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weighting functions. The first three dimensional method of mo-
ments model for electromagnetic scattering by a heterogeneous di-
electric scatterer was reported in 1974 (Livesay and dlen, 1974). A
very serious limitation of the method of moments is the need to in-
vert a complex, very large matrix. This process should be repeated
for each frequency of interest. Another important limitation of the
method is related to singularities that need to be resolved each time
one defines a new basis function. The finite element method is not
limited by geometric shapes and it is a powerful method for han-
dling inhomogeneities and anisotropies. The method was applied
with limited success to unbounded systems (Chadwick et al., 1999).
A specific limitation for this method is related to the occurrence of
"spurious" modes (solutions with no physical meaning that appear
in numerical modeling). As one increases the mesh refinement to
improve the accuracy of a solution, the number of spurious solu-
tions also increases. The most frequently used numerical method in
the time domain is finite difference time domain. The method was
first proposed in 1966 (Yee, 1966) and involves transformation of
differential equations in difference equations. The main advantage
of the method is that the difference equations can be solved in a step
by step time scheme as long as a certain stability requirement is sat-
isfied. In Yee's scheme, the electric and magnetic field components
are computed at alternate time steps and at half space increments.
This is the main difference between a finite difference time domain
and a transmission line matrix scheme based on the symmetrical
condensed node. The immediate benefit of having all field compo-
nents at tre same point consists in modeling space discontinuities.

The transmission line matrix technique is relatively new to the
large family of numerical methods. The first time the transmission
line matrix technique appeared in an article was in September of
1971 (Johns and Beurle, 1971). Paul Johns, the first author of this ar-
ticle, is considered to be the creator of the method. His articles
demonstrated that transmission line matrices could be used in a
wide range of applications. A treatment of bidimensionallossy
waveguides using this method was proposed three years later
(Akhtarzad and Johns, 1974). The rationale for using the scattering
matrix to describe inhomogeneous two dimensional waveguide
problems was introduced by Johns (1974) and it was exemplified
for a waveguide with dielectric ridge. A three dimensional model
was first proposed in 1975 (Akhtarzad and Johns, 1975). The validi-
ty of the transmission line matrix model is demonstrated in this ar-
ticle by computing the resonance frequencies for rectangular cavi-
ties loaded with dielectric slabs. Lumped network models of
Maxwell's equations were the first basic formulations of the trans-
mission line matrix technique. Based on this formulation, large
structures are divided into substructures for which models are de-
veloped separately (Brewitt- Taylor and Johns, 1980). Then the
whole network response is obtained by assembling together all the
substructures. This method was called diakoptics (Braemeller and
John, 1969) and was extensivelv used in transmission line matrix
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was developed. Numerical modeling was carried out for frequencies that
are commonly used in microwave nondestructive testing (NDT). Struc-
tures with local discontinuities in the electric permittivity are modeled nu-
merically. The excitation parameters used in the numerical modeling of
scanning microwave microscopy were determined based on an Initial fre-
quency experimental response obtained from a plate with known permit-
tivity. The numerical model developed in this paper is based on the sym-
metric condensed node. Experimental data obtained by the authors are
used to validate the numerical models presented in this work. The model
developed and described in this paper has proven its viability, giving accu-
rate results when compared to analytical solutions where these solutions
are available and when compared to experimental results obtained for
geometries that do not allow an analytical solution.
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INTRODUCTION
The interest in using microwaves for nondestructive testing

(NDT) has increased constantly in past years. Maxwell's equations
give a fully theoretical description of electromagnetic scattering.
Unfortunately; their analytical solutions are available for just a few
particular cases. To improve the results obtained in the NDT of ma-
terials, considerable theoretical effort is invested in developing reli-
able mathematical models of wave propagation in different media.
Due to the complexity of the problems, numerical methods have
proven to be an adequate approach; hence, they are intricately asso-
ciated with the development of NDT methods.

The first book that proposed a numerical model for microwave
nondestructive testing was published in 1992 (Ida, 1992). Three
years later, a book was dedicated exclusively to modeling electro-
magnetic NDT (Ida, 1995). The book offers a comprehensive treat-
ment of finite difference and finite element methods. A special
chapter is also dedicated to the method of moments. This last
method was used to model the detection of developing cracks
using microwave techniques (Zoughi, 2000). The numerical meth-
ods that are most commonly used in NDT are: method of moments;
finite element; and finite difference time domain.

