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Abstract - The eigenmodes in an arbitrarily shaped, electromag-
netic (EM) cavity loaded with an anisotropic material, are computed
using linear tetrahedral “edge” elements and curvilinear hexahedral
“edge” elements. The permeability tensor is assumed to have off-
diagonal entries (gyromagnetic), and the permittivity and conductiv-
ity tensors are diagonal (typically for composite materials). There-
fore, the divergence free condition is not always satisfied inside a
finite element. Yet, the procedure is found to yield good predic-
tion to the lower resonant frequencies, and no spurious modes are
encountered in this range of interest. In the examples considered,
numerical solutions are consistent with quasi-analytical solutions.

I. INTRODUCTION

The accurate prediction of eigenmodes in inhomogeneously
loaded, electromagnetic (EM) cavities is an important subject in the
microwave cavity theory and measurement. The use of finite element
methods to compute the eigenmodes have been extensively studied
in the literature, but spurious solutions are frequently encountered
[1,2,3]. Since the spurious solutions have relatively large divergence,
the penalty method and the reduction method are commonly used
to enforce the divergence free condition, and therefore, eliminate or
reduce the nonphysical modes [4,5]. Recent work has shown that,
when the “edge” based, divergence free finite elements are used,
spurious modes can be deleted [6,7,8]. To the authors' knowledge,
the use of “edge” based finite elements to analyze electromagnetic
field problems involving anisotropic materials has not been reported.
In this paper, we extend the work in [8] to EM cavities loaded with
anisotropic materials, which is of significant importance in the mi-
crowave cavity nondestructive testing of composite materials. As an
example, we compute the eigenmodes in a cylindrical cavity loaded
- with gyromagnetic or composite materials. This example was con-
sidered recently using the Galerkin-Rayleigh-Ritz method [9].

Il. FORMULATIONS

The problem under consideration is to find the resonant fre-
quencies and the corresponding field distributions in a dielectric
loaded EM cavity. The cavity wall, S, is assumed to be of ar-

- bitrary shape. The interior of the cavity, , is characterized by
(k0B (F), €0&r(T), T(F)), where o and ¢, are free space permeabil-
ity and permittivity, respectively. Since the cavity contains different
materials, T is used to denote spatial dependence. The relative per-
meability, relative permittivity and conductivity are assumed to be
the following tensors:
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€ and ¢, can have a complex component e, and e, respectively.
With e variation implied, the modes in the cavity must be the
solution of one of the following curlcurl equations:

-

VxE'FVXE - kEGE = 0, )
VxEHV x H- K0 = ®)

subject to the following divergence free conditions:
V-5E=0, V.ZH=0. (4)

The free-space wave number and the complex relative permittivity

are given by
ko = w\/itobs, 70 = \/#O/Eo,

ez + i/ ko), (8)
Throughout the paper, ko (rads/m) is treated as the resonant fre-

quency for numerical convenience. On material interfaces, E and H
must be tangentially continuous.

:
€ = G —

1=1,z.

To obtain numerical solutions to (2) and (3), it is advantageous
to consider their weak forms:
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where W, is any set of real vector weighting functions. By virtue of
the weak forms, we can define, in the E formulation, a homogenous
boundary condition fi x E (an H symmetry condition) and a natural
boundary condition A x H (an E anti- -symmetry condmon) Similarly
in the H case, fi x H is the homogenous condition (an E symmetry
condition), and # x E is the natural condition (an H anti- -symmertry
condition). At microwave frequencies, it is quite accurate to assume
that the tangential electric field vanishes on the cavity wall. When
it is required to take into account the large but finite conductivity
in the cavity wall, an impedance boundary condition can be used.

This, however, is not considered in this paper. Since (6) and (7) are
dual to each other, one needs to solve only one of them. However,
they may yield eigenvalue systems of different types, depending on
material properties. They also yield eigenvalue systems of different

(6)
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sizes, when boundary and symmetry conditions are imposed. Thus,
one may choose E or H as the state variable according to particular
problems.

ill. “EDGE" FINITE ELEMENTS

To map the eigenproblems into finite dimensions, we use the
“edge” based finite element method. There are a number of differ-
ent “edge” elements reported in the literature. The divergence free
hexahedral element of [7] has been found to yield poor results in
some cases, and therefore is not used in this work. The tetrahedral
element of [10] and the hexahedral element of [11] will be used. The
six vector shape functions in a tetrahedron element are

o o b . S -
Wn(F) = sgn(n)F (Br-na X Br-na + &-n X ), (®)

wheren = 1,2,---,6, and other quantities are defined in [10]. These
shape functions are divergence free. If ?l, and 7, are diagonal, the
divergence free condition (4) will be satisfied inside the element, but
may not necessarily so on elemental interfaces. The twelve vector
shape functions in a hexahedral element have the form [11]:

