Reprinted from

FINITE ELEMENTS
IN ANALYSIS
AND DESIGN

Finite Elements in Analysis and Design 17 (1994) 205-229

Algorithms and data structures for 2D and 3D adaptive
finite element mesh refinement

K.C. Chellamuthu*, N. Ida
Department of Electrical Engineering, The University of Akron, Akron, OH 44325-3904, USA
Received January 1993; revised May 1994

ELSEVIER



FINITE ELEMENTS
IN ANALYSIS
AND DESIGN

AN T
ELSEVIER Finite Elements in Analysis and Design 17 (1994) 205-229

Algorithms and data structures for 2D and 3D adaptive
finite element mesh refinement

K.C. Chellamuthu*, N. Ida
Department of Electrical Engineering, The University of Akron, Akron, OH 44325-3904, USA
Received January 1993; revised May 1994

Abstract

This paper introduces an effective mesh refinement strategy and a data structure for adaptive Finite Element (FE)
computation of 2D and 3D problems. A numerical case study and an implementation to solve linear elliptic boundary
value problems are presented, and the complexity and efficiency of the refinement algorithm and its data structure are
analyzed. The proposed algorithm utilizes a hierarchical minimal tree based data structure for mesh refinement. The
amount of tree traversal normally required during the mesh refinement process is minimized in this approach. The
algorithm is implemented by imposing a one-level rule and also utilizing the adjacent neighbor (edge and face sharing)
concept for recursive refinement. This technique generates mesh refinement data such as a connectivity matrix, an
automatic local and global node numbering, a natural order of element sequence, and a coordinate array for the refined
elements. The proposed data structure allows easy identification of elements in the tree and also the assimilation of
characteristic mesh data necessary for refinement. The data structure facilitates identification of the types of nodes after
each level of refinement for applying appropriate boundary conditions. The refinement algorithm and the associated data
structure have been tested by solving a set of self adjoint boundary value problems using bilinear (quadrilateral) and
trilinear (hexahedral brick or cubic) elements in 2D and 3D, respectively. The numerical case studies quantitatively
establish the effectiveness of the proposed refinement algorithm and the data structure for practical problem solving.

1. Introduction

The discretization of a problem domain by the FE method to achieve solutions of specified
accuracy has been a growing field of research in recent years. The traditional approach in
numerical modeling using the FE method provides solutions with an accuracy of 5~10% for most
problems in science and engineering. The discretization error present in the problem domain limits
the accuracy of the solution. By uniformly refining the mesh, the solution accuracy can be
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improved to a certain extent, but more memory and greater computational effort are required. On
the other hand an automatic adaptive mesh refinement and computation helps to achieve solutions
with accuracy of 2% or less in a more economical way. Also in the presence of a singularity in the
problem domain, the solution accuracy can be improved by a selective discretization process using
an adaptive FE technique. This is achieved by identifying the critical regions of the problem
domain, refining them locally, and computing the solution and the corresponding refinement
parameters (error estimators) in some convenient norm. The recursive procedure of refining the
mesh continues until the specified error criterion is met. In order to achieve an optimal adaptive
mesh having a few degrees of freedom, and capable of providing a solution of required accuracy, it
is necessary to have an efficient adaptive refinement strategy and an associated data structure.

An optimal (or nearly optimal) mesh generation procedure is a vital component of an efficient
numerical technique employing a FE method. FE analysts used to generate improved meshes by
applying the experlence gained from the previous computation, subject to the rules on permissible
element shapes or sizes or the behavioral characteristics of the results. Often this kind of trial and
error judgement failed, producing erroneous input mesh data. It required remodeling the problem
and also special expertise to apply the method.

In addition to the computational complexity involved in the fully automatic adaptive process,
the mesh refinement also generates an enormous amount of data during the sequence of discretiz-
ation steps. The adaptive refinement process involves various tasks such as organization of storage,
identification of element location in the data tree, and labelling and computing the elemental data
necessary for refinement.

Owing to the complexity of computation and also the volume of data involved in the process, it is
essential to develop efficient algorithms and data structures for optimal mesh refinement. Besides
the techniques necessary to model the complexities of a problem and its geometry, it is also
essential to take care of the various data management functions during the adaptive refinement
process. Since the efficiency of an adaptive mesh refinement algorithm depends on the accuracy of
predicting the discretization error present in different regions on the problem domain, it is necessary
to incorporate a reliable and robust a posteriori error estimation technique. Analysis and perfor-
mance evaluation of the complexity and efficiency of the mesh refinement algorithm and data
structure as applied to realistic problems will provide insight into the functionality of an automatic
adaptive FE method.

