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ABSTRACT

A number of direct solution algorithms have
been parallelized for use in conjunction with
finite element analysis of large engineering
problems. Parallel solution algorithms based on the
Gauss-Jordan and Gauss elimination were implemented
and compared. These parallel solvers are applied to
large, dense or banded systems of equation arising
from finite element analysis of 2-D and 3-D
electromagnetic field problems. Both real and
complex matrices are considered with emphasis on
very large systems. The speedup obtained by
parallelization on the MPP compared to sequential
computers 1is almost three orders of magnitude.
Although the MPP is used for implementation, most
aspects of parallelization are general.

INTRODUCTION

In engineering applications it is often
necessary to solve large systems of equations that
are either too large or require too much computer
resources to be economically feasible on standard
computers. For this type of problem a parallel
machine is very attractive. The type of systems
considered are those arising from the application
of the finite element method (FEM) to engineering
applications. The FEM is particularly
computationally intensive, yet its various parts
are either intrinsically parallel or can be
parallelized. By using a parallel processor,
considerably faster solution times can be achieved
or, alternatively, larger problems can be solved.

The Gauss elimination and the Gauss-Jordan
methods have been chosen for this work because of
their extensive use in finite element applications.
In most cases, dense, nonsymmetric, real systems
are solved but similar methods for banded and
complex systems are presented. Sparse systems are
not considered here although, these can obviously
be handled.

The MPP has been described elsewhere [1,2] in
detail. For the purpose of this work, the MPP is
configured as an 128+%128 array with a 32 bit word
length. For the solution of linear systems, the two
most important aspects related to the MPP are the
number of memory planes in the ARray Unit (ARU) and
the size of the staging memory. The ARU contains
900 usable bit planes of memory. This limits the
number of real arrays (128*%128, 32 bit) in the ARU
to 28. The staging memory is limited to 512 real
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arrays. Parallel Pascal callable I/0 procedures can
transfer only one 128%128 array in or out of the
ARU at any one time. This makes it necessary for
any array larger than 128*128 to be blocked into
sub-arrays of 128%128. Thus, the smallest system
considered is a 128*128 system of equations.

A PARALLEL GAUSS-JORDAN ALGORITHM

For a system of equations of the form
[A]{X)={B), the parallel implementation of the
Gauss-Jordan algorithm begins by loading [A] into
one array and the right hand side (RHS) (B} into
the first column of a second array. Assuming that

the first column in [A] has been eliminated, these
arrays look as:
aj; alZ aj3 an bl 00...0
a' 122 a 23 e a "2n b’2 00...0
a'3pa’sy ... alyy, b’3 00 0
a’nz a'n3 co.oaly 1a b', 00 0 b
where n=128. The prime indicates that the

corresponding coefficients have been modified
during elimination of the first column. To
eliminate the second column, a pivot row array and
a pivot element array are created using row and
column broadcasting routines.

[0ar5yatps oo aryy 37228797 -+ a9
0a’gpaip3 - ayy 322 392+ a'p)
Oa'ypalyy ... alyy a'yp a’ ‘22 @ 22

L 0@’ a%3 - @'y ,, [8'22 8"90 -+ a'pnf o

A pivot column array is created from (la) as

412 %12 212 --- 212

a 22 a’ ,22 a’' ,22 0 @90
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Eq. (3) is divided by Eq.
by Eq.

(2b) and multiplied
(2a) to create a modifier array

ajpa’yn/a’ys
12’228 9n/3"9)
-a'3ga’yp/a’ 22 (4)

[0 aj9a’yp/a’yy ajpa’ys/a’ 22°
0 a’ga’9p/a’yp a'pa’p3/ay;.
0a’ 32 "92/8"99 a'3ja’ys/a’ ‘22-

10 a’pa 22/a 22 @'ppa 23/a 22---a'pra’pn/a’y

This array, with the exception of the pivot



row, is subtracted from the original array “in (la).
The result is a new coefficient array

11 A a"1n
o a 32 a 23 & 2n
a3y -+ A3, (5)
0 0 a3 .. a"sn
0 o e, ar

The modification of the RHS during elimination
is similar. Eq. (3) is divided by Eq. (la) and
multiplied by Eq. (1b) to generate an RHS modifier
array This is subtracted from Eq. (1b) to obtain
the new RHS array.

b, - aj,b’',/a’ 0 0o ... ©
}oonie 2 22
b'y-a’gob'9/a’5, 0 O 0 6)
b’ -a’pb’p/a’y, 00 0
After n elimination steps, the original

coefficient matrix is reduced to a diagonal system.
To obtain the solution, an array of the diagonals
is constructed

411 %11 41 a1
2,22 222 292 2,22 (7)
4’33 233 2433 a'33
a"nn a"rm a"l'll'l e a‘n
Eq. (6) is divided by Eq. (7), to obtain the

unknowns x1 through x128:

A PARALLEL GAUSS ELIMINATION ALGORITHM

The Gauss elimination algorithm follows similar
steps. The steps in Eq. (1) through (4) are
identical. In subtracting the modifier array in Eq.

