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Abstract - The conventional node based finite element method
frequently yields non-physical solutions to the vector eigenvalue prob-
lem in electromagnetic (EM) cavities. The non-physical modes are
mainly due to inadequacy in enforcing the divergence free condition
and boundary (as well as interface) conditions. The edge based fi-
nite element method with divergence free shape functions can delete
spurious solutions due to these two reasons. This method has been
used to solve various eigenvalue problems in both lossless and lossy
cavities. No spurious modes are observed in the frequency range of
interest. Good predictions to the lower modes are obtained in all ex-
amples. In addition to being a reliable tool for cavity mode analysis,
the method also finds applications in characterization of materials
when loaded in an EM cavity.

INTRODUCTION

The finite element method provides a powerful tool for finding
modes (especially the lower modes) in arbitrarily shaped, inhomoge-
neously loaded electromagnetic cavities [1,2,3]. Unfortunately, the
standard finite element solution to the vector eigenvalue problem in
a cavity consists of both physical and nonphysical modes. Among
all the possible reasons responsible for the occurance of spurious so-
lutions, the following two are dominant. 1) Inadequacy in enforcing
the divergence free condition, as a direct consequence of solving the
curleurl differential equation. 2) Inadequacy in enforcing the bound-
ary and interface conditions since the direction for a nodal point can
not be uniquely defined. There are many methods which can elim-
inate or reduce the nonphysical modes by enforcing the divergence
free condition. Among them, the penalty method and the reduction
method are commonly used ([4,5] and the references cited therein).
This paper presents an alternate way, which, theoretically, can com-
pletely eliminated the nonphysical modes due to the mentioned two
reasons. This is achieved by using finite “edge” elements having
divergence free shape functions [6,7].

This paper is organized as follows. First, the basic formula-
tions are introduced. Then, the divergence free, tetrahedral elements
are used to discretize the formulations into algebraic eigensystems.
These systems are arranged into various forms depending on the
material properties and the solution method to be used. In order
to show that the model is correct and free of spurious solutions,
some typical examples, for which analytical or numerical solutions
are available, are discussed. Finally, the present model is applied
to material characterizations for microwave nondestructive testing
purposes.

BASIC FORMULATIONS

The problem under consideration is to find the resonant fre-
quencies and the corresponding field distributions in a dielctric loaded
EM cavity. The cavity wall, S, is assumed to be of arbitrary shape.

The interior of the cavity, Q, is characterized by (o, ¢€o(er —
FEN(F),o(F)), where po and e are the free space permeability and
permittivity, respectively. The relative permeability and permittivity
are assumed to be constant in each material. Since the cavity con-
tains different materials; T is used to denote the spatial dependence.
With et variation implied, the modes in the cavity must be the
solution of one of the following curlcurl equations:

1 - A -
V x —V x E — k¢, (F)E = 0, )]
/‘t"'

vV x (_‘)VXH~kOp.,H = 0, (2)
where L is a spatial scaling factor. The free-space wave number and
the complex relative permittivity are given by

ko = Lw\/po€0,

The loss tangent is related to the imaginay part of the dielctric
constant and conductivity of the material via

tanéd = — + ;;ZD , Mo = \//lo/fo' (4)

At microwave frequencies, the first part is dominant. Typically, €,
is constant and €. increases with frequency. Throughout the pa-
per, ko (rads/m) is treated as the resonant frequency for numerical
convienence. At material interfaces, E and H must be tangentially
continuous.

e, = ¢,(1 — jtané). (3)

To obtain numerical solutions to ( 1) and { 2), it is advanta-
geous to consider their weak forms: for the E formulation,

I/ (iv % E) (V xe)d2 K [ [ [ (DB W

= jkomo / /S ( x H) - WndS, (5)

and for the H formulation,

///( VXH) (V x W)~ kz/f/u,H )

- ”‘“[/ fi x B) - WndS, (6)

where W,, is any set of real vector weighting functions. By virtue
of the weak forms, we can define, in the E formulation, a homoge-
neous boundary condition i x E (symmetry condmon) and a natural
boundary condition fi X H. Similarly in the H case, fi X H is the ho-
mogeneous condition (symmetry condmon) and i x E is the natural
condition. At microwave frequencies, it is quite accurate to assume
that the tangential electric field vanishes on the cavity wall. If it is
required to take into account the large but finite conductivity in the
cavity wall, the following impedance boundary condition can be used
[8]: .
Ex i = Znhx (i x H), (7
where Z,, = (1 + j)/ob, is the surface impedance. The validity
f ( 7) is limited in that the radii of curvature of the body must
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be large with respect to the skin depth §,. A modification can be
made if necessary to avoid this limitation [8]. Since ( 5) and ( 6) are
dual to each other, one needs to solve only one of them. However,
they may yield eigenvalue systems of different types, depending on
material properties. They also yield eigenvalue systems of different
sizes, when boun:_:[ary a_.nd symmetry conditions are imposed. Thus,
one may choose E or H as the state variable according to particular
problems.