Many algorithms and the associated tree data structure for automatic adaptive refinement of 2D
problems, and to a limited extent 3D problems, have been reported in the past [1-8]. A compari-
son of different trlangulatlon algorithms with various error indicators has been discussed with
extensive numerical results in [7]. This paper presents the analysis and implementation of an
algorithm and an associated data structure for the adaptive refinement of 2D and 3D elhpt1c
boundary value problems. The algorithm utilizes a hierarchical minimal tree structure by imposing
a one-level rule to produce a graded and smooth mesh. In this approach a parent element is refined
into four subelements (quadrants) in 2D and eight subelements (octants) in 3D. The nodes in the
refined mesh are classified as normal or regular nodes, constrained or irregular nodes and
boundary nodes. In order to maintain the continuity of the solution across element boundaries,
a special procedure is developed to process the constrained nodes on the common edges and faces
of the refined elements. The algorithm outlined in the following sections adaptively generates
a graded admissible mesh. A simple a posteriori error estimation technique using interpolation and
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post-processing of the solution is developed to predict and control the adaptive refinement process.
A numerical case study has been carried out to evaluate the efficiency of the refinement algorithm
and data structure by solving a set of 2D and 3D boundary value problems in electromagnetics.
The paper is organized as follows: In the first part of the paper, the algorithm for 2D and 3D
mesh refinement is discussed. The organization and functionality of a dynamic data structure
which aids the refinement process is analyzed in the second part of the paper. A numerical case
study involving the result and performance evaluation of the algorithm is provided in the last part
of the paper. '

2. Adaptive mesh refinement strategies

Domain discretization is an indispensable process in a FE computation. The discretization error
depends on the size and the distribution of elements in the problem domain. Hence it is necessary to
refine the problem domain selectively based on a reliable error estimation strategy in order to
improve the solution accuracy. Thus adaptation is the procedure by which the problem mesh is
recursively refined and mesh refinement parameters are computed. This recursive procedure is
continued until a specified solution accuracy corresponding to an optimal (or nearly optimal) mesh
is obtained. In an iterative numerical modeling of self adjoint problems, an optimal adaptive mesh
is identified by the equi-distribution of discretization error among all the elements.

An adaptive process can be classified as a feedback procedure, because there is an initial
uncertainty or insufficient a priori input data regarding the critical region of the domain and the
refinement parameters. The uncertainty in the system is reduced by accumulating the data that
becomes available during the automatic mesh refinement process. This accumulated data and
knowledge gained can be used to control the process itself optimally to improve the input in
a feedback procedure. The refinement parameters such as error indicator and error estimators are
the primary data obtained during the feedback process to automatically control the recursive
refinement. The optimality of the mesh and the desired accuracy of the solution can be attributed to
the reliability of the data generated during the feedback process.

The various stages involved in the algorithmic procedure for adaptive FE strategy are sum-
marized as follows:

(1) Generate an initial coarse mesh (£2,) and specify the error tolerance.

(2) Solve for an initial solution (Po). ‘

(3) Choose a suitable error estimation strategy and compute the error in the solution using an
energy norm |[||.

(4) Compare the error estimator || e ||, with the user defined error tolerance (accuracy of solution).
If the error is less than the specified tolerance then exit, else continue.

(5) Locate the elements which have large errors (i.e., those in the region of singularity) and mark
them for refinement.

(6) Based on the refinement policy, add new degrees of freedom to the element and refine the mesh.

(7) Use an appropriate solution technique to solve and iterate the solution.

(8) Go to step 3.
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Generale an initial coarse mesh,
Specify the error tolerance

5

Refine the mesh using h_refinement

!

Compute the FE solution

:

Compute Refinement Parameters Using
‘a posteriori’ Error Estimation
Technique

Compare Refinement Parameter with
Specified Error Tolerance — Elementwise

Yes Mark the clements to be
refined

Accuracy reached. Stop

Fig. 1. Basic flow diagram of an adaptive mesh refinement.

The flow diagram shown in Fig. 1 illustrates the various phases in an automatic adaptive
refinement procedure.