(4) from Eq. (la), only the rows below the pivot
row are modified. After (n-1) elimination steps,
the original system (la) is reduced to an

equivalent upper triangular system:
side is similarly modified.

The right hand

aj) + ajp + a +...0+ ap, bl 00 ...0
a' + a' +...+ a' b 00...0
22 .23 W2n .2
a3 +...+ a"g) b 3 00 .0
. R .
a, 8a b, 00 0 8b

The solution of the system in Eq. (8) is performed

using the following algorithm
xi=bi/ayy,  bk=bk-axix; (9)
where i=-n,n-1,...,1 and k=i-1,i-2,...,1. In this
algorithm, once an unknown is backsubstituted, the
upper triangular system is reduced in order by one
and then the RHS is modified.

A pivot column and a pivot element array are
created as
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a1i 214 21 214 aii 44§ 34 8jj

421 421 42i 42i 4ii 3iji 2ii aji

831 431 434 431 S

21 241 441 gii -

o o 10a  L[Bii 311 33 - &40,
The RHS is divided by the pivot element array

(masked operation) to solve for the
From this,
arrays are:

ith unknown.
an RHS pivot array is generated. These

[b; 0 0 ... 0 x; 00 0
b, 0 0...0 ¥ 00 0
. e . . (11)
k3 0 0...0 x; 00 0
¥, 0 O 0 ;. 00 ... 0
Multiplication of Eq. (11b) by Eq. (10b)
results in a modifier array:
apixg 0 0. 0
agixy 0 O 0
az;xy 0 0 0 (12)
a;:x; 0 0 .
o 0...0
The modifier array in Eq. (12) is now
subtracted from the RHS. After n=128 steps, the
RHS array contains the n unknowns in its first

column.

BLOCK GAUSS-JORDAN AND GAUSS ELIMINATION

For the solution of any system with order
larger than 128, the coefficient matrix is blocked
in subarrays of 128%128. For each subarray the
algorithm described in Eq. (1) through (7) is
applied. A 512%512 system is chosen as an example
since this is the largest array the ARU can handle.
Any larger matrices will have to utilize the
stager. In Fig. 1, the 512%512 coefficient matrix
is blocked into 4*4 subarrays, while the RHS vector
is stored in the first column of 4 corresponding
subarrays or in the first four columns of one sub-
array.

The Gauss elimination solution for a 512%512
system 1is similar to that of the Gauss-Jordan
method described above other than the obvious
changes described in Eq. (8) through (12).

Table 1 summarizes the number of operations
required for solution on a sequential machine and
on the MPP. Table 2 summarizes the solution times
for a 128*%128 and a 512%512 system
equations wusing the Gauss-Jordan and Gauss
elimination methods on the MPP. The results are
compared with those obtained for the same systems
on a MicroVaxIIl computer. The highest speedup is
achieved for a 512%512 system (largest problem that
can reside in the ARU). The backsubstitution is the
slowest of the two parts (essentially a sequential
operation).
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SOLUTION OF BANDED SYSTEMS OF EQUATIONS

Fig. 2 shows the coefficient data structure of
a 512%512 system of equations arising from finite
element analysis, where only the shaded area has
non-zero terms (semi-bandwidth less than or equal

to 128). In Fig. 2a, 37.5% of the memory storage
can be saved by considering only the non-zero
blocks. In fig. 2b, 65.6% of the memory can be

saved. With this storage scheme, a 1024*1024 matrix
with a semi-bandwidth of 128 can reside in the ARU.

The solution times for a parallel, banded
elimination algorithm are summarized in Table 3 and
compared with those for full coefficient matrix of
the same order (512%512).

SOLUTION OF SYSTEMS WITH COMPLEX
COEFFICIENTS

Application of the finite element method to the

solution of eddy current problems in
electromagnetic fields results in the following
system of complex linear equations:

(A+ JB)(X+ JY)=(C+ jD) (13)

On the MPP, complex data is stored in two sets
of arrays. Complex calculations are resolved into

two or more real parallel array operations. The
basic operations required are implemented as:
P+Q=(P1+QL)+j(P1+Ql) P-Q=(P1-QL)+j(P1-Ql)
P*Q=(P1*Ql-P2*Q2)+j(P1*Q2+P2*%Ql) (14)

P/Q=((P1*Q1+P2*Q2)/(Q1*Q1+Q2*Q2))
+3((P2*QL-P1*Q2)/(Q1*Q1+Q2*Q2))

For the solution of a system of complex linear
equations with order higher than 128, the complex
coefficient matrix is blocked into subarrays of
128*128.

The solution times for a 128*128 and a 256*256
system of complex linear equations by the Gauss-
Jordan and Gauss elimination methods are summarized
and compared with those for solution of the same

order system of real equations on the MPP. The
results are shown in Table 4.
The solution time for a system of complex

linear equations by Gauss' and Jordan’s methods is
about 4 to 5 times that needed to solve the same
order system of real equations.
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Figure 1 Blocking of a 512%512 system.