Applying the method of moments, one needs to divide a finite
volume into elements or cells and define appropriate basis and
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ideal transmission line, scattering matrix theory is applied to study
the equivalent microwave network system as seen at its ports. The
scanning matrix theory determines the output at all ports for a
given input. In a gener~ form this can be written as:

[nvr]=[S] [nVi](3)

where
[vr] = the matrix of reflected pulses at instant n
[Vi] = the matrix of incident pulses at instant n
[5] = the scattering matrix.

These pulses are defined in Figure 1. The transmission line matrix
equations for the field components are written using the voltages
on the nOde edges. The three index notation used in this paper (Fig-
ure I) is related to the position of the ports and to the direction of
link lines. For example, V xpy is the voltage pulse on a link line paral-
lel to the X axis (x index), on the positive side (p index) and polar-
ized in the Y direction (If index). A full derivation for the scattering
matrix elements starting from Maxwell equations was obtained
(Ciocan, 2003). The elements of the scattering matrix are depicted in
Table 1 and are obtained in such a way that charge and flux conser-
vationlaws are obeyed for the nOde. As an example, a component
of the reflected voltage from Equation 3 is obtained using scattering
matrix elements given in Table 1 as:

nV~ = -nV~xdxy+nV~ycxy+nV;nybxy+nV~bxy

+ n V:VVaxv + n V':"xdxv + n V:CVg v + n V;czixv
(4)

In Equation 4, the coefficients of the voltages are extracted from
Table 1 and are given by:

(5)
2dxy = Z +4+ gmz

z

Zz + gmz- 2(Zz +4+ gmz)
Yy - goy

2(Yy +4+ goy)
(6) =

CXII

modeling (Hoefer and So, 1993). A comprehensive h"eatment of the
transmission line matrix models for materials with nonlinear prop-
erties was published by Paul and Christopoulos (2002). A signifi-
cant development in the three dimensional transmission line matrix
was made by the introduction of the symmetrical condensed node
Oohns, 1986). When this node was introduced, it was a purely alge-
braic construction. It was shown that this type of node accommo-
dates both forms of scattering matrices - for lossless and lossy ma-
terials crows, 1987). Almost 30 years after the first article was
published, the method is considered to be "a modeling process
rather than a numerical method for solving differential equations"
(Sadiku and Obiozor, 2000). The method is a direct numerical im-
plementation of the Huygen's principle (Kagawa et al., 1998). The
wave front corresponding to each iteration (instant in time) for a
certain point in space is a result of the waveforms generated at
neighboring points in the previous iteration. The transmission line
matrix requires the division of the solution region into a rectangular
mesh of transmission lines. The nodes of the mesh are points of dis-
continuity for impedances. To solve a problem using the transmis-
sion line matrix, a set of boundary conditions and material parame-
ters must be provided. An initial excitation, called input, must also
be given. Then the impulses are propagated throughout the mesh
using the scattering theory on the transmission lines. There is no
limitation regarding the frequency of interest, but the size of the
mesh imposes an upper limit on the frequency response analysis.

The transmission line matrix algorithm has high flexibility in
dealing with various types of input signals and boundaries. These
advantages can be exploited for NDT in several ways:
. a real digitized signal (for example, a signal that comes from a
data acquisition board) can be used as an input signal in a trans-
mission line matrix model
. complex boundary geometries can be introduced in the numeri-
cal model regardless of the algorithm convergence
. the transmission line matrix technique offers a versatile tool to
reconstruct the initial signal based on the real digitized signal for
homogeneous media
. the transmission line matrix technique can easily generate a time
or frequency domain signal for a supposedly known configuration.
Based on this, a multilayer structure can be fully characterized
using an iterative process. The material parameters of the multilay-
er structure under investigation can be changed in the transmission
line matrix model, so that the numerically generated signal fits the
real signal.

Based on the above considerations, we propose the application
of a transmission line matrix for microwave NDT. The following
sections of this paper show how the transmission line matrix mod-
els for microwave NDT were developed, implemented and validat-
ed on experimental data obtained by the authors.