Wn(F) = da(€;m, OVa(E), (9)

where n = 1,2,--+,12, ¢, are scalar functions defined in the local
coordinates. The directional vectors, ¥,, are modified to allow curvi-
linear mapping. Apparently, these shape functions are not divergence
free. Higher order elements have been constructed, but not used in
this work. The following expansions are introduced to approximate
the fields in each element:

N N
B = Y Eawa(®), HF) =Y H¥u(f), (10
n=1 n=1
where. N = 6 and 12 for a tetradedral and hexahedral element, re-
spectively, and H,, (or E,,) is the tangential component of H (or E)
along the n-th edge. Tangential continuities on material interfaces
are satisfied. Thus, no special treatment is needed on material in-
terfaces. Each edge has only one unknown, the vector field problem
behaves like a scalar problem. In addition, when the tangential com-
ponents are used as unknowns, the natural boundary condition needs
no special care; and the homogeneous boundary condition is forced
by setting the corresponding expansion coefficients to zero.. Com-
pared with the conventional finite element procedure, the analysis
here is significantly simplified.

. IV. DISCRETIZED EIGENVALUE SYSTEMS

With the vector weighting functions chosen to be the same as
the shape functions (8) or (9), we obtain various discretised eigen-
systems. Assume that, on S, A X E orfi x H are specified. If ZZ,
is not invertible, and especially if %', does not depend on frequency,
the H formulation is preferred. From the weak form (7), we obtain

(141 - 1B} + jko[G]) {H} = 0, (11)
where the coefficients of the matrices are given by
/ / A €7V x W) - (VX WuddQ,  (12)
/ / [ Bt - nd, (13)
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P %f/sﬂxﬁ~ﬁmd5. (14)

In other situations, the B formulation is preferred. From the weak
form (7), we obtain

(141 - K1B] + 3hol(C) + [6D) {E} = 0,

where the coefficients of the matrices are given by

J[[ @0 x) - (V x Fa)d,(16)

(18)

e =
b = / / /ﬂ %, ()W, - WndC), (17)
con = [ [ 16T md, )
Gon = =70 / ]S ( x H) - #udS. (19)

Equation (15) can be re-arranged into a complex, non-symmetric
eigensystem of double size: "

48]0 L)

where X = jko. If all coefficients are real, (20) is reduced to a real,
non-symmetric eigensystem. And finally, when no loss is present, a
simple real, symmetric system is obtained:

[A[{E} = k3[BH{E}. (21)

In this work, the QZ algorithm is used to solve complex and real
non-symmetric eigensystems, and Lanczos’s algorithm is used for
real symmetric eigensystems.

V. NUMERICAL EXAMPLES

The procedure discussed above is used next to compute res-
onant modes in a configuration shown in Fig.1, where a cylindrical

_ cavity contains an anisotropic specimen. This configuration is cho-

sen deliberately because quasi-analytical solutions reported in [9] can
be used as a validation of the present procedure.
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Fig.l A Cylindrical Anisotropic Specimen in-a Cylindrical cavity.

~ We start with a simpler situation, where the specimen is of
the same height as the cavity but different radius, g = po. = 1,
€ = 10, 0y = 05, = 0. The problem possesses two way symmetries
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and has no loss. This allows us to use a relatively larger finite element
mesh (794 unknowns per quadrant, not including homogeneous con-
ditions), and the “STLM" code for eigenvalue analysis. The mesh
is deliberately designed not to form an, “orthogonal mesh”. Fig.2
shows the normalized resonant frequencies, koa./[izt€e, versus e,
values. Both tetrahedral and hexahedral models yield roughly the
same solution for similar mesh sizes.

If the cavity contains gyromagnetic materials, the permeabil-
ity tensor has off-diagonal entries. No symmetry planes can be used
here. Although the medium is lossless, it is necessary to operate
in the complex domain. -Fig.3 shows the normalized resonant fre-
quencies of seven lower modes versus |« /p| values, when the cavity
is completely filled with a gyromagnetic material. Fig.4 shows the
normalized resonant frequencies of four lower modes versus |x/p|
values, when the cavity is partially loaded with a gyromagnetic spec-
imen. :
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Fig.3 Normalized Resonant Frequencies versus |«/p| values, when
L=h=a, R=2a, € =10,004=0.. =0, flag = p, = L.

5.0 . . :

o
(=)
T
~
1

RESONANT FREQUENCY (rads/m)
w
)

2

.0
0.0 0.5 1.0 1.5

I~/ pl
Fig.4 Normalized Resonant Frequencies versus [&/ | values, when
h=a, L=R=2a, ¢ =c¢,, =10 s Mt =

Oy =0, =0
» Yt zz
Mz )

The mode patterns shown in Fig.2 to Fig.4 are consistent with
the Rayleigh-Ritz-Galerkin solutions of [9]. i

The procedure is also used to analyze lossy problems. Two
situations are given. Fig.5 shows the normalized resonant frequen-
cies of four modes when ¢., is varied. Fig.6 shows the normalized
resonant frequencies of four modes when o, is varied. Although no
available data can be used for validation, the mode patterns obvi-
ously resemble those shown in Fig.2.