2.1. Mesh refinement strategies

In order to adaptively refine a FE mesh, various mesh refinement techniques are available
[6,8-20]. The mesh refinement procedures are based on various parameters such as the size of the
element, the spectral order of the approximating polynomial, or by moving the mesh and relocating
the nodes. They are classified as h, p, h—p and r-methods respectively. In the h-method, the solution
dccuracy is improved by reducing the size of the element (h,,,, — 0). This means the error in the
solution tends to zero (asymptotically) as the element size is reduced. Thus the h-method adds more
degrees of freedom during each level of refinement. In the p-method, the size of the element remains
the same but the order of the approximating polynomial over the element is increased. Normally
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the p-method is found to be nearly twice as efficient in convergence as the h-method, as verified and
quantified in terms of the number of degrees of freedom by Babuska et al. [21, 22]. In an h—p
method, the features of h and p methods are combined. In the r-method, also called the moving
mesh technique, boundary nodes are moved along with h-refinement so as to reduce the discretiz-
ation error by equi-distribution of error over the element. In this method nodes are moved in the
region where more error is identified. Based on the procedure by which the error indicator is
manipulated and used for adaptive control of the refinement process, adaptation can be achieved
by single level adaptation, deterministic adaptation or stochastic adaptation.

The performance of h, p, h—p and r-refinement techniques are evaluated and quantified in
[1,6,9,11,14-29]. Except the following finite element codes, most of the commercially available
finite element systems do not incorporate adaptive improvement of solutions. The following are
some of the special purpose finite element application systems incorporating, h, p and h-p versions
of adaptive techniques: The systems such as the Finite Element Research Solver (FEARS) package
using rectangular elements [2,21, 22]; the EXPDES system; the PLTMG system based on triangu-
lar elements; and the TWODEPEP package of Sewell using bisection method of triangulation are
based on the h-method. The PROBE is a commercial adaptive FE system. It is based on p- and h—p
methods of adaptive refinement. FEARS, PLTMG, and PROBE are designed to solve elliptic
boundary value problems in two dimensions [30].

2.2. Characteristics of an optimal mesh refinement algorithm

Various algorithms for adaptive mesh refinement of one and two dimensional elliptic boundary
value problems based on h, p, and h~p methods have been proposed in recent years [1,2,4-14,
16-18]. The quantitative evaluation of the performance of one method over the other is analyzed.
However, there are only a few efficient algorithms for mesh refinement and performance analysis of
3D adaptive finite element computation reported in the literature, because of the relative complex-
ity of implementation of a 3D adaptive FE algorithm. In order to generate an optimal mesh which
can substantially improve the solution accuracy within the constraints of limited computational
resources, an adaptive refinement algorithm must possess the following characteristics:

(i) The algorithm should be simple, efficient and flexible and should generate a robust and
reliable FE mesh capable of achieving a solution with a user defined accuracy.

(i) It should be computationally inexpensive.

(iii) It should generate an optimal mesh, automatically and adaptively, with a reasonable rate of
convergence using the data generated dunng the process, such that there will be an equi-
distribution of error over all the elements in the domain.

(iv) The algorithm should embody efficient, robust, and inexpensive methods to compute a poste-
riori error estimation parameters which can work for different physical modeling and
geometrical shapes to steer and control the refinement process.

(v) The data obtained during the refinement process should eliminate the problem of an a priori
insufficient information for refinement and must create an optimal mesh, avoiding an over or
under refinement.

(vi) The algorithm must have a provision to efficiently store the data generated during the

" refinement.
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(vii) The algorithm should provide an asymptotic rate of convergence during refinement as the
mesh size tends to zero (hn., — 0) or the order of approximating polynomial increases to
infinity(p — o0).

(viii) The algorithm should start with the definition of an initial geometry of a domain, material
properties, and boundary conditions, and should consistently maintain compatibility during
the recursive and adaptive feedback process.

(ix) As a result of iterative refinement, it must be able to add additional degrees of freedom in the
mesh recursively and must produce subelements congruent to the parent element.

(x) Although the system is self adaptive, it should provide enough opportunity and access to the
user so as to refine selected areas of the problem domain which are viewed to have
a singularity of solution.

(xi) It should maintain basic characteristics of elements (non degeneracy), providing conformity
and smoothness of a mesh.

(xii) The refinement algorithm must be flexible so as to apply to unstructured domains.

2.3. Two and three dimensional adaptive mesh refinement strategies

The type, shape and the characteristics of an element chosen in an adaptive FE computation
has considerable influence over the efficiency of an optimal mesh. Triangular elements in
2D and tetrahedral elements in 3D based on the Delaunay triangulation concepts, provide very
good approximations to curved boundaries and complex geometries of the problem domain. Often,
the triangulation produces elements with obtuse angles which need to be improved by using
Delaunay triangulation. This problem does not exist in quadrilateral and hexahedral
brick elements. Also the quadrilateral elements in 2D and hexahedral brick elements in 3D are
simple and can be easily visualized in higher order elements and refined meshes. By using
isoparametric elements, approximations even to curved boundaries and irregular geometries are
easily obtained.