TRANSMISSION LINE MATRIX ALGORITHM RATIONALE
The name of the algorithm comes from the equivalence that ex-

ists between the wave equation for electric and magnetic fields in
free space and wave equations for voltages and currents in a trans-
mission line. Considering Kirchhoff's laws for a shunt transmission
line (lossless and nondispersive) the wave equation for the voltage
can be written ada. 2000):

a2E--2aX2 + a2Ez a2Ez
~(2)

Given the equivalence between the wave equation written for
acoustic or electromagnetic waves and the wave equation for an

Figure 1 - Symmetrical condensed nodes for a para/lelepipedic region
of space with dimensions u, v and w.
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Table 1 Scattering matrix elements and voltage correspondence between three index (top row and last column) and classical (Johns,
1987) notations (second row and penultimate column)
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( uv ) uv Zz =4 ~z~-l ,gmz =~crmz2bxy = Y +4+ gey

y

(8)
a _Ixu-

2
Y" +4+ gey

2
Zz +4+ gm,

--~.fi_-gy = Yy +4+ gey(9)

Equations 11 through 16 define the material parameters that are
used in the definition of scattering matrix elements. The quantities
defined in them are associated to each of the axes x, Y and Z using
the generic index i: Yi = characteristic admittance; Zi = characteristic
impedance; gei = electric conductance; gmi = magnetic conductance.
The previous quantities are defined as functions of local material
properties associated to axis i (pennittivity, ei; permeability, mi; elec-
tric conductivity, aei; and magnetic conductivity, ami) and the node
dimensions u, v and w, defined in Figure 1. In Equations 11 through
16, N is the minimum value of all the node dimensions throughout
the mesh.

The field components at the moment n can be written in terms of
incident voltages as follows (Ciocan, 2003):

(10)
2ixy = Zz +4+ gmz

(17)

The electric and magnetic properties associated with each direction
from Equations 5 through 10 are:

(18)
( vw Yx =4 Ex~

(11)

~
vUW-l t gey =uwZo (19)(12)

2( nV;ny+nV~z-nV;py-nV~ +-.fZ: nV;cx)
nHx(i, j, k)=(20)uv

wi\l
} 0" ~ 1 gez = vuZo-E-

W
(13) (Zx +4+ gmx)

wv
uLil

wv-I
uZo

(21) nHv(i, j, k)=-I].(14) crmx ,

(Zy+4+gmv

2(nV~-nV~x-nV~my+nV~x +.[i:;nV~zUW
-I

vZo

(22) nHz(i, j, k)=-.(15)
CJIn)/ (Zz +4+ gmz
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The numerical implementation of a desired model is perfonned in
three steps: preprocessing, computation and postprocessing (Figure
2). The preprocessing step includes detennining the excitation sig-
nal parameters and generating the boundary coordinates of com-
plex geometries. The processing step is made by the transmission
line matrix algorithm. The main steps of this algorithm are: initial-
izatio~ scattering and connection. The connection process is based
on the fact that the reflected pulse for a certain node at (k + 1)M be-
comes the incident pulse for the neighboring nodes at the same mo-
ment, (k + 1)M. Relations that describe the connection process can
be written in an intuitive fonn using the three index notation (Fig-
ure 1). For example, the equations that model connection in the Y
direction at in"tant k + 1 are:

k+1V~(X, y+l, z) = k+1V:Vx(X, y, z)
(23)

The programs developed for the postprocessing part perform
the following tasks:
. reading the data input files generated by the processing pro-
gram
. data visualization in two or three dimensions for each iteration
considered
. signal processing of the numerically generated signal in the time
and frequency domains.

NUMERICAL MODEL VALIDATION
In order to demonstrate the transmission line matrix algorithm

capability being used in NDT, some experiments were performed.
All geometries considered belong to the "reflector with sharp
edges" class. For this type of reflector, the analytical solutions are
not available and other numerical methods (as presented in the in-
troduction of this paper) can generate solutions with no physical
meaning (spurious solutions).

