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Invariant BEM-SIBC Formulations for Time- and
Frequency-Domain Eddy Current Problems

Sergey Yuferev, Nathan Ida, Senior Member, IEEE, and Lauri Kettunen

Abstract—We demonstrate that frequency- and time-domain
boundary integral equation formulations involving the surface
impedance boundary conditions (SIBC’s) can be transformed to
invariant forms that depend only on the geometry of the problem
and do not contain temporary parameters of the field. Thus the
integral equations have to be solved only once for a given system
of conductors and then the results for any source field (steady
state or transient) can be easily obtained. We considered both
low- and high-order SIBC’s so that the formulations obtained can
be applied to a wide range of skin effect problems. A numerical
example is included to illustrate the theory.

Index Terms—Boundary element method, perturbation
methods, skin effect, surface impedance boundary condition,
surface integral equations.

I. INTRODUCTION

I N RECENT years the boundary element method (BEM) has
come to be widely used for calculations of electromagnetic

field under condition of skin effect in systems of conductors.
Indeed, if the skin depth remains small, this method gives a
practically ideal scheme for solving the problem: for functions
in the dielectric region one writes an integral equation over the
surface of the conductor with the use of the fundamental solu-
tion of Laplace’s equation, and extra unknowns are eliminated
by means of surface impedance boundary conditions (SIBC’s)
which can be of low- or high-order of approximation [1], [2].
However, the formulations constructed by this scheme have one
general shortcoming: the integral equations contain parameters
or operators specifying variation of the field in time (angular fre-
quency for time-harmonic case or time-convolution integrals for
transient case). Thus, if these parameters are changed, the inte-
gral equations must be solved anew, and for a transient field this
must be done at each time step. Therefore, it is of theoretical and
practical importance to derive an invariant form of the formula-
tion of the problem in which the integral equations for a given
system of conductors are determined solely by the geometrical
parameters of the system and do not depend on the time depen-
dence of the passage of current. The invariant forms for 2-D for-
mulations in terms of – and – formalisms involving low
order SIBC’s were developed in [3]. In this paper we present
a general technique for both low- and high-order SIBC’s. The
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magnetic scalar potential formalism is used to cover 3-D prob-
lems.

II. BOUNDARY INTEGRAL EQUATION IN TERMS OFMAGNETIC

SCALAR POTENTIAL FORMALISM

Consider a system of cylindrical conductors of homoge-
neous isotropic magnetic material in which currents

(1)

flow from an external source. We use the following decomposi-
tion of the magnetic field in free space to introduce the magnetic
scalar potential :

(2)

(3)

Here is the magnetic field created by an imagined fila-
mentary conductor carrying the current. The field is
obtained from the Biot–Savart law:

(4)

Thus the scalar potential in free space obeys the Laplace
equation and the boundary integral equation method yields the
following surface integral equation [4]:

(5)

Here is the fundamental solution of the Laplace equation
in free space, is the th conductor’s surface, assumed to be
smooth, and the unit normal vectoris chosen inwards.

Equation (5) includes two unknowns so another relation be-
tween the functions and is required. This relation should
be obtained from the consideration of the problem in the con-
ducting region. Under the condition of the skin effect, it is nat-
ural to use the surface impedance boundary condition for this
purpose.

III. I NTEGRAL EQUATION FORMULATION ENFORCING

LEONTOVICH’S IMPEDANCE BOUNDARY CONDITIONS

Let the time variation of the incident field be such that the
penetration depth into the body remains small as compared
with the characteristic size of the body surface

(6)

where is the ratio for time-harmonic case or duration
of the incident current pulse for transient case. Then the normal
component of the magnetic field on the conductor surface can
be expressed in terms of tangential components using the well

0018–9464/00$10.00 © 2000 IEEE



YUFEREV et al.: INVARIANT BEM-SIBC FORMULATIONS FOR EDDY CURRENT PROBLEMS 853

known Leontovich’s SIBC’s [5] that can be represented in the
frequency- and time-domain as follows:

(7)

Here the operator is defined for an arbitrary vector function
as follows

in frequency domain

in time domain
(8)

The asterisk denotes a time-convolution product and the oper-
ator of surface divergence is defined as follows:

(9)

Substituting (2) in (7), we obtain

(10)

Relation (10) is substituted into (5) so that the integral equation
becomes solvable with respect to.

Numerical solution of the time domain integral equation
involving time convolution product is impractical due to high
volume of computer resources required for computation.
Therefore implementation of the formulation (5)–(10) is
usually performed in the frequency domain. However, in the
latter case the formulation unavoidably includes the frequency
of the magnetic field source so the integral equation should be
re-solved if is changed.

On the other hand, taking into account properties of the SIBC
(10) leads to the idea of transformation of (5)–(10) to the form
admitting separation of variables into spatial and time compo-
nents in the general case.

IV. PROPERTIES OF THESIBC

1) The SIBC can be Represented as a Superposition of the
Spatial and Time Commutative Operators:We introduce the
following spatial and time operators

(11a)

in frequency domain

in time domain
(11b)

Then it is easy to see that

(12)

From (11a)–(11b) it follows that if can be represented
in the form

then

(13)

2) The Right Hand Side of the SIBC Includes the Small Pa-
rameter: It is a well-known fact that the normal magnetic field

and tangential electric field in the skin layer of a conductor is
much smaller than the tangential magnetic field. Since in the
limiting case the SIBC becomes the condition on the sur-
face of a perfect electrical conductor (PEC), it is natural to ex-
pect that the small parameter is proportional to the penetration
depth. This property was first discussed by Rytov who used
as the small parameter in his classical paper on calculation of
the skin effect in frequency domain using the perturbation tech-
nique [4]. The situation in the time domain is not as evident,
therefore rigorous analysis in terms of nondimensional variables
is required.