Although the geometry shown in Fig.1 has a rotational sym-
metry, our procedure, however, is not limited to this configuration.
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Fig.5 Normalized Resonant Frequencies versus ¢, values, when
L=h=0a R=2a,¢6=10,¢.=500=0:.:=0, gy =
pe: =1, 5 =0
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Fig.6 Normalized Resonant Frequencies versus o, values, when
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V1. CONCLUSIONS

Linear tetrahedral “edge” elements and curvilinear hexahedral
“edge” elements were used to compute the eigenmodes in EM ca'vi-
ties loaded with anisotropic materials (gyromagnetic and composite,
in particular). In spite of the fact that the divergence free condi-
tion was not always satisfied inside a finite element, our procedure

gave good prediction to the lower resonant frequencies, as validated -

against quasi-analytical solutions. No spurious modes occurred in the
lower range of frequencies. While our study showed the importapce
.of maintaining tangential continuities of E and H in vector field
computation, it remains a future task to find theoretical explaina-
tions why non-divergence free
solutions, and to examine more complicated situations.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant HEET8714628
and in part by The Ohio Board of Regents Academic Challenge Pro-
gram. Computational Resources on the Ohio Supercomputer Center
CRAY Y-MP are gratefully acknowledged. The “STLM" code used
to solve real symmetric eigenvalue problems was provided by Thomas
Ericsson, Department of Computer Science, Chalmers University of
Technology, Sweden. Special thanks go to Dr. A. Bossavit for call-
ing the authors’ attention to the fact that, divergence free “edge”
elements may not be divergence free on elemental interfaces.

“edge” elements yield no spurious.

(1]

(2]

(5]
(6]
"
(8]
[o
(10]

(11]

1441
REFERENCES

J. B. Davies, F. A. Fernandez and G. Y. Philippou, “Finite
Element Analysis of All Modes in Cavities with Circular Sym-
metﬁy", IEEE Trans. Microwave Theor¥ and Techniques, Vol.
MTT-30, No.11, pp. 1975 - 1980, 1982.

M. Hara, T. Wada, T. Fukusawa and F. Kikuchi, “A Three Di-
mensional Analysis of RF Electromagnetic Fields by the Finite
Element Method", |IEEE Trans. Magnetics, Vol. MAG-19,
No.6; pp. 2417 - 2420, 1983.

J. P. Webb, “The Finite-Element Method for Finding Modes-
of Dielectric-Loaded Cavities”, IEEE Trans. Microwave Theory
and Techniques, Vol. MTT-33, No.7, pp. 635 - 639, 1985.

J. P. Webb, “Efficient Generation of Divergence - Free Fields

for the Finite Element Analxsis of 3D Cavity Resonators”, IEEE
Trans. Magnetics, Vol. MAG-24, No.1, pp. 162 - 165, 1988.

A. Konrad, “A Method for Rendering 3D Finite Element Vector
Field Solutions Non-Divergent”, IEEE Trans. Magnetics, Vol.
MAG-25, No.4, pp. 2822 - 2824, 1989.

A. Bossavit, “Solving Maxwel! Equations in a Closed Cavity,
and The Question of ‘Spurious Modes™, IEEE Trans. Mag-
netics, Vol.26, No.2, 1990, pp. 702 - 705.

K. Sakiyama, H. Kotera and A. Ahagon, “3-D Electromagnetic
Field Mode Ana[‘\(sis Using Finite element Method by Edge
ﬁ%nilerig'dolEEE rans. Magnetics, Vol.26, No.5, pp. 1759 -

Jian-She Wang, Nathan Ida: “Eigenvalue Analysis in EM Cav-
ities Using Divergence Free Finite Elements”, EFC 1990.

J. Krupka, “Resonant Modes in Shielded Cylindrical Ferrite
and Single-Crystal Dielectric Resonantors”; |IEEE Trans. Mi-
ilé%v;ave Theory and Techniques, Vol.37, No.4, pp. 691 - 697,

M. L. Barton and Z. J. Cendes, “New Vector Finite Eiements

for Three-Dimensional Magnetic Field Computation”, J. Appl.
Phys., Vol.61, No.8, 1987, pp. 3919 - 3921.

J. S. van Welij, “Calculation of Eddy Currents in terms of H
on Hexahedra", IEEE Trans. Magnetics, Vol.MAG-21, No.6,
pp- 2239 - 2241, 1985.



