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Abstract -  An efficient implementation of the simple layer inte-
gral equation procedure for eddy current computation is presented.
Vector boundary elements of quadrilateral and trilateral shapes are
constructed. These elements, based on “facet” finite elements, have
unknowns associated with edges, and are useful for modeling vector
surface currents. The simple layer integral procedure is then dis-
cretized via the method of moments. A procedure is implemented
to fully utilize geometric symmetries of the interior domain. The
symmetry planes are not necessarily perfect electric or magnetic con-
ductors. By using symmetric vector shape functions and introducing
“symmetric components”, the coefficient matrix is symmetrized and
then reduced to smaller systems. This procedure is used to compute
the eddy current profile of a conducting plate with a small slot.

I. INTRODUCTION

Consider an “externally driven” eddy current problem, where a
conductor is excited by an external source, a typical situation in non-
destructive testing of conducting materials [1]. Since the problem
is unbounded and the conductor is homogeneous, boundary integral
procedures are most useful. In particular, we consider here the sim-
ple layer integral equation procedure of [2], where only the surface of
the conductor needs to be modeled. While a finite element modeling
would have to discretize the whole domain, and a volume integral
equation modeling would have to discretize the whole conducting
region. In [3], the simple layer integral procedure of [2] was imple-
mented using the method of moments [4]. However, the following
limitations have been observed. 1) The principal unknowns in the
simple layer procedure are the tangential surface layer density func-
tions. The plane triangular vector boundary elements of [5] yield a
poor approximation to these tangential functions if the conductor
surface is curved. Otherwise a dense boundary mesh will have to be
used. It is more efficient and accurate if curvilinear vector boundary
elements are used. 2) This method involves a 2N x 2N complex,
full matrix, where N is the total number of edges in the boundary
element mesh. When it is required to use a very large boundary
element mesh, this method needs very large computer resources to
fill-in, store and invert the stiffness matrix. In practice, many prob-
lems possess, or can be arranged to possess, certain geometric sym-
metries. These symmetry planes do not have to be electrical walls or
magnetic walls, depending on the source configurations and the state
variable used. If these symmetries can be utilized, only the principal
portion of the problem needs to be considered [6]. This paper ad-
dresses these issues. Vector boundary elements of quadrilateral and
trilateral shapes are constructed. These elements, based on “facet”
finite elements [7,8], have unknowns associated with edges, and are
especially suitabe for modeling tangential surface currents. It is pos-
sible to establish a boundary element mesh having image symmetry
with respect to the geometric symmetry plane(s). Accordingly, the
“edge” shape functions and the testing functions are also images
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with respect to the symmetry plane(s). When these vector functions
are used to discretize the coupled integral equations, the symmetry
property of the system transfer function is preserved. The global
matrix eqaution is then reduced to a number of smaller sub-systems
[6]. In the subsequent section, we illustrate details and applications
of this procedure.

IIl. THE SIMPLE LAYER INTEGRAL PROCEDURE

For a conductor under an external excitation, the electric and
magnetic fields exterior to its boundary S are determined by the
excitation and the outer density functions (J,p ); and the fields
interior to S by the inner density functions (M, p™) [2]. The coupled
integral equation formualtion is obtained by requiring the continuity
of tangential components of the electric and magnetic fields on the
interface S:
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where R = |F— F|, k1 and k, are wave numbers. The charge

densities can be deleted through the following continuity relations
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Since the surface outer layer density J and inner layer density M
are defined on a surface, they may be treated as the special case
of form-ll vectors. These functions can be best approximated via
tangential, vector expansion functions f,:
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where the coefficients J, and M, stand for the transverse compo-
nents of the outer layer-density and inner layer-density associated
with the n-th common edge. Construction of these functions is
given in the next section. To determine these coefficients, the cou-
pled integral equations are tested using the method of moments [4]
and the following symmetric product:
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A partitioned matrix equation is obtained:
VAL AL J Einc
[ZMJ ZMM][M]:[Hinc]' (10)

The above equation is dense and non-symmetric.