V. BIE-SIBC FORMULATION IN THE INVARIANT FORM

A. Non-Dimensional Variables

We introduce the local orthogonal Cartesian coordinate
system defined as

(14)

where , , are the unit basis vectors. The characteristic
lengths associated with the variables, and are and ,
respectively.

Following the theory of the perturbation methods, we now
switch to the dimensionless variables by choosing appropriate
scale factors. We introduce the basic scale factors, and
for the current, surface coordinates, and time, respectively.
The scale factors for other values can be expressed in terms of
the basic scale factors. The procedure of derivation of the scale
factors has been described in details in [5] so here we give only
the results:

(15)

Clearly, the values and have the same scale factor.
With the nondimensional variables, (5) and (10) take the

form:

(16)

The sign “ ” denotes nondimensional variables. As a result of
introduction of the scale factors and transfer to the nondimen-
sional variables, the small parameterappears in the SIBC and,
consequently, in the integral equation (16).

B. Expansions in the Small Parameter

We represent the magnetic scalar potential in the form of the
power series in the small parameter:

(17)
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Substituting the expansions (17) into the formulation (16) and
equating the coefficients of equal powers of, the following in-
tegral equations for the first and second coefficients of expan-
sions are obtained:

(18)

(19)

The first equation gives the solution of the problem in the PEC-
limit. The second equation gives the correction taking into ac-
count the electromagnetic field diffusion into the conductor in
the direction normal to the surface of the conductor. As we
demonstrate in the next section, both integral equations admit
separation of variables.

C. Separation of Variables

Represent , and in the form:

(20)

(21)

where is given by (1) and . Substituting (20)–(21)
into (18)–(19) and taking into account (13), we obtain the fol-
lowing integral equations for the spatial functionsand :

(22)

(23)

Let us emphasize the main advantages of the formulation devel-
oped:

1) The form of the integral equations, including the right
hand side, is independent of the time dependence of the
magnetic field source and is determined solely by the
geometric parameters of the given system of conductors.
Therefore, by solving the integral equations just once for
a given system of conductors and multiplying the result
by the corresponding time function, one can obtain solu-
tions for any time dependence of the current.

2) Integral equations (22) and (23) differ only in the form of
the right hand side and can be solved by the same pro-
grammed routine; therefore, new computational compli-
cations do not arise beyond those involved in solving the
problem in well-known PEC-limit.

VI. SIBC’s OF HIGH ORDER OFAPPROXIMATION

The Leontovich SIBC (7)–(8) is the condition of low order
approximation since it does not take into account the following
important factors: the curvature of the body surface and the field
diffusion in the direction tangential to the body surface. SIBC
of high order of approximation, allowing for these factors, can
be written in the form [6]:

(24a)

(24b)

Here is the unit step function and , , are the
local radii of curvature of the corresponding coordinate line.
Clearly, the SIBC of low order is included in the SIBC of high
order.

It can be demonstrated that the proposed technique is ap-
plicable to the SIBC (24). Below we describe the final result,
namely: the technique in terms of dimensional variables for cal-
culation of the distribution of the scalar potential over surfaces
of the conductors.

1) Find the spatial functions from the solution of the
following integral equations:

(25)

(26a)

(26b)

(26c)
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(26d)

Here

2) Calculate time functions corresponding to a given
time dependence of the magnetic field source:

(27a)

(27b)

(27c)

3) Find the scalar potential using the following formula:

(28)

If we restrict ourselves by the first term in (28), we obtain the
solution of the problem in the PEC-limit. The second, third and
fourth terms give the corrections of the order of the Leontovich,
Mitzner and Rytov approximations, respectively. The method of
selection the order of the approximation that is best suited for a
given problem is given in [7].

It is easy to see that formulation (25)–(28) keeps all advan-
tages of the formulation (20)–(23) discussed in the previous sec-
tion.

VII. CONDITIONS OFAPPLICABILITY OF THE TECHINQUE

1) The technique can not be applied if (1) is not satisfied. It
means that sources of the magnetic field in the problem
considered must be correlated in time. Otherwise the vari-
ables may be separated only in the equation for the zero-
order term (the PEC-limit)

2) Velocity of propagation of the field is considered as in-
finite. In other words, the technique is not applicable for
high-frequency problems where the displacement current
should be taken into account.

3) The technique can not be applied to nonlinear problems.

Fig. 1. Spatial coefficients of expansions of the surface current density.

VIII. N UMERICAL EXAMPLE

We calculated the distribution of the surface current density
for a pair of identical parallel copper conductors

with circular cross section where equal and opposite directed
single trapezoidal pulses are flowing from an external source.
The radius of each conductor was taken equal to the distance
between them. Vector is directed along the conductor and can
be treated as scalar. Fig. 1 shows the distributions of the spatial
coefficients , along half the cross section
contour of one conductor. It is noted than every coefficient acts
in the direction to smooth out nonuniformities in the distribution
of the previous terms of expansions.

IX. CONCLUSIONS

The technique of separation of variables into spatial and time
components in the integral equation formulations enforcing the
surface impedance boundary conditions has been proposed for
any time dependence of the magnetic field source. Thus the inte-
gral equations depend only on the geometry of the problem and
maintain the same form in the time- and frequency domains.
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