The resonant frequency ko and the corresponding eigenvector
are, in general, complex, due to dielctric losses and cavity wall losses.
It is necessary to operate in the complex domain. Only in the case
where no loss is present, the resonant frequencies and eigenvectors
are real, and the complex notation can be dropped.

THE DIVERGENCE FREE FINITE ELEMENTS

To solve ( 6) in infinite dimensions is practically impossible. In
this section, the finite element method is used to map the eigenprob-
lem into finite dimensions. The standard (node based) finite element
solution to the vector eigenvalue problem ( 2) contains nonphysical
solutions in addition to true solutions. One obvious reason is that
one is directly solving the curlcurl equation, leaving the divergence
free condition, V-B = 0 or V-D = 0, unspecified. In this work, we
use the linear “edge” finite elements built on a tetrahedral model.
The six vector shape functions in a tetrahedron element are

—

- lﬂ g - - -
Wa(F) = sgn(n)F (Br-na X Prona + & x F),  (8)
where n = 1,2, ---,6, and other quantities are defined in [6]. These
functions possess zero divergence. By introducing the following ex-
pansion in each element:

6 6

H(H) = 3 HaoWal),  E() = 3 EaWa(P) 9)
n=1 n=1

where H, and E,, are the tangential components of Hand B along

edges, respectlvely, H and E are divergence free within the element.

Thus, spurious modes for which H and E are not divergence free

are deleted.

In the node based finite element method, it is necessary to de-
fine a nodal normal direction based on some sort of principle. With
the tangential components used as unknowns in the “edge” based
method, the nodal normal direction is no longer required. Since
the expansions guarantee tangential continuities of field variables at
the elemental interfaces, no special treatment is needed at material
interfaces. Also, it is simple to impose boundary and symmetry con-
ditions. For example, when it is required to compute a mode where
the electrical field is symmetric to a plane, one can simply apply a
natural condition i x H = 0 on the plane by setting the correspond-
ing tangential unknowns on the plane to zero. Compared to the
conventional method, the present analysis is simplified significantly.

One shortcoming of using FEM with linear basis functions like
( 8) to solve the vector eigenproblem, compared to the eigenfunction
expansion type methods [9], is that the mode index information is
lost. For a complicated geometric configuration, mode classification
can be difficult, sometimes impossible. In practice, cavities and spec-
imens may be manufunctured and arranged in such a way , that the
commonly used definitions for cavity modes (such as TEmn1, TMmni,
Hybrid, etc.) are still applicable. Under these circumstances, the
mode information may be retrieved by checking the eigenvectors.
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DISCRETIZED EIGENVALUE SYSTEMS

Assume that on S, the impedance condition ( 7) is satis-
fied. With the vector weighting functions chosen to be the same
as the shape functions ( 8), ( 6) is reduced to a complex algebraic
eigenvalue problem:

((A(ko)) ~ K(B] + jko[G]) {H} = (10)

where the matrix coefficients are given by

T (= ¥ > ) - (7 i, a1

b = ///;u,v'v',.«v?r,,,dﬂ, (12)

-%//Sﬁx(ﬁxwﬂ)wmds.

I

Amn

(13)

Gmn

[A(ko)] denotes that matrix [A] depends on ko, and it can be eval-
uated only when kq is given, although [B] is a real constant matrix
and [G] is a complex constant matrix. [G] is non-symmetric, and
it has non-zero entries only on the boundary portion of the mesh.
If there exists a symmetry plane (a magnetic wall), H, along the
corresponding edges on the plane equal to zero. These equations
should be deleted from ( 10), otherwise erroneous modes may arrise.
The dependence of the loss tangent on frequency has made the so-
lution of ( 10) more difficult as it can not be reduced to an algebraic
eigenproblem. This means that standard eigen routines like those in
“EISPACK" can not be utilized. However, one observes that ( 10)
has a nonzero solution only if the determinant of the stiffness matrix
is zero:

det(R) = det ([A(ko)] — k3[B] + jko[G]) = 0. (14)
Thus, the problem becomes one of searching for the zeros of ( 14)
in the complex plane. Instead of directly computing the determinant
of ( 14), one may check the singular values of [R]. Since [R] is a
complex symmetric matrix, there exists a unitary matrix [U] such
that [R] is diagonalized: [R] = [U][A][U]T, where [A] is a real
nonnegative diagonal matrix: [A] = diag(A1,Az,-++,An). Then a
zero of ( 14) must be at least a root of the following systems of
equations of singular values [9]:

Ai(ko) = 0. (15)

We mention that, since matrix [R] is fairly sparse, searching for its
zeros or zero singular values may be very fast. In the case where the
loss tangent does not vary with frequency (i.e., conductivity is zero
and ¢, is constant), ( 10) becomes a complex algebraic eigensystem.
When no loss is present, a real, symmetric system is obtained.