Methods of adaptive mesh refinements in 2D and 3D based on the Delaunay triangulation
procedure have been investigated and applied for linear boundary value problems
[9-12,24,25,31-38]. Mesh refinement techniques using quadrilateral elements in 2D and hexa-
hedral brick elements in 3D are reported in [3,4,6,20,28,39,40]. Due to the simplicity and
flexibility of quadrilateral elements in 2D and hexahedral brick elements in 3D, these elements are
chosen for implementing the proposed mesh refinement algorithm. Also higher order quadrilateral
and hexahedral brick elements with isoparametric mapping can be easily adopted for the refine-
ment of unstructured domains to generate a graded mesh of optimal quality.

The refinement proceeds automatically utilizing the local property of elements and the refine-
ment parameters computed from an a posteriori error estimation technique. A simple post-
processing and interpolation method of error estimation is used to activate the feedback process.
The refinement algorithm, utilizes the local property of a quadrilateral element to subdivide an
element generating subelements which are of the same shape as the parent element (congruent) in
the refined mesh. In order to obtain a graded mesh with a smooth refinement, a one-level rule is
imposed in the refinement process. This restriction provides a graded quadrilateral and hexahedral
brick element meshes with a single constrained node on the boundary between two elements
(common edge or face). The one-level rule allows the solution to be continuous across element
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boundaries. The application of a one-level rule produces a 1-irregular mesh which automatically
follows the rule of gradual mesh transition.

2.4. Admissible meshes

In an adaptive FE procedure, a continuous boundary value problem is approximated for an
optimal solution by generating a sequence of mesh discretization. A good mesh refinement
algorithm provides an optimal (or nearly optimal) mesh by adding a minimum number of degrees
of freedom during each level of refinement. An efficient algorithm should produce a sequence
of admissible meshes during the course of refinement in order to satisfy the compatibility
and continuity conditions at element boundaries. An admissible mesh in a set of meshes generated
in the refinement sequence can be defined by adopting the following set of notations and
definitions: ‘

Let the smooth and bounded domain be represented by Q = R®, where n = 2, 3 and also assume
that the domain has a well defined regular boundary 0Q. If the problem domain Q is assumed to be
the union of many finite elements which are closed and bounded subsets such that
Q= 0Q,002,0Q;U - UQ,, where m is the number of subdomains in Q. Each subset (element or
subdomain) has nonempty interiors ©; such that Q,nQ; = &, where i = 1, m, for i # j, and & is
empty. This means the elements can share only a common edge or face and hence the meshiwill be
conforming. Based on the type of algorithm used, each of the subdomains Q; of Q is refined into
four congruent subdomains in 2D and eight congruent subdomains in 3D using quadrilateral and
hexahedral brick elements respectively. In order to generate efficient, graded meshes maintaining
the compatibility conditions, each of the subdomains Q; when refined should produce subdomains
¥, of the same type as Q. By defining curvilinear elements on the selected reference figure and then
mapping them onto the subdomain, the finite element meshes are constructed on each of the
subdomains ;. If the initial mesh Q, is defined on the set of quadrilaterals g;, such that
gio = 41 Y42V q3 " Ug,, then the admissible meshes on g;, may be defined as collections of
N closed elements which are generated by recursively subdividing each of the subdomains €; so
that the subelements are congruent to the parent element.

Based on the initial mesh g, it is possible to generate a nested sequence of quadrilateral or
hexahedral brick element meshes. The mesh M, can be generated from mesh M, as a result of
refinement guided by an error estimator. If mesh M, consisting of g;o, is admissible, then mesh My
generated by subdividing any one of the quadrilateral or hexahedral brick elements in M, into four
or eight congruent elements is also admissible. Thus the admissibility condition maintains the
compatibility, the type and shape of elements during the sequence of mesh refinement.

2.5. Regular and irregular meshes

During mesh refinement using h-adaptivity following a one-level rule, irregular nodes (con-
strained nodes) are introduced into the mesh. A nodal point in the mesh is termed regular, if it acts
as a common nodal point for each of the neighboring elements; otherwise it is called an irregular
nodal point. If a mesh contains nodes which are all regular, it is a regular mesh. Refined meshes
with irregular nodal points are called irregular meshes. The solution at irregular nodes is
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constrained so that the continuity of the solution is maintained at the boundary between elements.
The solution at irregular modes is obtained by interpolating from the adjacent regular nodes
forming the edge or face of an element. The one-level rule allows only one irregular node on the
edge of an element in 2D and on an edge or face in 3D. The number of irregular (constrained) nodes
allowed per edge in 2D (edge or face in 3D) of an element in the refined mesh is called an index of
irregularity.