IIl. VECTOR BOUNDARY ELEMENTS

In this section, we construct vector boundary elements of
curvilinear quadrilateral and trilateral shapes. Tangential vector fields
defined on a surface, resemble form-Il vector fields. “Facet” finite
elements [7,8] are suitable for approximating form-Il vector fields.
Thus, a vector boundary element is obtained by allowing the height
of a “facet” element (curvilinear haxahedral or tetrahedral shape) to
tend to zero [9]. While a “facet” element is associated with facets,
a vector boundary element is associated with edges. Since the Ja-
cobian is zero, the normalization must be changed. Let the vector
shape functions be of the following form:

£() = (&, n)i(E),

where M, is the number of unknowns in the boundary element. For
an edge with a direction vector &, the transverse direction 7 of that
edge is defined as the normal direction of the plane formed by & and
fi. The basic strategy for constructing vector shape functions is to:

i:Is"'vMby (11)

e use a nodal shape function as ¥;. It has been normalized such
that it equals 1 at node ¢ and zero at other nodes;

o choose i; along the parametric direction, so that the surface
current is flowing out of the element through the edge on
which node ¢ resides;

e normalize d;, such that. its projection in the transverse direc-
tion 7 is 1 at node i. Therefore, the transverse component
of the surface current flowing past the edge is continuous; no
line charges are present.

If a surface flow J, is expanded as
- M —
3,(%) = 3 J&(D), (12)
i=1

T is the transverse component of J, at node i flowing past the edge
where node i resides in.

Consider first a curvilinear quadrilateral shape shown in Fig.
1. The geometric parametrization is given by
N
= ENj“)")Fj’ (13)
=1
where N;(£,n) are the shape functions of a nodal element, N is

the number of nodes in the element, and F; are the corresponding
postition vectors. The parametric directions are
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The cross product of these two vectors, upon normalization, provides
the surface normal fi. Let the transverse directions for parametric
lines along ¢ and 7 directions be 7; and 7,, respectively. The direction
vectors for edges in £ and 7 directions are chosen as
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These vectors provide a continuous transverse component. Since
there are two parametric lines intersecting an internal point, two
vector shape functions are defined.
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Fig.1 A Curvilinear Quadrilateral Boundary Element.

Consider riow a curvilinear trilateral shape shown in Fig.2. The
geometric parametrization is given by

N
F =Y N;j(Ly, Lz, Ls)F;. (16)

j=1
For each corner node k = 1,2,3, two parametric directions Vk,;,
i =1,2,3, 1 # k, can be defined. These two vectors provide the
normal direction fi. Now consider edge e3 1. The transverse direction
7, is formed by the cross product of ii and \73'1. Again, we allow
the current flow along parametric lines. Since there are two sets of

parametric lines intersecting edge €31, we choose

. v v _
W= (- &) —2 + —a |, an
T2 ',Vz,s T2 'Vz.l

for any node i on e3;. Vector shapes for nodes on other edges
can be obtained by symmetry. Since there are three parametric
lines intersecting an internal node, three vector shape functions are
defined. :

Fig.2

A Curvilinear Trilateral Boundary Element.
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Quasi elements are frequently used, where each edge has one
degree of freedom, since the transverse component is constant along
the edge [5]. To use the proposed boundary elements in the inte-
gral equation procedure, the surface divergence needs to be com-
puted. Using the fundamental definition of surface divergence, it is
found that the surface divergence associated with equation (15) in
a quadrilateral element is

2 V,| 0 V ;
Vs-fmdoval Oy 4 Ve 0% (18)
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The surface divergence of the boundary element shape function as-
sociated with equation (17) in a trilateral element is
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The singular integral in an element can be resolved using Taylor
expansions and semi-analytical integration [10].

Vs f; =

(19)

IV. UTILIZATION OF SYMMETRIES

If the solution domain has some sort of symmetry, the redun-
_ dant computation associated with (10) can be condensed. Consider
first a one-way symmetry problem. Let z = 0 be the symmetry plane
(see the upper portion of Fig.3), with the region = > 0 denoted by
a subscript “I”, and the region =z < 0 by a subscript “Ii”. These
two portions are discretized by two boundary element meshes which
are symmetric with respect to z = 0. Orientations of edges in re-
gion “II" are images of the edges in region “I". For the n-th edge
in region “I" and its image in regton “II", the corresponding vector
shape function fn 11 is the image of nt With the basis functions so
defined, the following partitioned matrix equation is obtained:

Z1y Zin I _ Vi
Zux Znn In Vir |
where each submatrix corresponds to a partitioned submatrix; for

example,
J Etnc
], I = 1\141] V= [H"'“]'

(21)
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Fig.3  Constructing Symmetnc Boundary Elements (Two

Symmetric Planes).