This is not the case for the transmission line matrix algorithm.
The formulation of a transmission line matrix algorithm can solve
(provide a correct solution) for any type of configuration source re-
flector. These facts are illustrated below for three configurations
that can be considered as fundamental for a numerical simulation
of the NDT process. These configurations are: a pulsating source in
front of a square; a sinusoidal source in front of a material with a
small circular discontinuity on it; and a sinusoidal source in front of
a material with two rectangular discontinuities on it. Based on these
general configurations, all NDT problems encountered in real life
can be numerically modeled. There is a single conceptual limitation
of transmission line matrix models. The mesh size of these models
should be less than one tenth of a wavelength (AlIa). This limit is
related to the validity of transmission line matrix theory. For mi-
crowave frequencies, the AlIa limit is not a problem. This means
that practically any microwave NDT configuration can be transmis-
sion line matrix modeled. How the numerical model proposed
deals with the objects with sharp edges is shown in Figure 3. A
gaussian pulse was launched from the center of a mesh. The inter-
action of this wave with a perfectly reflecting square is shown for
two iterations in a pseudo three dimensional representation. The
first iteration shown corresponds to the instant when the wave
front touches the square. The second iteration was chosen when the
wave is propagating along the square edges. At this instant, a circu-
lar wave front was recomposed, as is shown by its projection on the
X/Y plane and this is the wave front that will be received by a re-
ceiver that is placed in the same position where the transmitter was.

k+lV~x(X, y-l, z) = k+lVv'nX(X, y, z)
(24)

k+lV~z(X, y+l, z) = k+lV~(X, y, z)
(25)

k+1V~(X, y-l, z) = k+lV;nz(X, y, z)
(26)

1he scanning step was implemented. This step involves chang-
ing the position of excitation according to the experimental scan-
ning pattern, whereby the transmission line matrix algorithm is re-
peated for each new position.1he time response for each position is
saved in an output file for further processing.

Figure 3 - The simulated waveforms for a gaussian wave reflection from

a perfectly reflecting square: 1 is where the waveform touches the corner
placed in position; 2 shows where the waveform is propagating along the
square edges; 3 is an xy projection of the situation depicted in 2.

,

Figure 2 - Program structure for numerical implementation of

transmission line matrix (TLM) models for microwave NOT.
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The quantitative comparison between the proposed numerical
model and the analytical results was perfonned for the case where
exactly analytical solutions are available (the perfectly conducting
cube). The exact resonance frequencies can be computed in this case
using the fonnula (Ida, 2000):

0.8 mrn (0.03 in.). A sinusoidal source was placed in front of box B,
1 mrn (0.04 in.) away. The arrangement used in this case is shown in
Figure 5. The source frequency was 1 GHz and its length was
0.9 mrn (0.035 in.). The configuration investigated was one with a z
ilirected source. The electrical field distribution for this configura-
tion is given in Figure 6. The field distribution from this figure
shows the transmission line matrix model proposed can accurately
simulate the electrical field distribution associated with a relatively
complicated geometry of both source and reflector.=,j; (.;)2+(~)+(~)2fmnp(27)

The three dimensional transmission line matrix model for a per-
fectly conducting cube 1 m (39 in.) on each side was implemented
in a 50 by 50 by 50 mesh. The source was an x polarized E field and
it was located in the center of the cube at the mesh point (25, 25, 25).
A comparison between the computed frequencies and those ob-
tained numerically is shown in Table 2. The results in this table
show that the proposed numerical model can correctly predict the
frequency response. In addition to that, the transmission line matrix
models can correctly predict the electrical field distribution for three
dimensional structures.

Table 2 The analytical and transmission line matrix frequencies for
the dominant modes in a cubic cavity

Figure 5 - The structure for which the electric field distributions are

shown in Figure 6.

Mode Theoretical Frequency Transmission Line Matrix
Computed Frequency
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Let us consider a small Z directed dipole fed with a sinusoidal
signal at 20 GHz, positioned in front of a perfect conductor screen (a
square 5.25 mm [0.2 in.] on each side) that is placed in the X/Y
plane. There is a small hole (0.75 mm [0.03 in.]) in the center of this
metalic screen. Figure 4 shows a Y / Z section of the total field distri-
bution (in decibals). The representation in Figure 4 demonstrates
that the transmission line matrix model proposed here can solve the
field distribution for a rather complex structure, with a resolution
better than "'/20 (mesh size for these simulations).

--528E+1

--6.04E+1

-~

20 40 60

X Position (02 mm/division)

eo 100 --6.79E.1

Figure 6 - The total field distribution in the XjY plane for a Z directed

source for the structure shown in Figure 5.
0

The experimental setup for the next set of comparisons between
experiment and calculation is shown in Figure 7. It consists of a mi-
crowave resonator connected to a network analyzer. The microwave
resonator was an open ended coaxial probe, the type described in
detail in Zoughi (200). The sample was mounted horizontally over
an X/Y table. Stepper motors controlled via a serial interface by a
computer assured an initial positioning of the sample. An extra mi-
cropositioning of the sample was performed by a commercial sys-
tem. The authors developed a dedicated software package for this
application. The main tasks performed by this software are: data ac-
quisition; movement and equipment control; data processing; and
visualization. Furthermore, this software package writes the input
files required by the numerical processing software.