In contrast to the H formulation, the E formulation gives an
explicit expression. Let the imaginary part of the dielctric constant
be a linear function of frequency:

€.(f) = €+ kK (), (16)

where ¢, and K" are assumed to be positive constants. A third-order
eigensystem is obtained:

(14) - K3[B] + jko([C] + [G]) — jR3[D]) {B} =

where the coefficients in the real matrices are given by

A (’:‘,V X "?’n> (VX Wn)dQ

(17)

PR (18)
[ / / /n (6 = 5€.)(F)Wn - WmndS2, (19)
P / / [ Ho0 () - W2, (20)
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dmn

/ / /ﬂ K (F)Wn - Wrd®,
~E”°;//Sﬁx(ﬁ X Vi) - WndS.

Equation ( 17) may be rewritten as a complex, non-symmetric, gen-
eralized eigenvalue problem of kq:

(21)
(22)

gmn =

A0 0 E -C -B -D E

OBO{)\E}*/\B 0 0 \E b,

0o 0 D] E 0o D 0 NE
(23)

where A = jko. When €, = 0 and the matrix [G] is dropped,
equation ( 17) can be reduced to a real, non-symmetric eigensystem
of triple size. In the case where K" = 0, equation ( 23) can be
reduced to either a real, non-symmetric eigensystem of double size:

L)l e e

or a complex, symmetric system of double size:

ol{n)e [ RG] @

Finally, when no loss is present, a simple real, symmetric system
is obtained: [A}{E} = kZ[B]{E}. In this work, real symmetric
eigensystems are solved by Lanczos' method, non-symmetric systems

by the QZ algorithm.

NUMERICAL RESULTS

To verify the method discussed above, consider first a spher-
ical cavity (radius b) concentrically loaded with a dielectric sphere
(radius a = 0.1m). Fig.1 shows the variation of the first four modes
when the cavity radius b is varied. The two modes denoted by trian-
gles and the two modes denoted by circles are obtained by different
combinations of symmetry conditions. These curves are consistent
with analytical solutions [10].
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Fig.1 The first four modes of a dielectric sphere in a spherical

cavity.

N The following table shows the dominnat mode in three empty
cavities computed by the present model using different mesh sizes. It
is found that a relatively small mesh size can yield good predictions
to the lower frequencies, if the physical boundary of the cavity is
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fitted well. For example, a better accuracy is obtained in the cube
case than the other two cases. In addition, it seems that a lower
error bound exists in the present model.

Cavity Unknowns | Numer. | Anal. | Error
Cube 272 | 2.2301 | 2.221 | +0.4%
(a=1m) 1840 | 2.2255 | 2.221 | +0.2%
Cylinder 272 | 2.8952 | 2.855 | +1.4%
(d=2m,r=.772m) 1840 | 2.8663 | 2.855 | +0.4%
Sphere 90 [ 2.8577 | 2.744 | +4.1%
(r=1m) 272 | 2.8320 | 2.744 | +3.2%

1840 | 2.7704 | 2.744 | +0.9%

The model is used next to characterize materials by the res-
onant frequencies of the loaded EM cavity. Some typical examples
are given below, where the cavities are of simple shapes and isotrop-
ically loaded. Fig.2 shows the variation of the dominant mode with
the size and the dielectric constant of the specimen, with a spher-
ical specimen (radius a) loaded in a cubic cavity (half side length
b = 1.0m). The family of curves correspond, vertically, to ¢. =
1,1.5,2,3,4, 8,15,36, 54,72,98, where the upper, horizontal line cor-
responds to €, = 1.
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Fig.2  Doninant mode chart of a concentric sphere in a cubic
cavity.

In Fig.3(a), a spheroid is loaded at the center of a cylindrical
cavity, where the spheroid represents a soybean seed. The dielectric
constant of the spheroid is assumed to be a linear function of water
content ¢: ¢, = 9 + (70 — 725) - c¢. Fig.3(b) shows the variation
of some modes with the water content. Obviously, by measuring
the frequency shift, the water content of the soybean seed can be
determined.
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Fig.3(a) A lossy spheriod in a cylindrical cavity.
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Fig.3(b) Mode chart of Fig.3(a).

Finally, consider a spherical specimen (radius= 0.5m) loaded
in a spherical cavity (radius=1.0m), where the loss tangent of the
specimen depends on frequency. Fig.4 shows the variation of TM;;
mode and TM,; mode with conductivity for ¢, = 1,2,3,4. Fig.b
shows the variation of some modes with K" , where the dielectric
constant of the sphere is ¢, = 36 — K" ko.
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Fig.4 Mode chart of a lossy sphere in a spherical cavity: varying
conductivity.
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CONCLUSIONS

The “edge” based finite element method was used to compute
the eigenmodes of inhomogeneously loaded electromagnetic cavities.
No spurious modes were observed in the range of interest, as the di-
vergence free condition was satisfied by the finite element shape
functions. For the geometries discussed, the model can predict the
lowest modes with satisfactory accuracy. The model was then ap-
plied to characterize lossy and lossless materials by the frequency
shifts, for the materials in a cavity for non-destructive testing pur-
poses. Future work will discuss the problem of a cavity loaded with
lossy, anisotropic specimens.
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