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Abstract - A procedure is implemented using edge-type ele-
ments for the solution of frequency-domain electromagnetic field
problems. It consists of a coupled simple-layer integral equation
procedure for an interior-exterior problem where a homogeneous
object is under external excitation. In addition, a hybrid finite el-
ement procedure using E or H as the state variable for efficiently
handling interior inhomogeneities is given. ’

INTRODUCTION

The problem under consideration is to solve an interface
type electromagnteic field problem where a three-dimensional
structure is under a given external field excitation. Numerical
modeling of such a situation usually involves a large solution do-
main or inverting a very large matrix, as a direct consequence
of the following two features. One is the unboundedness of the
problem, because it is' assumed that the incident wave field is
emitted from and the measurement is performed in an inifinite
background medium. In finite difference or finite element mod-
eling, an artificial boundary condition (more or less, frequency
dependent) is located far *away from the scatterer in order to
simulate the nonreflecting nature of the scattered wave field. An-
other feature is the vector nature of the electromagnetic waves.
Thus, the field variable at each node in the solution domain has
three coniponents. To get rid of the interface condition, finite el-
ement médeling usually reformulates the problem by introducing
scalar and vector potentials, which means more unknowns per
node and: even larger matrices. The purpose here is to review
and propose a class of edge-based methods with minimal solu-
tion domains, fewer indepenedent unknowns and higher accuracy.
These methods use a new class of elements having unknows on
the edges (tangential component of field along the edge) instead
of the nodes. By using vector basis functions, each edge has only
one degree of freedom (first order model) [1].

This paper is organized as follows. First, the physical model
and governing equations are introduced. Then, the solution of
surface integral equations based on vector boundary elements

(BEM) is considerd. Coupled finite element method - bound- -

ary element method (FEM-BEM) using scalar and vector finite
elements are given next. Finally, some representative results and
conclusions are provided.

PHYSICAL MODEL AND BASIC EQUATIONS

Consider the problem of obtaining a numerical solution to
the time - harmonic Machll_’s equations in a source - free do-

main. This physical configuration is shown in Fig. 1. Let the
space R° be divided into two parts by a closed surface S (see fig-
ure 1). The exterior domain Q, is characterized by (p1,€1,01 =
0), and the interior domain Q4 by (g, €s(F), 02(F)), where the
T dependence of conductivity and permittivity reflects inhomo-
geneities in the structure. Let the source (E™, Hi") be emitted
from domain §, and excite the object Q, externaly. The purpose
here is to compute the out-going wave fields (¥4, Hj) and the
penetrating wave fields (E3, Hj). Then the total wave fields are
gorvened by the following basic equations N
V x ﬁl = jwe; ﬁl

V x E; = —jup Hy, in

V x Ez = —jwllrzﬁz, V x ﬁz = jwﬁ;(i‘)ﬁz in ﬂz (1)
(@ xBy* =(@x E)-, (AxH)*=@xH) on §
where
' a; ' g
€1=E1+j—‘:, €z=52+j72)- 2)

It is possible to eliminate one field variable and obtain a curlcurl
equation in terms of the other field variable, for example, in £,

1 ~ A o
Vx —VxE+j E =0 3
eV x B+ jud@ = §, ®

1 . T,
_ 1 = 0. 4
Vv x jwe,z(l__,)VxH+meH 0 (4)

Ef(¥), A"™(¥) Eq(), Hi(?)
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Fig. 1 Physica.l Configuration.
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A COUPLED INTEGRAL PROCEDURE

In this section, an edge-based boundary element model is
outlined for electromagnetic field interation with homogeneous
material. By introducing vector simple-layer potentials and scalar
simple-layer potentials, the total electric and magnetic fields in
Q, and 2, can be expressed as [2]

Ey(F) = B — jwhy(F) - VVi(P) (5)
. .. 1 .
Hj(F) = H™(F) + -V Aq(7) (6)
1
for T on or outside S and
Ba(f) = —jwhs(d) - VVa(#) ™
L1 .
H,y(r) = ;V x AfF) (8)
for T on or inside S. The various potential functions are
(0 =2 [[IF)6a(# F)isE) (©)
K(®= / M(F )G (F, ¥ )dS(F) (10)
N T er = ) -
Vi) = gz [ [ (@16 (E )as(F) (1)
- 1 o - -~
Vi) = g [ @16 F)as () (12)
where the Green’s functions are defined by
—ikiR
Gi(F, ¥ CR , R=|F-T7| (13)

Except for a multiplying constant, these functions possess the
standard properties of s1mple-layer potential {3]. In the construc-
tions (6-9), the megnetic field H is automatically divergence free.
By demanding the divergence free condition for the electric field
E one can see that the scalar layer densities are related to the
vector layer densities by the continuity relations