The one-level rule imposes the following restriction on the refined mesh in order to satisfy the
continuity and compatibility criteria:

(i) There cannot be more than one constrained node between elements sharing a common edge in
2D. Similarly there cannot be more than one edge or face constrained node between elements
sharing a common edge or a face in 3D. Thus a one-level rule allows a maximum of four edge
constrained nodes and one face constrained node between elements sharing a common face in
3D.

(i) Between adjacent neighbors, the difference in refinement level (generation) cannot be more
than one to achieve a graded mesh.

(iii) Solutions for edge and face constrained nodes are obtained by interpolating the values of
solutions of two adjacent regular nodes forming the edge and four corner regular nodes which
form the corresponding face (3D) respectively.

The application of one-level rule on a 1-irregular mesh imposes a restriction on the way the
h-refinement procedure is implemented. Before proceeding to refine an element, a check is made on
" the large neighbors. If a large neighbor exists, it is refined first and only then the element in question
is refined. In the 1-irregular mesh, a large neighbor of an element can have no more than two small
neighbors on a side in 2D and four small neighbors per face and two small neighbors on an edge in
3D. Thus a l-irregular mesh can also be defined in terms of the refinement levels as; no two
neighbors of a 1-irregular mesh can have a refinement level difference of more than one. The
constrained nodes and regular nodes are shown in Fig. 2(a) for 2D. The constrained nodes are
marked by squares and the regular nodes are marked by circles in 2D. Fig 2(b) shows the face and
edge constrained nodes (fcn, ecn) in a 3D mesh. In order to maintain the compatibility and
continuity of the solution, the constrained nodes are processed separately using different
algorithms. ,

To implement the algorithm, only quadrilateral in 2D and hexahedral brick elements in 3D are
considered in order to maintain the shape and type of the parent element after refinement. The use
of one-level rule in the algorithm guides refinement by restricting the number of smaller and larger
neighbors for an element. The use of one-level rule is also mandated from the fact that, it is
necessary to maintain a family of tree-based approach for mesh refinement and data structure.

The quad-tree and oct-tree based algorithms and data structures for the discretization of
a problem geometry has been extensively investigated by Shephard et al. [20,41-43]. In the
quad-tree and oct-tree based approach, the geometry is placed inside a bounding square or a box
having an integer coordinate system. The square or the box is recursively subdivided into four
quadrants in 2D and eight octants in 3D and the refined subelements are placed in the specific level
of an integer data tree. By verifying the location of the refined quadrant or the octant in the
geometry, further recursive refinement takes place. Matching of the boundary of the geometry is
done by template mapping using cut quads and cut octants procedure.
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(a) O - Regular Nodes
O - Constrained Nodes

@ - Represents Cetroid of Parent Element

* _ Represents the Face Constrained Nodes (fcn).
B _ Represents the Edge Constrained Nodes (ecn). -

Fig. 2. Constrained and regular nodes: (a) in a quadrilateral adaptive mesh (2D); (b) in an adaptive mesh of a hexahedral
brick element (3D) (S1 to S8 are octets of the parent element refined). i

In the proposed approach, the basic subdivision of an element into four quadrants in 2D and
eight octants in 3D resembles that of a quad-tree and oct-tree procedure. However the refined
elements are represented by means of a hierarchical minimal tree. The proposed method differs
from the quad-tree and oct-tree techniques in the way the mesh refinement algorithm is imple-
mented and the data structure is organized. The data structure maintains a minimal tree of
maximum two levels so that the tree traversal is minimized during the refinement procesb The
refinement is carried out by using the minimal hierarchical tree and the neighboring elbment
information computed during the refinement process.

The refinement technique follows the hierarchical approach based on the tree structure concept
by which each super element called macrofather (mf) is divided into four (2D) or eight (3D) fathers
(f) and each one of the fathers is again refined into four (2D) or eight (3D) son (s) and again the same
way each son is refined into four (2D) and eight (3D) grandsons (gs) in a recursive manner.
A hierarchical tree based data structure along with a set of integer array tables efficiently handle the
task of organizing and managing the data base necessary for mesh refinement. The algorithm and
the data structure also perform the book keeping jobs such as local and global node numbering,
keeping track of various types of nodes and updating their types during mesh refinement and
applying the appropriate boundary conditions. In order to locate and identify the position of an
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element in the domain and also in the tree level, the data structure maintains the natural order of
element sequence, and its connectivity information.

