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Application of Biorthogonal Wavelets on the Interval [0,1] to 2D EM Scattering

Qinke Zhang and Nathan Ida ‘
Department of Electrical Engineering, The University of Akron, Akron, OH 44325-3904 USA

Abstract-A biorthogonal wavelet-based MoM is presented.
Specifically, the MoM based on compactly supported biorthogo-
nal spline wavelets on the interval [0,1] are implemented and
applied to solving 2-Dimensional electromagnetic scattering
problems. The numerical results show the effectiveness and use-
fulness of the proposed approach.

Index terms- Biorthogonal wavelets, moment method, electro-
magnetic scattering, sparse matrix.

" I INTRODUCTION

Wavelets have found considerable use in the representa-
tion of signals and data compression. This is because wave-
lets have some important and useful features. One is their
time (space) and frequency localization. Another property is
called cancellation property, or zero-moments. From the nu-
merical analysis point of view, wavelets preserve the compact
support property of traditional basis functions. When dealing
with differential operators compactly supported bases give
rise to sparse matrices, while when dealing with integral
equations, the cancellation property of wavelets, together
with their compact support, results in nearly sparse matrices.
This is one of the advantages of using wavelets as basis func-
tions over the traditional bases. '

Wavelets have been used to solve partial differential and
integral equations in electromagnetics [2-8], and “sparse”
matrices were obtained in all cases. Whole-line or periodized
orthogonal wavelet bases were used to solve integral equa-
tions with bounded domains in EM scattering and guided
waves [2-6]. There were difficulties in treating domain
boundaries when whole-line wavelet bases were used. Or-
thogonal wavelets on the interval [0,1] for analysis of thin
wire antennas and scatterers [8], and semiorthogonal wavelets
on [0,1] for solving integral equations of the first kind [7],
which overcame the difficulties mentioned above, have been
presented. The focus in this paper is on the use of compactly
supported biorthogonal wavelets on the interval [0,1] in the
method of moments for the solution of the integral equations
in EM scattering and guided wave problems. Biorthogonal
wavelets have all the major features of orthogonal and semi-
orthogonal wavelets, but also offer additional properties. In
the biorthogonal case, there are two related wavelet bases,
namely primal wavelet bases and dual wavelet bases. The
dual wavelet bases can have different smoothness than primal
wavelet bases. Since the test bases and trial bases actually
play different roles in the method of moments, biorthogonal
wavelet bases provide flexibility for choosing proper trial
‘bases and test bases. The result is improvement of solution
efficiency and accuracy. Interestingly, in some cases one can
construct a family of biorthogonal wavelet bases from a sin-
gle scaling function. This wavelet family has a number of
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different orders of zero-moments for primal wavelets and
different smoothness for the dual wavelets. The rest of this
paper is organized as follows: In the next section we outline
the major features of compactly supported. biorthogonal
spline wavelets on the interval [0,1] used in this work. In
section III we briefly describe how the method of moments
based on the biorthogonal wavelets is implemented for treat-
ment of integral equations with curved and bounded integra-
tion paths. Numerical examples are given in section IV. 2D
electromagnetic scattering is analyzed by solving the corre-
sponding EFIE. A brief conclusion is given in section V.

II. COMPACTLY SUPPORTED BIORTHOGONAL SPLINE
WAVELET BASES ON THE INTERVAL [0,1]

Biorthogonal spline wavelets on [0,1] at a single resolution
level are composed of a finite number of so-called boundary
wavelets and interior wavelets [9,10]. A lowest resolution
level needs to be prescribed for a specific biorthogonal
wavelet pair for analysis to be realistic. The primal wavelet
and dual wavelet bases are expressed as [10]

Y= U VY, Y= U ¥, M

j=Jo-1 j=Jg-1
where ¥, and 7 > are the sub-bases of the primal and dual

wavelets at resolution level j, respectively, and are given by
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the left boundary, right boundary, and interior wavelet sets on
the primal side, and
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and f

the left boundary, right boundary, and interior wavelet sets on
the dual side. m,, and 7, are the number of the boundary
wavelets on the primal and dual side, re_spectivelly) [, and Z~W

denote the first shift indices of the interior primal and dual
wavelets (from left to right). Note that

¥, =0, = {0, 0,00} j=J-1
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where @ ; and ) ;account for the sub-bases of the primal
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and dual scaling functions on [0,1] at the lowest resolution
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level J,. From a single cardinal B-spline function of order
d, a family of biorthogonal wavelet bases with exactness
order of d for dual scaling functions, satisfying d >d and
d+d= even , can be constructed [9,10]. There are exactly
d left and right boundary scaling functions on the primal
side and d boundary scaling functions at left and right
boundaries on the dual side for a fixed pair of (d, J).