P (F) = Vs e J(¥) p'"(r*)=;—jv;~1~7l(#) (14)

The coupled integral equation formualtion is obtained by requir-
ing the continuity of tangential components of the electric and
magnetic fields on the interface S:

B0 lna= {0a(F) + VVAE) — johs = Va®)} o FES
(15)

—H"(F) |san= {#—llv x Ay(F) - _#l_zv X A;(i")} b FES
(16)

A solution to the coupled integral equations is achieved by
dividing the surface S into triangular elements. A vector basis
function is defined as [4]

2—‘:3;3‘,{, rin Tf
(F) = dpn, FinTs (1)
0, otherwise
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The surface divergence of the basis function is given by

4o, FinTf
Vsofo(f)=4 -4, Fin T, (18)
0, otherwise

where T} and T are two adjacent triangles with the nth edge
common, I, is the ]ength of the nth common edge, A% the area of
triangle Ti and p are the approriate position vectorsin Tk. Let
there be N common edges in the surface triangulation. Now the
surface outer layer-density and inner layer-density are expanded
in terms of the basis function,

N N
)= L LR, M@ =LMEF)  (19)

where the coefficients I,, and M, stand for the perpendicular com-
ponents of the outer layer-density and inner layer-density flowing
past the nth common edge. To determine these coefficients, the
coupled integral equations are tested against the basis functions
in the sense of the following symmetrical product

<fg>= /Sf.gds (20)
to get
< jwhy, Bn >+ < VVy, £ > — < jwks, £ >
— < VUV, f, >=<E™, f,>, fe€S (21)
3 <3 B>+ <Rl £ty <M, £ >
- <K;M), £, >= - <H™, £.>, Fe§ (22)

where the principal value integral operators are given by

= 4% [L3@) x VaiEHsE), (@)

R (M) :4—1” 9@ x V@, H)is@). (24)

The two symmetrical product terms can be integrated exactly,
the terms invloving principal value integrals are integrated nu-
merically using the Galerkin procedure (double surface integrals)
to take into account the rapid change of 1/R?, while the remain-
ing terms may be simplified to simple surface integrals by testing
at the centroid of the triangle. Careful calculation yields a par-
titioned matrix equation

{z2y {z}M .y | [{Em) 25)
{zM)}y {zMM My | [ {ERY]

Detailed expressions for submatrices in (25) are omited for brevity.

A HYBRID FEM PROCEDURE

Now consider the situation in which (; is a nonhomoge-
neous medium. Since the parameter €, depends on position vec-
tor T, no Green function can be found for this case. Surface type
integral equations discussed in the previous section can not be
applied, and instead, a volume type intgral equation or a finite
element procedure has to be considered. A volume type intgral
formulation uses the concept of volume polarization current. A
detailed account of the method is not included here. We focus on
implementation of coupled FEM-BEM approaches. The tradi-
tional node-based method has a disadvantage, in that the inter-
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element conditions and the surface conditions are rather tedious

[5]. The method proposed next uses edge-based elements with -

vector basis functions. The resulting matrix equation has fewer
unknowns, and is more sparse. For brevity, only the solution
procedure using E as state variable is discussed. The dual pro-
cedure, using H as state variable, can be obtained analogously.

The weighted integral form of (3) is [6]

1 Lo Cm L B
/n’Vx = VxE-wmdﬂ+/anwe,(i")E-wmdﬂ = 0, (26)

Jwptz
where W,, are any set of real vector weighting functions. Using
the integral relation

/‘,(an-vXE—a-vaXﬁ)m

= fs[sx(in;)] -#dS
yields the weak form

1 , . =
/n 2 (sz x E) (VX Wi )dD2 + /ﬂ e (F)E - Wond

= fs (8 x H) - W,ndS. (@7

Next consider the_Galerkin procedure for discretizing the
weak form. E and 7t x H are expanded by

M. M.
E= z_jl E wo(F), axH= 21 Favin() (28)

where M, is the total number of edges in the finite element mesh,
and W, is the vector basis function associated with the nth edge.
These vector basis functions are constructed such that the ex-
pansion coefficients in (41) are tangential components of corre-
sponding field variables along that edge. Because tangentially
continuous finite elements are used, the inter-element conditions
are automatically guaranteed. The discretized version of (27) is

(4] {€} = [B] {F}, (29)

where the coefficients are

1 - " T I
Gmn = L, [jw[lz (V x Wp) - (V X W) + jwey(F)Wn -wm] dQ,
(30)

b = f;ﬁn-ﬁmd& - m,n=12,, M. (1)