A full transmission line matrix modeling of the microwave sys-
tem is possible but this will generate a model that cannot be han-
dled on a personal computer due to requirements of memory and
speed. The actual models developed in this work concentrate on
modeling the interaction between microwaves and the sample
under investigation. A calibration between numerical and experi-
mental frequency response was obtained for a known dielectric
plate. The excitation parameters of the transmission line matrix
model were dtanged until a perfect fit was obtained between the
experimental and the numerically generated frequency response
curves obtained for a known microwave dielectric sample geome-
try. The excitation parameters detennined in this way were used in
the subsequent numerical simulations.

20

40

60

80

100
a a

N
0
v g a

00
a
a~

,-.
c:
0
"in
">
U

E
E
l()
r a

--
Q)
()
c:
~
(/)

is
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Figure 4 - The total field distribution in the Y /2 plane for a 2 directed
source.

Next, the field distribution for a more complicated structure was
investigated numerically. The structure consisted of three identical
metallic boxes (1.2 by 0.8 by 0.4 mm [0.05 by 0.03 by 0.02 in.D, A, B
and C, situated in a free space. The distance between boxes A and B
was 0.2 mm (7.9 x 10-3 in.) and that between boxes Band C was
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between materials with different electric permittivities. The fre-
quency response was obtained after two intermediary signal pro-
cessing steps - filtering and windowing. The same signal process-
ing method was applied to the reference and reflected signals.
Figure 9 shows the numerical results for the simulation of the scan-
ning over two small pieces of phenol-formaldehyde plastic and
polytetrafluoroethylene resin- respectively. Two rectangular (1.6 by
3 mm [0.06 by 0.1 in.]) dielectric pieces were investigated and the
step size in scanning was 0.03 mm (1.3 x 10-3 in.). The dielectric pro-
files were obtained by selecting the corresponding computed 511
values for 1.72 GHz. This procedure is identical to that used in ex-
perimental microwave NDT.

Figure 7 - Experimental setup used to validate the numerical models:
1 is the sample, 2 is the microwave probe, 3 is the network analyzer and
4 is the sample holder.

The quantity used to obtain a microwave image is 511. This para-
meter CaIU1ot be obtained directly from the transmission line matrix
algorithm because an incident field cannot be separated. To solve
this problem, two successive runs of the program are needed. The
first run is performed with the excitation without a reflecting object.
This run will provide data for the reference port. A second run of the
program will be performed considering the boundary conditions
for the objects to be investigated. The 511 parameter is given by:

~
Fj+Fo

5" =(28) Figure 9 - Results of the numerical scanning for two pieces of
dielectric (A = polytetrafluoroethylene resin; B = phenol-formaldehyde
plastic) with a 0.561 mm (0.02 in.) gap between them.

Here,
Fo = the frequency response obtained for the same position of

the excitation source without a reflecting object
Fi = the frequency response obtained for the same position of

the excitation source with a reflector.

Figure 8 shows the plot of the 511 parameter for three different
materials: metal, phenol-formaldehyde plastic (£r = 5) and polyte-
trafluoroethylene resin (£r = 2). The plot demonstrates the capabili-
ty of the proposed transmission line matrix model to differentiate

CONCLUSIONS
A numerical model for scanning microwave microscopy was

implemented. The model is based on the transmission line matrix
algorithm. The results shown in this paper demonstrate that the
models can be applied to the dimensional characterization of struc-
tures with different electric permittivities. The scanning process
was also implemented in the numerical model. The results ob-
tained show that the numerical model can be run in parallel with an
experimental investigation, allowing a better characterization of re-
flectors detected by microwave microscopy.

The models developed here can be applied as they are or, de-
pending on requirements and on user capabilities, a few improve-
ments can be easily performed:
. improvement of user interface (a computer aided design inter-
facing will decrease the amount of resources used in boundary c0-
ordinate generation)
. implementation of models described in this paper in a parallel
computing configuration will significantly enlarge the capabilities
of the numerical models proposed in this work and significantly
decrease the computing time. This time was determined to be 162 s
for a transmission line matrix model having 3 375 000 nodes (150 by
150 by 150) and running on a computer.
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