Moreover, there is a fixed and same number of the total scal-
ing functions on the primal and dual sides within the interval
[0,1]. The numbers of the boundary wavelets, ie., m, and

i, , can be chosen to be fixed for a given pair of (d, E) s
while the number of the total wavelet functions over [0,1] at a
given resolution level j is fixed, i.e., 27 . The major features

of the biorthogonal spline wavelet bases described above can
be outlined as follows:

(i). The sub-basis @, in (3) is exact of order d on [0,1], i.e.,
they generate all polynomials up to order d on [0,1]; Simi-
larly the sub-basis @ , in (4) is exact of order d on [0,1].
(ii). The two-scale equations are given in matrix form as

D =MD, & =M,3,, /27, O

V=M, @, ¥, =M, D,,, jzJ, ©
where M ;A ,,M,, and A ,, are the matrix form of di-
lation coefficients.

(iii). Biorthogonality relations:
~ j .
(\PerP" )[0,1] - 5,-,;-1(2 A Jo—1, Q)

J
where (‘PJ ,‘T’ r )[ o) denotes a matrix-form inner product over

[0,1], 7 the unit matrix of size 2/ x2’, &, the delta

function.
(iv). Zero-moments:

J'[ Xy dx =0, J; X e =0, a<d f<d. (®)

0,1}
(v). Biorthogonal wavelet expansions:

Any function f € L,(R([0,1])) has a unique expansion

/= Z Z(f’ '/71)">[o,1]l//-’¥" ®

J=Jo-1keV;
or
VEDID NV 10)
J=Jo-1keV
where (,-),, is the inner product defined over [0,1], V,

dcnotes e shift index sets of the wavelets on [0,1]. The
biorthogonal spline wavelet bases described above were im-
plemented by object-oriented programming. Fig. 1 shows the

graphs of the biorthogonal spline wavelets with d = 2, d=6
and J, = 5. Note that only half the dual boundary scaling
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functions is displayed for brevity. It should be pointed out
that wavelets on the dual side have more smoothness, and
smoother sets, equivalent to larger number of zero-moments
of primal wavelets, can be obtained by choosing a larger

value for d .

III. BIORTHOGONAL WAVELET-BASED MoM FOR THE SO-
LUTION OF 2D EFIE

The electric field integral equation (EFIE) for 2D EM
scattering (TM case) is expressed as

Einc _ kﬂ J b (2) k M |

7P =7 ) (O H Y (Kp - pel an

where ¢ denotes the contour representing the surface of the

scatterer, p'and p account for the position vectors corre-

sponding to source and field points on ¢, respectively, k and
n are the free space wave number and wave impedance,

J,(-), the unknown current density on the object surface,
E(?) denotes the incident electric field component in z-

direction, H{”()), the Hankel function of the second kind

and order zero. MoM approach to the solution of integral
equations requires: (i) Determination of a proper trial basis
for the unknown function expansion and a proper test basis
for the realization of the weighting scheme; (ii) Efficient cal-
culation of the matrix coefficients for the corresponding dis-
cretized systems of equations, which usually requires calcu-
lation of integrals involving singularity over the whole solu-
tion domain; (iii) An efficient solver for the matrix equations.
The treatment related to these issues is discussed next.

A. Domain Transformations: For the biorthogonal wavelets
on the interval [0,1] to be used as bases in MoM approach for
the solution of integral equations like (11), the first require-
ment is to perform domain transformations so that the wave-
let bases on [0,1] can be properly used to expand the un-

known function, J,(-) which are defined on a general
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Fig. 1. Biorthogonal spline wavelet bases on the interval [0,1]
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curve. Specifically we need to transform the domain consist-
ing of a general curve ¢ to [0,1], or, in other words, to trans-
form bases on [0,1] to bases on the curve. This can be done
* by using a parametrization of the underlying curve and a two-

step mapping. Denoting by £ and &' the points in [0,1] cor-

responding to the field and source points on the curve ¢,
after accomplishing the domain transformations, (11) can be
rewritten as

B (p(&) = 2L 7. @D EE (o) -p' (&)
- oenjag,

where |@(&")| is the integral scale determined by the specific

. (12)

two-step mapping involved.

B. Using Smoother Wavelets as Trial Basis and Coarser
Wavelets as Test Basis: As mentioned in section I, dual
wavelets have different smoothness than their counterpart on
the primal side in a general biorthogonal wavelet framework.
In MoM, the trial basis is used for the representation of un-
known functions. Thus smoothness of the basis functions is
generally required. The test basis is used for the realization of
the weighting scheme and smoothness of the basis functions

is usually not critical. Thus it is natural to choose the-

smoother wavelet basis as the expansion basis, the other as
the testing basis. In this work the dual wavelets are chosen as
expansion functions, the primal wavelets are used as test
bases since the dual wavelets are smoother. The biorthogonal
wavelet expansions of the surface current in (11) and (12) are
written as
Jj
TOEN= D, D &) el

j=Jo-1keV,

(13)

where J, is the pre-specified highest resolution level in the
analysis. The MoM gives the following matrix equation
[(A11]1=[G]

where the elements of the coefficient matrix 4 and the right
hand-side vector G are given by

(14)

En
(A)i,l,j,k = 777‘ _[Wi,l (§)|a)(§)ld§ :
[ _[1/7,-,k (EVHP (Kp(£) -p'(&' )|)lw(§')]d§'], (15)

@) = [vu@E @)@l @9

with 7, j=J, - L...J,, eV, keV,.