The proposed adaptive mesh refinement algorithm works by utilizing the set of basic data
created from the initial coarse mesh. The initial mesh data includes the element order list, node
numbers for each of the elements, nodal coordinates, and integer array for neighbors, type of nodes
in each element. The refinement parameter is obtained from the post-processing and interpolation
error estimation technique. The minimal tree data structure provides information of the natural
order of element sequence and its corresponding refinement level for the subsequent refinement to
proceed. Due to the use of an auxiliary data array specifying the element location in the list and the
corresponding node numbers, the amount of tree traversal which is necessary to compute the
required data for refinement has been minimized to a greater extent in this approach.

-2.6. Two dimensional quadrilateral mesh refinement

In the case of a 2D, l-irregular mesh based on one-level rule, using quadrilateral elements,
adjacent elements can meet only along the edges and there can be equal, smaller or larger neighbors
depending on the refinement levels. The refinement is performed by connecting the midpoints of the
four sides of a quadrilateral to the element centroid. After the refinement, the element order list is
generated to maintain the sequence in order to identify the location of an element in the domain.
Also various arrays for node numbers, nodal coordinates and node types are generated and
updated during this phase. During the process of refinement, many new constrained nodes are
" created and the existing constrained nodes become regular nodes when the adjacent elements
sharing the edge is also refined in the same refinement level. The nodes are identified as regular
nodes (rn), constrained nodes (cn) and boundary nodes (bn). A quadrilateral element in a 1-irregu-
lar mesh can have a maximum of 16 possible neighbor configurations sharing all the four edges of
an element during the different levels of refinement: four equal neighbors and eight small neighbors
with a refinement level one more than the element and also four large neighbors. The various
possible neighbor configurations in a 1-irregular quadrilateral mesh are shown in Fig. 3.

(a) (b) (c)
NG1..NG4 - Large Neighbors 1....8 —Smaller Neighbors E - Element to be Refined

Fig. 3. The possible neighbor configurations of a quadrilateral element: (a) equal neighbors; (b) smaller neighbors; and
(c) larger neighbors.
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2.7. Three dimensional mesh refinement of a hexahedral brick element

The following are the set of rules to be adhered while implementing a 3D adaptive mesh
refinement algorithm using hexahedral brick elements,

A one-leyel rule is imposed on the refinement algorithm so as to generate a 1-irregular mesh.
There cannot be more than four small neighbors per face and not more than two small neighbors
per edge of an element sharing a face or an edge respectively.

The initial mesh is a structured mesh.

The subdomains and elements generated are of the same type and shape as that of the parent
element.

If the initial mesh satisfies the rules of the refinement and if it is admissible, then the set of meshes
generated during the subsequent phases of refinement are also admissible.

A hexahedral brick has six faces and twelve edges. The refinement is performed by connecting the
midpoints of all the four edges on each one of the faces to the center point of the corresponding
faces. By connecting the midpoints at the center of the faces to the centroid of an element, eight
congruent elements of the same type are generated. The facet mid points and the centroids are
computed from the eight corner coordinates of the element. Many new nodes are created during
the refinement process. Based on the error distribution, the elements for refinement are identified.
When the elements are refined, constrained nodes may become regular nodes and new constrained
nodes may also be introduced.

The implementation of a one-level rule forces a smooth and gradual transition of a mesh
avoiding abrupt changes in the mesh. Thus it avoids the large variation of element sizes in the
adjoining or neighboring elements. The nodes are identified as rn, fcn, ecn, bn. As per the definition
of a 1-irregular mesh, a face of a 3D hexahedral brick element can have maximum of four smaller
neighbors and similarly an edge of a large element can have maximum of two smaller neighbors
sharing an edge. Suppose there is a face and edge constrained node on face # 2 (see Fig. 4(a)) of the
hexahedral brick element and if the corresponding neighbor sharing the face # 2 is also refined in
the subsequent refinement level, then the face and edge constrained nodes become rn as shown in
Fig. 4(b).

In a 1-irregular mesh configuration, a 3D hexahedral brick can have a maximum of 84 possible
neighbor configurations with different combinations during various levels of refinement: six face
neighbors of same refinement level, six large face neighbors (one level less), 24 small face neighbors
(one level more), 12 equal level edge neighbors, 12 large edge neighbors (one level less) and 24 small
edge neighbors (one level more). The various neighbor configurations in a 3D hexahedral brick
element are shown in Fig. 5.