It can be shown that Z;; = Zyy, Ziy = Zmg (ie., the vector
potentials and the principal value integrals are image-symmetric, and
the scalar potential terms are equal). Therefore, equation (20) is
block symmetrized. It can be reduced to two decoupled, smaller
subsystems by introducing new variables Iy and Ij; [6]:

[Z11 + ZI,II]{jI} ={V+ Viu} (22)

(213 — Zyn){Iu} = {Vi — Vu}.

The actual currents are obtained through:
{Ii} = 1/2{1.1 + I-n} {Iu} = 1/2{j1 — I-n}. (24)

In fact, one may view I; as the symmetric components, I as the
anti-symmetric components. The classification of these two compo-
nents does not rely on the source distribution. The actual current is
the superposition of the two components. If the source is symmet-
rically distributed, Vi = Vi, the anti-symmetric components vanish,
and I; = I; = I. From (22), it can be seen that, the filling-in
computation is reduced by a factor of 2, and the inverting compu-
tation by a factor of 4. A peculiarity arises when an edge lies on the
symmetry plane. Since I is symmetric with respect to the symme-
try plane, the transverse component across the edge must be zero.
Equation (23) should be modified accordingly.

(23)

For a geometrical shape possessing two symmetry planes (for
example, z = 0 and y = 0), the four quadrants are denoted by
“I" to IV, respectively, as shown in Fig.3. Following the idea
used before, it is possible to construct triangular meshes and basis
functions which are images with respect to the planes ¢ = 0 and
y = 0. The following matrix equation is obtained:

Zyy Zin Zym Ziw It s

Zuy Zun Zonm Znav In | _ |Va (25)
Zmy Zwmu Zmm  Zmv I Vim | °

Zwvy Zwvn Zwvm Zivv Iy 143%

It can be shown that only four submatrices in equation (25) are
independent. Thus, (25) can be decoupled into four subsystems:

[Z11+ Ziun + Zim + Ziw){} = {Vi+ Vr + Vim + Viv}  (26)

(

[Z11— Zin+ Zyn — Zywl{du} = {i — Vo + Vin — Vv}  (27)
[Zi1+ Zyn — Ziww){ I} = {Vi + Vi — Viu — Viv} (28)
(%11 — Zin = Zim + Zrv){dv} = (Vi — Va — Vi + Vav}- (29)

Similarly, I is a component symmetric to both z = 0 and y = 0,
IH is a component anti-symmetric to both planes. Iizr and Ty are
component symmetric to one plane but anti-symmetric to another
plane. The actual currents are

{i} = 1/4{h+ Tu+ Im+ I}

Zr —

{In} = 1/4{h—In+Im~Iiv}

I 1)

(I} = 1a{F—Fn—Im+ Iy ).

31)

By solving (26)-(29), the filling-in computation is reduced by a factor
of 4, and the inverting computation by a factor of 16.

{Im} = 1/a{li+In—Im—Iv}

Without too much difficulty, the same idea can be extended .
to problems with three-way symmetries. The filling-in computation
can be reduced by a factor of 8, and the inverting computation by a
factor of 64. Field integration over surface sources should be done
over the entire surface S.



V. NUMERICAL EXAMPLES

To verify that this procedure is correct, the problem of a sphere
in a uniform alternating field is considered using three symmetry
planes. The sphere has a radius a = 1m. The incident frequency is
10k Hz and the conductivity is 103U /m. Fig.4 shows the distribution
of the B, component on the x-z plane for z = 1.1m to z = 2.0m.
These curves compare well with analytical solutions.

Consider now a conducting plate with a slot under a uniform
alternating field. One quarter of the structure is shown in Fig.5,
where A = B = C = 1.0m, a = b = ¢ = 0.2m. The incident
frequency is 10k H z and the conductivity is 1030/m. Two symmetry
planes can be used in this problem. Fig.6 shows the distribution of
the B, component on the x-z plane for z = 1.1 to z = 2.0.
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Fig.4 A Conducting Sphere in an Alternating Field: B,
Component on the x-z Plane.
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Fig.5 A Conducting Plate with a Small Slot.

VI. CONCLUSIONS

“Edge” based boundary elements, similar to “facet” finite ele-
ments, were constructed. These boundary elements were extremely
suitable for the method of moments solution of boundary integral
equations with tangential density functions as unknowns. By con-
structing symmetric boundary elements, geometric symmetries were
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fully utilized. Although the procedure was presented using a single
conductor, it applies to mutiple conductors and layered structure as
well.
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