SOLUTION OF LARGE SYSTEMS OF EQUATIONS

For problems of size larger than the capacity
of the ARU, the stager must be used. The matrix is
again subdivided into blocks of 128*128. Once all
subarrays in the matrix are in correct stager
addresses, part of the arrays are sent to the ARU
for processing. The results are returned to the
same stager addresses. This is repeated until the
system is solved.

The division into subarrays is the same as in
Fig. 2b for banded systems and as in Fig. 1 for
dense systems except for the larger number of
subarrays required. The RHS is placed in columns of
a single array to save space.

Several banded systems with bandwidth<128 of
selected order ranging from 1024 to 16,384 have
been solved on the MPP using the stager. The
solution time (including data transfer between
stager and ARU) is shown in Table 5. Table 6 gives
the largest banded systems with different bandwidth
that can be solved on the MPP under the limit of
the stager size (32 Mb). Table 7 summarizes the
solution times for two large, dense systems of
equations (nonsymmetric).

CONCLUSIONS

The implementation of solution algorithms on a
massively parallel processor is quite efficient as
long as the system fits in the ARU. Larger systems
can also be solved with reduced efficiency. Even
so, the solution is as fast or faster than on
vector machines. An increase in size of the array
and local memory could significantly improve
performance.
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Figure 2. Two methods of blocking a 512*%512 system
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Table 1. Number of operations needed for sequential and pz?.rallel
solution with the Gauss-Jordan and Gauss elimination algorithms.

Sequential solution Parallel Solution
Method |Oper. Diag./Triag. |Solution{ Total Diag./Triag. Solution Total
Gauss |A/M n(n-1)(n+3)/2 | 0 n(n-1)(n+3)/2 amm(m+3)/2 amm(m+3) + a/2
Jordan|D n{n-1) n n? amn m m(am+1)
Gauss |A/M n(nn-1)/3 n(n-1)/2{n(n-1)(2n+5)/6||am(m+1) (2m+1)/6-1 am(m+1)/2-1} am(m+1l)(m+2)/3-1
Elim. |D n(n-1)/2 n n(n+l)/2 am(m+1)/2-1 am am(m+3)/2-1
A=add, M=multiply, D=divide, a=128, m=n/128, n=# of equations in the system.

Table 2. Comparison of solution times for the Gauss-
Jordan and Gauss elimination methods on the Microvax
IT and the MPP. (Times in seconds).

Table 5. Solution times on the MPP for banded
systems of different sizes. Semi-bandwidth is 128.
(Time is in seconds).

Gauss-Jordan Gauss Elimination Size Elimination| Solution Total
Order {uVax [MPP Speedup|uVax | MPP peedup 1024 1.556 0.651 2.206
2048 3.300 1.371 4.671
128: 3072 5.015 2.077 7.093
Elim. |11.571.07788 148 7.57 |.07795 97 4096 6.731 2.784 9.515
Sol. 0.01(.00643 1.6 .12 10493 2.4 8192 13.594 5.611 19.205
Total [11.58].08431 137 7.59 (.12927 59 12288 20.458 8.438 28.896
16384 27.321 11.26¢ 38.264
512:
Elim. | 3476] 1.728 2011 3165]1.231 2572
Sol. 0.23}.02568 8.9 2.01) .25615 5.6
Total{ 347611.754 1982 3169 | 1.588 1994 Table 6. Largest systems solvable on the MPP
Semi-bandwidth Size of Systems
Table 3 Banded and full matrix solution times using 128 21888
Gauss elimination on the MPP. (in miliseconds). 256 13184
384 9472
Step Full Matrix | Banded Matrix | Speedup 512 7552
1024 4352
Elimination 1230.56 724.26 1.699 2048 2944
Solution 356.15 277 .44 1.284 2816 2816
Total 1585.70 1001.71 1.584
Table 7. Solution of large, dense, nonsymmetric
Table 4. Comparison of solutions in real and systems on the MPP. Time is in seconds.
complex variables on the MPP. (miliseconds).
Size Elimination{Solution | Total CRAY X/MP
Gauss Jordan Gauss Elimination
1024x1024 7.809 1.327 9.136 | 36.523
Order | Real |[Complex|Ratio | Real Complex |Ratio 2048%x2048 51.353 4,638 55.990 | ——
128:
Elim. | 77.88]334.89 | 4.3 77.95| 334.96| 4.3
Sol. 6.43 12.43 1.9 49.30| 244.581 4.96
Total | 84.31(347.32 | 4.1 128.27 579.55| 4.52
256:
Elim. [343.68|1513.80]| 4.4 277.76 }1196.30] 4.3
Sol. | 12.28( 24.88) 2.0 [125.61[ 576.48( 4.59
Total 1355.96 |11538.68| 4.3 |[403.371772.77) 4.4
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