The mesh refinement algorithm for a 3D domain proceeds by utilizing the following data: Arrays
for face and edge neighbors for each element, arrays for face and edge constrained nodes, parent
element node array and the nodal coordinate arrays and an array for the natural order of element
sequence. The natural order of element sequence helps predict the generation and location of an
individual element before refinement proceeds. Prior to refining an element, the algorithm identifies
the potential face and edge neighbors whose refinement level is one less compared to the level of the
element to be refined. This is decided by a look up table using the aforementioned arrays.
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@ —Cenwoid, ~ Edge Constrained Nodes on Face #2

* — Face Constrained Node (fcn) on Face #2 S1..S8 are refined octets
(a)

. —Centroid,

O - Face Constrained Node (fcn) on Face #2 Changes to Regular Node
$1..S8 are refined octets in S and R1 .. R8 are refined octets in R

a,b,c,d — Edge Constrained Nodes Change to Regular Nodes after Refining Adjacent Element (R)
(b)

Fig. 4. Refinement of a hexahedral brick element and change of node types: (a) at Level-1; (b) at Level-2.

2.8. Edge/Face constrained node processing

Initially when the coarse mesh is created there will not be any constrained nodes. There exists
only two types of nodes viz, regular and boundary nodes. During the course of refinement, many
constrained nodes on edges in 2D and faces and edges in 3D are created. The constrained nodes
pose a challenge in generating a stiffness matrix maintaining the continuity condition. As explained
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Fig. 5. Various neighbor configurations in a hexhedral brick element mesh refinement: (a) equal face neighbors (only
fours faces); (b) four smaller neighbors per face; (c) four larger face neighbors; and (d) four equal face neighbors.

earlier, the constrained nodes occur due to the difference in the level of refinement between adjacent
neighbors. In a 1-irregular mesh in 2D, there exists only edge constrained nodes between smaller
and higher level neighbors. In a 3D brick element mesh the situation is entirely different due to the
occurrence of face and edge constrained nodes at the face common between large and small
neighbors. In order to process the constrained nodes, different algorithms will have to be used for
constrained nodes on edges and faces of an element. The solution for the edge constrained node is
obtained by interpolating the solution of adjacent regular nodes forming the corresponding edge.
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3. A dynamic data structure for adaptive mesh refinement

The design of an efficient, dynamic data structure is a vital component for an optimal adaptive
refinement algorithm. Basically a data structure in an adaptive FE refinement performs various
book keeping operations for aldlng the refinement process. The data management functions
include numbering of elements using natural element sequence, keeping track of elements, and their
locations, node numbering and maintaining nodal coordinates, computing element neig
refinement level, degrees of freedom of each of the nodal locations and connectivity info
and boundary conditions. The hierarchical refinement strategy adopted in the adaptive refinement
algorithm generates various sets of mesh data and pointer information during different stages of
refinement. The data base js also updated dynamically during and after the mesh refinement.

3.1. Essential features of an efficient and dynamic data structure

In order to efficiently manage a refinement algorithm, a data structure should possk:ss the
following set of features.

(i) It should use less storage for keeping track of the varieties of data necessary to 1mplerﬁent an

algorithm of comparable complexity.

(i) It should maintain a uniformity of complexity in mesh generation and updating the db'namic
data structure during mesh refinement.

(iil) It must minimize the number of tree traversal necessary to compute the various data réquu'ed
for mesh refinement.

(iv) It should be dynamic and should have a minimal growth for each level of problem dlkcretlz-
ation. |

(v) For a reasonable overhead of storage, it should not introduce complexity of code! in the
algorithm. , l

The computational efficiency of a refinement algorithm depends upon the organization rof data
structure and the number of tree traversal necessary to perform the refinement. Generally a data
structure can be represented by means of a set of tables of data pertaining to the sequ#nce of
adaptive meshes. The data structure can be organized using the basic set of elementary data
structures such as tables, lists, pointers, stacks and queues. The tree data structure represc}tation
aided by the tables and pointers is a more appropriate technique for facilitating a hierarchical
adaptive mesh refinement algorithm. This is due to the fact that by identifying the level of a given
element and its position in the mesh, complete geometrical characteristic data of an element| can be
computed Also the refinement process allows gradual construction of a tree data structu

In a tree based data structure, the nodes represent elements of the mesh and the various branches
of the tree correspond to the subelements generated as a result of recursive mesh refinement. At any
level of refinement, the lower-most nodes (leaves) represent the unrefined elements of the mesh. The
tree based data structure helps to compute information necessary to refine an element using the
neighbors list and also the position of an element in the tree and its generation number.