C.  Numerical Considerations in Computation of Coeffi-
cients: There have been two approaches to calculate the coef-
ficients in (15) and (16). One relies on direct use of fast
wavelet transform (FWT), which requires pre-expansion of
the integral kernel containing singularity by using 2D wave-
lets. The other is the use of traditional numerical integration.
In this work we chose the second approach. Although wavelet
frameworks are very suited to dealing with singularities, for

the current case of separable wavelet bases, this advantage
does not seem so apparent and straightforward because the
singularity in this kernel is closely related to cooperation of
the two arguments,& and &', as can be seen from (15). On

the other hand, using numerical integration (like Gaussian
integration) can still take full advantage of important features
of the biorthogonal spline wavelet bases because: first, all the
wavelets have compact support on [0,1], so the integration in
(15) and (16) does not need to be spread to the whole domain
[0,1]; second, unlike traditional element-based basis func-
tions, the wavelets are element-independent. This makes

_adaptive calculation of the integration near any singular point

(quadrature points) possible. Efforts have been made toward

" this goal in this work. The numerical integration of (15) and

(16) involve the evaluation of the wavelets at the quadrature
points. In this work the wavelets on the primal side have ex-
plicit expressions, thus the evaluation of the wavelets poses
no extra problems.- There are no explicit expressions for the
dual side wavelets, but their values at the dyadic points can
be calculated exactly by means of a recursive procedure. The
curves of the wavelets are pre-calculated at a sufficient num-
ber of dyadic points and stored. The values of the wavelets at
any point can be obtained by interpolation. Moreover the
values of the wavelets at the quadrature points can be precal-
culated and stored for subsequent use. Our tests showed that
the time needed to calculate each element in (15) is about the
same as that spent on computing each entry for the traditional
bases if the traditional bases are polynomials of the same
order as the wavelet bases used.

It is observed that the feature of cancellation and compact
support of the wavelets makes the resulting matrix extremely
“sparse”. By this we mean that a large number of the coeffi-
cients are very small compared with the other coefficients.
These very small coefficients correspond to wavelet elements
whose supports do not overlap and are far away from each
other. These coefficients have little influence on the final
solutions of the discretized matrix equations, thus we can
simply set them to zero, and a sparse matrix is obtained. A
threshold parameter & with (0 <& <1) is introduced and all
elements smaller than the product of the largest element of
the matrix with the specified threshold are set to zero. The
sparse matrix can be efficiently solved by using any iterative
method such as the conjugate gradient solver employed in

“this work. :

IV. NUMERICAL EXAMPLES

The method of moments based on the biorthogonal spline
wavelets on the interval [0,1] has been unplemented by ob-

ject-oriented programming and was used to analyze 2D elec-
tromagnetic scattering problems. Two examples are given
here. The first is EM scattering from a circular conducting
cylinder of radius @ = 0./4 and the second is an open struc-
ture with L = 0.14 (Fig. 2). Both are illuminated by plane
waves. In the analysis, the lowest resolution level was chosen
to be Jo=35, while J,=5,6 were used as the highest reso-
lution levels. There were 129 basis functions on both the pri-
mal and dual sides, with 33 scaling functions and 96 wavelets
for the case J, =6. Fig. 3 shows the magnitudes and phases



of the surface current on the cylinder from the direct solution
of the original matrix and the solutions of the matrices by
applying different thresholds. The results from the conven-
tional MoM are also displayed. It can be seen that good
agreement is achieved between these two methods. Similar
results for the scatterer of the open structure are illustrated in
Fig. 4. Fig. 5 shows the sparsity patterns of the coefficient
matrices for the two examples with a threshold & = 0.0001 .
The variable nz in Fig. 5 is the number of the non-zero ele-
ments in the 129x129 matrices. Thus the percentages of the
non-zero clements for the two examples are 34.6% and
30.7%, respectively. The time saving from solving the sparse
matrices can be estimated by evaluating the operations per-
formed in applying the conjugate gradient method. The
sparseness of the resulting matrices will increase as the sizes
of problems become larger and more levels of wavelets are
used in the analysis.

V. CONCLUSIONS

An efficient method of moments has been implemented
based on compactly supported biorthogonal spline wavelets
on the interval [0,1]. This technique gives rise to a “sparse”
matrix when dealing with EFIE from 2D EM scattering. This
phenomenon will also exist in 3D. Its full advantages are es-
pecially apparent when dealing with large problems. The ad-
vantages of biorthogonal wavelets over other wavelet bases
rely on the fact that they are more flexible in choosing proper
trial and test bases thus the efficiency of solution improves.
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Fig. 2. Conducting cylinder (a) and an open structure (b)
illuminated by a plane wave
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