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Abstract: - "Edge" type finite elements are very useful in
computation of electromagnetic fields. Unlike nodal-based finite
elements, they guarantee continuity of tangential components of
the field variables across element interfaces while allowing
discontinuity in normal components. This, in turn, eliminates the
so-called spurious solutions in eigenvalue analysis in cavities.
However, most of the work in this important area is done with
linear, tetrahedral elements. A method for the systematic
construction of first and second order "edge" and "facet" finmite
elements based on the nodal-based conventional elements, and their
use is presented in this work. Higher order elements are also
considered. Both tetrahedral and hexahedral el ts are pr ted

These elements are intimately related to the corresponding
nodal-based elements, allowing an easy implementation in existing
nodal-based finite element computer programs. The elements
constructed are then used for mode analyses in electromagnetic
cavities. Better solutions are obtained compared to linear
elements.

I. INTRODUCTION

"Edge" and "facet" elements were originally proposed in [1] under
the name "mixed finite elements". It was found later that Whitney's
form provides good choices for "edge” and "facet” shape functions
built on a linear tetrahedron [2]. In Cartesian coordinates, the
tetrahedral "edge" shape functions have the simple form a+bxr. These
shape functions are, in addition, divergence free [3]. A consistently
linear tetrahedral "edge" element was provided in [4]. Linear
hexahedral "edge" and "facet” elements were proposed in [5]. "Edge"
finite elements are very attractive for electromagnetic field
computation. Unlike nodal-based finite elements, they guarantee
continuity of tangential components of the field variables across
element interfaces while allowing discontinuity in normal components.
However, to the author's knowledge, there is no systematic way to
construct "edge" and "facet" elements comparable to the well
established, conventional node-based finite elements, although
methods of constructing "edge” finite elements exist [7,8]. This is
explained further by the following observations. i) An "edge” type
element, in contrast to a nodal element, has shape functions with both
magnitudes and directions. The currently used linear tetrahedral
element [2,3] and linear hexahedral element [5], can only provide a
linear variation for directions. In order to have a second order
variation in directions, a curvilinear mapping must be used. ii) The
forementioned elements permit a linear interpolation for the field inside
the element, but only a constant variation for the tangential component
along the edge (or the normal component on a facet) except the
element used in [4]. Obviously, to obtain a consistent linear
interpolation, each edge must have two degrees of freedom [4].
Accordingly, each edge and each facet must have three degrees of
freedom to permit a consistent second order interpolation of the field
everywhere in the element, and so on.
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This paper presents a systematic method of construction of
curvilinear and higher order "edge" and "facet" elements. The
fundamental procedure, based on the work of [4] and [5], is
demonstrated using curvilinear tetrahedral and hexahedral shapes.
Curvilinear "edge" elements are then used for mode analyses in
electromagnetic cavities; no spurious modes are observed.

II. CONSTRUCTION OF CURVILINEAR ELEMENTS .

Our objective here is to construct vector shape functions w;(r)
which can be used to describe vector functions of 1-form and 2-form.
One of the basic requirement is that w;(r) should guarantee tangential
continuity in edge elements and normal continuity in facet elements.
These vector shape functions are easier to construct in local
coordinates, as for the nodal elements. Let the vector shape functions
have the following form:

wilr) = ¢i(6,m,0vi(r), i=1, ..M )

where ¢; (£,1,0) are completely defined in the local systém of
coordinates. Since direction vectors are defined in the global
coordinates, no misunderstanding will be introduced. The jointeffect
of ¢; and v; ensures that w; has a unit projection at node. i, and zero
projection at all other nodes. The following is a systematic. procedure
of constructing higher order and curvilinear vector shape functions:
1. The geometric factor is included in v; and ¢; decides the order of -
the element; )
2. use a standard nodal shape function in local coordinates as ¢;.

Normalize ¢; such that it is equal to ] at node i and zero at other
nodes; .
3. choose v; in an edge element along normal directions of parametric
planes; '
choose v; in a facet element along parametric lines;
normalize v; by the Jacobian [4] such that v;in an edge element
has unit tangential projection along the edge direction; vi in a
“facet" element has a unit normal projection along the facet
normal. ‘
Next, we use this basic procedure to build vector shape functions for
two commonly used shapes.

W

A. Hexahedral Elements

Consider first a hexahedral element in Cartesian coordinates (x,y,2)
as shown in Fig. 1.It can be mapped into a unit box in the local

coordinates (,1,0), through the following coordinate transformation:
n .
r =2 Ni&n.0rj @)
i

where N; are the shape functions of a nodal element, N is the number
of nodes in the element, and r; are the cotresponding position vectors.
The three vectors along the parametric lines in the three directionsare.
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(3)

Accordingly, the three vectors along the three parametric planes are
V,,><VC, V;ng, Vngn. These vectors can be chosen as v;. For
example, for "edge" elements, v; are chosen as [4]

Vo xV
V= _—TI ¢

= (4)
ngnXV€

where the normalizing factor is the Jacobian. Obviously, (4) has a
continuous tangential component across elemental interfaces.