Equation (29) cannot be solved because one does not know
fi x H on S a priori. This information is obtained by consid-
ering the integral formulation (6) and (7). Similar to the finite
element formulation, the surface S is modeled by triangular ele-
ments (consistent with a tetrahedral FEM model) or quadrilat-
eral elements (consistent with a hexahedral FEM model). Let
the position vector be on the surface S. E and J are expanded
by a set of vector basis functions f.:

- N! - - N‘ -
E=Y EL(F), =) L& (32)
n=1 n=1

where N, is the total number of edges in the boundary element
mesh. In a conformal case, £, should be W, acting only on.S.
However, in a nonconformal case, f. can be any set of vector
functions as long as the coefficients in the expansion have the
same physical meaning as that in (28). Testing (6) in the sense
of symmetric product (20)

< B(D), o >=< B"(@), fn > — < jwha(7), fn >

— < VVy(f), £.> Fe€S (33)

This yields a mtrix equation relating the vector layer J and elec-
tric field E )
[c]{1} = —-{€™} + [BI{f} (34)

where by, is the same as that in (31) if i':. is W, acting only on

S, and

imn = [ [ [f(-ham)EuGas] ¢ Fnds

() VeehiGds| Vsofuds, ()

ene = //;ﬁ"w.f,,.ds, mn=1,2--N.  (36)
Next, testing i x H based on (7)
PR, L. o 1 =2 2
<ﬁxH,f,">=<ﬁx}I’“°,t;n>+—2-<J,£n>
+<ax &), £.>, fFeS (37)

yields another matrix equation relating i x H to the vector layer
J:
(B] {F} = {#™} + [DI{I}, (38)

where the coefficients are

dmn = %/[sﬁ.inds,+//s [%/[g(ﬁxﬂ)xV'GdS]of,,.dS
(39)
fine = //sﬁxﬁ""ofmds, ma=12---,N. (40)

Since both B and i x H are tangentially continous, the surface
conditions are automatically guaranteed. The three matrix eqau--
tions, (29), (34) and (38), can be linked together to get

(14] - DI[C]*(B]) {£} = {F™} - (D)C]* {€™}.  (41)

The solution to (41) yields the tangential components of E along
all edges in the finite element mesh. The interior field can be
interpolated via the vector basis fucntions. To calculate exte-
rior field, the tangential components of vector layer J along all
edges in the boundary element mesh are obtained through (34)
or (38), and a numerical integration is performed based on the
construction of exterior fields.

REPRESENTATIVE RESULTS

The computer implementation of these methods starts with
the numerical implementation of edge-based integral procedures.
As an example, consider a conducting sphere under plane waveil-
lumination. The sphere has a radius @ = 1m. The incident plane
wave has its magnetic field polarized along the +z direction, and
propagates in the +z direction. The surface of the sphere is
spanned by 60 triangular elements. This model requires filling
and inverting a 180 x 180 matrix. Since the incident frequency is
not very high, the numerical results can be verified with respect
to the exact solution for a conducting sphere in a uniform alter-
nating field. Fig. 2 shows a comparison of the BEM solution with
the exact solution of the B, component along the z axis. The in-
cident frequency is 10kH z and the conductivity is 10°0/m. Fig.3




shows another situtation where the incident frequency is 10kHz
and the conductivity is 100 /m. Both pictures show good agree-
ment for interior and exterior fields, while some error exists near
the interface. This may be due to the following reasons. First,
relatively fewer boundary elements were used. Second, the curl
of a vector simple-layer potential has a limiting term F1/2i x ¥
when approaching the inteface from either side, and the kernel
1/R?® is quite sensitive when R is small. Numerical difficulty is
expected near the surface.
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Fig. 2 A Conducting Sphere in Alternating Field
for f = 10kHz, o = 1030/m.
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Fig. 3 A Conducting Sphere in Alternating Field

for f = 10kHz, o = 10*U/m.
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Substantial work is under way to build a computer code using a
coupled finite element - boundary element method in conjunction
with edge type elements, proposed in the previous section. Two
kinds of vector elements are reported in the literature. One is a
tetrahedral element with six degrees of freedom [7], another is a
hexahedral element with twelve degrees of freedom [8]. The latter
is preferable due to the fact that hexahedral elements are easy to
generate and visualize. However, with tetrahedral elements, the
self-term integrals appeared in the boundary integral formulation
can be easily worked out, while certain difficulty exists with hex-
ahedral elements. These and other aspects of implementation are
currently being examined.

CONCLUSIONS

A coupled simple-layer integral procedure is efficiently im-
plemented for eddy current calculation using triangular surface
edge elements. The solution is further facilitated by elminating
the scalar layer-densities in the interior and exterior field repre-
sentations through the continuity requirement without increas-
ing the differentiation requirement of the vector basis function.
Good agreement with exact solution is obtained. A rigorous hy-
brid finite element procedure is proposed using edge finite and
boundary elements. Numerical implementation of the procedure
is under development.
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