains explicit for other cells of the
grid. To compute efficiently the time convolution integral in
Leontovich’s SIBC, Oh and Schutt-Aine [7] approximated the
impedance function of the lossy dielectric medium with a series
of first-order rational functions. Finally it provided explicit
formulation for the boundary cell. Although this approach can
be applied to the SIBC’s with other impedance functions, a

Manuscript received October 25, 1999.
S. Yuferev is with The University of Akron, Akron, OH 44325-3904 USA,

on leave from Ioffe Physical-Technical Institute, Russian Academy of Sciences.
N. Farahat and N. Ida are with The University of Akron, Akron, OH

44325-3904 USA (email: {yuferev, nader1, ida}@uakron.edu).
Publisher Item Identifier S 0018-9464(00)05649-1.

Fig. 1. One-dimensional FDTD grid.

new approximation should be done in every case. In this paper
we propose another way based on the fact that the electric field
on the surface of a lossy dielectric body is less than in the pure
dielectric medium near the surface. Thus the FDTD formulation
for the boundary cell can be transformed using the perturbation
technique in the small parameter proportional to the ratio of
the values of the electric field at the opposite sides of the cell.
Note that no consideration of the impedance function is now
required to obtain explicit formulation for the boundary cell.
So this method seems more general since it is suitable for all
SIBC’s without any preliminary approximations.

II. FINITE DIFFERENCEEQUATIONS

Without any loss of generality and to symplify mathematical
description, we consider a one-dimensional problem of an elec-
tromagnetic pulse travelling in nonconducting space normal to
the plane infinite surface of the lossy dielectric medium shown
in Fig. 1. Then the Maxwell equations for nonconducting region
take the following form:

(1)

(2)

Since the electric and magnetic fields have only one component,
subscripts “ ” and “ ” can be omitted.

The electric and magnetic fields on the interface between two
media are related by a SIBC that can be written in the following
general form:

(3)

where the time domain impedance functionis known.
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Finite difference equations for the boundary k-cell at the
n-time step can be obtained from (1), (2) and written in the
form of Yee’s algorithm:

(4)

(5)

The SIBC (3) in the discrete space and time can be written in
the form:

(6)

Substituting (6) into (4), we obtain:

(7)

Since the function involves the time convolution product, (7)
cannot be solved with respect to by analytical methods.
This makes the algorithm implicit for the “boundary” cell.

III. PERTURBATION TECHNIQUE

Since is related to the interface whereas is related
to the dielectric medium, we can assume that

(8)

Thus (4) contains terms of different orders of magnitude so we
can transform this equation using the perturbation technique.
As the first step we transfer to nondimensional variables by
choosing appropriate scale factors.

Let be the characteristic scale for variation of so
that we can write

(9)

Here and below the sign “” denotes nondimensional values.
Using (8), the scale factor for can be represented in the form:

(10)

(11)

where is the small parameter. Thus we obtain

(12)

Since quantities and are of the same order of
magnitude, they should have a common scale factor that
can be defined from (4) as follows:

(13)

Using (13), nondimensional values and can be
represented in the form:

(14a)

(14b)

With the nondimensional variables, (4) takes the form:

(15)

We represent the function for which the solution is
sought in the form of expansions in the small parameter:

(16)

Substituting (16) into (15) and equating the coefficients of equal
powers of , we obtain equations for and :

(17a)

(17b)

Therefore, we developed a two-step technique: firstis calcu-
lated in (17a) and then is calculated in (17b).

With the dimensional variables, formulation (17) takes the
form:

14a (18a)

(18b)

(19)

It is easy to see that the formulation (18), (19) is explicit because
the term containing the impedance function is now on the right
hand side of (18b).

Note that we do not actually know the exact values ofand
. Both of them are required only at the stage of derivation

and they are obviously not included in the final formulation (18),
(19). All we really need to know is that condition (8) is satisfied
(and, consequently, (11) holds).

Let us emphasize that the representation in (19) has clear
physical meaning, namely: is the magnetic field calculated
under the assumption that medium 2 is a perfect electrical con-
ductor (PEC) and the electric field at the interface is zero;
is the correction allowing for finite conductivity of medium 2.
Therefore, an FDTD code where the PEC-condition has been
implemented can be easily upgraded by adding (18b) to the for-
mulation for the boundary cell.

IV. CONDITION OF APPLICABILITY OF THE TECHNIQUE

We will perform the derivation in the frequency domain con-
sidering propagation of a uniform plane wave from region 1
( ) to region 2 ( ) (Fig. 1). Because of reflec-
tion, the following waves travel in both regions:

Incident wave: (20a)

Reflected wave: (20b)

Transmitted wave: (20c)

where
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Since the total electric field is continuous at , the reflection
coefficient can be represented in the form:

(21)

It is natural to assume that

so that (22)

Then the reflection coefficient can be represented in the form:

(21)

where

where is the loss tangent of medium 2.
Using (21), we write the total electric field in medium 1 in

the form:

(22)

Setting in (22), we obtain the total field on the interface:

(23)

The ratio of (21) and (22) gives the variation of the field in
medium 1 with respect to the field on the interface:

(24)

Our goal is evaluation of the electric fields on the opposite sides
of the “boundary” cell (see Fig. 1). Usually, more than 10 cells
per wavelength are taken in computations. Thus

(25)

Expanding and in a Taylor series and
taking into account (25), we represent (24) in the form:

(26)

Fig. 2. Distribution of the magnetic field at the interface (1-D case).

Fig. 3. Distribution of the magnetic field at the interface (1-D case).

Setting , we obtain:

until

(27)

The error due to the representation in (18) is derived directly
from the condition in (27) and written in the form:

(28)

V. NUMERICAL EXAMPLES

The formulation (18), (19) has been used for implementation
of the following time domain Leontovich SIBC for 1-D and 2-D
FDTD codes:

(29)
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Fig. 4. Distribution of the magnetic field at the interface (2-D case).

Fig. 5. Distribution of the magnetic field at the interface (2-D case).

where “ ” denotes the time-convolution product, is
the modified Bessel function of order and is the
Dirac function.

A. One-Dimensional Case

A normally incident TM plane wave with the following ma-
terial parameters of a dielectric half-space has been considered:

Excitation

sec

The following parameters of the mesh were used:

m sec

-

Fig. 2 demonstrates distributions of the magnetic field at the in-
terface obtained for the material with low loss tangent

. The curves were obtained using the PEC-condition (dotted
line), exact formula (7) (dashed line) and the proposed formula-
tion (18), (19) (solid line). The error is significant as it is given
by (28) . For the material with high loss tangent

the 2.4% error (Fig. 3) is in agreement with the
formulation .

B. Two-Dimensional Case

We considered the problem of oblique incidence of a TM
pulse at plane boundary. We used the same parameters for the
material and excitation as in the 1-D case. The following param-
eters of the mesh have been used:

m - -

The incident angle was equal to 60 degree. The magnetic field
was computed in the middle of the dielectric surface for both
the exact and proposed methods. Figs. 4 and 5 demonstrate the
results obtained for materials with low- and high loss tangent,
respectively.
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