Similarly, for "facet" shape functions for facets parallel to the n—¢
plane, v; are chosen as

.- Ve[Vaxvy|

A\’ é'V nXVg

)

(5) has a continuous normal component across elemental interfaces.
B. Tetrahedral Elements

Consider now a curvilinear tetrahedral element in the Cartesian
coordinates (x,y,z) as shown in Fig. 2. As usual, volume coordinates
(Lj,Lp,L3,Lqg) are introduced and the following representation is
obtained:

N
r= NiLpLoLs.Lor (6)
j=1

For each corner node k=1,2,3,4, three parametric directions
i=1,2,34, i#k, can be defined:

N
Vk,i=2 M _N; T (7)
j=1\dL; dL;

by using Lj+Lz+L3+L4=1 in equation (6). We observe that V ;=—
Vi Consider edge e4,7. Assume that the direction of edge ey ; is
from ry to r;. The two families of parametric planes intersecting this
edge have normal directions along V42xV4 3 and Vy3xVj 2
respectively. To maintain symmetry, the direction vector for any edge
shape function on this edge is chosen as a linear interpolation of these
two normal directions:
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Fig. 2. A Curvilinear Tetrahedron

V42xVy 3
Vi4,1.-V42xVy 3

Vi13xV;2

; (8)
Vi1,4.V13xVy,

Vi=l:(] - &)

where &;=0 for node 4, I for node 1, 1/2 for the central node, etc.
Obviously, v; has a unit tangential projection along the vector Vg4 ;.
For "facet" shape functions, take facet f4 (formed by three corner
nodes 1,2,3) for example. Let the area coordinates for any node i on
facet f¢ be (£;,7;,85). The following vector is chosen as the "facet"
shape direction vector v;:

— V4,IIV1,2XV1,31 V4,2|V2,3><V2_1|
vi= |4 1
VarVisxVig V4. V3xVy,

+4 V4,3|V3,1><V3,2|

V43.V3,xV3,

III. EIGENMODE ANALYSES IN CAVITIES

The finite element method provides a powerful tool for finding
modes (especially the lower modes) in arbitrarily shaped,
inhomogeneously loaded electromagnetic cavities. Unfortunately, the
standard finite element solution to the vector eigenvalue problem in a
cavity consists of both physical and nonphysical (or spurious) modes.
Since spurious solutions have a relatively higher divergence, a number
of methods have been established to eliminate or reduce nonphysical
modes by enforcing the divergence free condition. Among these, the
penalty method and the reduction method are commonly used [6]. In
this section, we use "edge"” elements to solve the problem.

A. Formulation

The problem under consideration is to find the eigenmodes of a
dielectric loaded EM cavity. The cavity wall, S, is assumed to be of

arbitrary shape. The interior of the cavity, 2, is characterized by
(Hopr,e0€r(r)), where pig and €y are free space permeability and
permittivity, respectively. Consider the E formulation only. With e/&*

variation implied, the modes in the cavity satisfy the following weak
form:
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J. (I—VXE)-(V XA - kgj & (OE-Wpd®
a\fr ’ (10)

= jkanoJ' (nxH)-w,dS
S

where wp, is any set of real vector weighting functions, and kg is the
free-space wavenumber. ko (rads/m) is treated as the resonant
frequency for numerical convenience. By virtue of the weak form, we

can define a homogeneous boundary condition nxE (electric wall) and

a natural boundary condition fixH. By introducing the following
expansion:

N
E®) = ) E.wa(r) (11)

n=1

where wj, are the proposed "edge” element shape functions, E,, are the
tangential projections of E along edge directions, and N is the total
number of unknowns. Since W, guarantee tangential continuities of E
on the elemental interface, no special treatment is needed on material
interfaces. With the vector weighting functions chosen to be the same
as the shape functions wp, (10) is reduced to a real symmetric

eigensystem: [A]{E} = kg[B]{E }. The system is solved by Lanczos'
method.

B. Examples

Curvilinear elements provide a better description to curved cavity
walls than linear elements. As a result, a relatively small mesh can
yield good predictions to the lower resonant frequencies. A
comparison was made between quasi-linear hexahedral models and
quasi-curvilinear hexahedral models (12 unknowns per c}ement) for
an empty spherical cavity. As shown in Fig. 3, only one-eighth of the
sphere is needed. Table I shows the dominant mode computed py the
present model using different mesh sizes. The advantage of curvilinear
elements is clearly demonstrated.

Table I. Dominant Mode in an Empty Spherical Cavity

Element Unknowns Numerical __Analytical Error
“8'node 96 2.8541 2.744 +4.0%
(Linear) 324 2.8005 2.744 +2.1%
768 2.7818 2.744 +1.3%
720 node 96 2.7862 2744 +1.5%
(Curvi- 324 2.7709 2.744 +1.0%
linear) 768 2.7653 2.744 +0.8%

Fig. 3. Modeling of a Spherical Cavity
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Fig. 4. Four Lower Modes of a Spherical Cavity Containing an

Eccentric Sphere.

The next example is a dielectric sphere (radius=0.18m) with €r=36
eccentrically loaded in a spherical cavity (radius=1m). Two way
symmetry is employed. Fig. 4 shows the four lower modes when the
eccentricity is changed.

IV. CONCLUSIONS

Curvilinear and higher order hexahedral and tetrahedral "edge" and
"facet" elements were constructed. These elements are rather general,
in the sense that most elements currently used are simplified versions
of the presently proposed elements. These vector elements are
intimately related to the corresponding nodal elements, allowing
simple implementation in existing nodal-based finite element computer -
programs. Some curvilinear "edge” elements were used to compute -
eigenmodes of cavities, with improved accuracies over lingar
elements; no spurious modes were present. Vector boundary elements
were also developed but not included in the present paper. These
elements are currently used in the finite element and moment method
analysis of electromagnetic scattering problems.
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