 The quad-tree and oct-tree based mesh refinement algorithms use a family of tree based data”

“structure. Due to the inherent nature of these algorithms, it becomes a tedious task to store and
organize the data structure efficiently. The quad-tree and oct-tree techniques necessitate r ‘
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subdivision of an element into 2* congruent elements. By using a switching function representation
approach [44], the number of subelements generated as a result of element subdivision can be
reduced considerably. Despite its efficient handling of data for hierarchic and optimal adaptive
refinement, the hierarchic tree based data structure is computationally very expensive especially
“when the mesh becomes larger. This difficulty increases when the tree becomes large or the nested
recursive refinement demands too much of tree traversal. In order to minimize the tree travel
during refinement and also to make the algorithm computationally efficient, a minimal tree based
data structure is proposed and used in this investigation. According to the minimal hierarchical
tree, there will be only two levels in the tree as macrofather (unrefined) and fathers (refined) or
fathers (unrefined) and sons (refined) or sons (unrefined) and grandsons (refined) at any point in
time. The Fig. 6 illustrates a typical minimal tree based data structure and the corresponding
natural order of element sequence of a 3D mesh refinement.

The following are the basic and essential data necessary to perform an adaptive mesh refinement
procedure: -

Element numbers (to find the location of an element in the mesh).

Node numbers of each element obtained from the consecutive numbering scheme from one level
of refinement to another.

Nodal coordinates.

The solution at each nodal points.

Various neighbor configurations and data pertaining to the pointers to the corresponding
element and node numbers.

Various node types such as rn, ecn, fcn, bn.

— The minimal tree based data structure which maintains the information such as the parent
element number and the corresponding element number and refinement level of the children.

l

Initial Coarse Mesh

Generation

0 Macrofather

-

Father

2 Son

3 Grandson

Fig. 6. Labelling procedure for element sequence in a minimal tree based data structure.
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The proposed approach differs from other data structure used for adaptive refinement
[1-3,6,41-43] in the sense that a minimal data tree is created during the refinement process. It
helps to reduce the amount of tree travel necessary to identify the location of an element in order to
compute the mesh data and thus makes it computationally efficient. The tree is a minimal tree with
only two levels at any point in time during refinement. Since the refinement is guided by the
imposition of a one-level rule and the mesh refinement parameters, the amount of mesh data and
the related information generated depends on the nature of a problem domain and the level of
refinement. Although the imposition of a one-level rule weakens the local property of the mesh, it
maintains a relatively simple data structure. In addition, the one-level rule facilitates generation of
a graded and smooth mesh. The tree data structure used in the mesh refinement maintains the
congruency of refined elements facilitating efficient implementation of the adaptive refinement
strategy.

3.2. Data arrays and pointers

Assuming that the macrofather MF, at level L is refined into four equal subelements (quadrants)
in 2D and eight subelements (octants) in 3D, then the father (the children of MF;) can be linked by
a simple pointer i.e. MF; at level L for a 2D case MF; - F;, F;,y, Fj4,, Fj45 atlevel L + 1. By
storing the pointer j at level L + 1 the remaining subelement numbers in the quartets or octets can
be easily found. Similarly the father to son and son to grandson refinements are also carried out
using the same procedure to create a minimal tree data structure. This situation is represented in
the Fig. 7.

The data structure facilitates the flow of information for performing the following operations
during the course of adaptive mesh refinement.

l

To identify the location of an element in the tree and also in the domain.

To identify element number and its level number so that the geometric characteristic data such

as the refined element number, node number, nodal coordinates, node types and constrained

nodes can be easily computed.

— To identify and compute the various types of neighbors in 2D and 3D associated with the
element in question. This happens due to the enforcement of a one-level rule and also due to the
recursive refinement.

— Distinguishing the constrained nodes (edge or face) and interpolating for their solutions.

In order to effectively perform various book keeping tasks such as labelling, local and global
node numbering and element numbering and computing the geometrical characteristic mesh data
of an element, the minimal tree refers to a number of integer data arrays and tables in the data

structure. The following is the list of integer data arrays used to store the tree data and other related
information.

() Element sequence array,
(i) Node number array,
(iii) Arrays for X, Y and Z coordinates,
(iv) Node type array,
(v) Constrained node array.
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Macrofather  MF; Level L Father F, Level L

Father F; Fn,  Fua Fj; Level L+l Sons S, S, Spa Sya Level L+l
(a) (b)
Son Level L
Grandson

Level L+1

GF j GF 1 GF, 2 GF M3
(c)

Fig. 7. Components of a minimal tree data structure: (a) Macrofather~Father’s; (b) Father—Sons; and (c) Son-Grand-
sons.

Refinement proceeds by using various arrays of data structure and utilizing a look up table
procedure to locally refine an element. This process involves labelling the refined elements,
assigning global and local node numbers, keeping track of the nodes, node types and the
corresponding nodal coordinates and computing the refinement levels of elements and the corres-
ponding neighbors. Additional information necessary to compute the location of elements, con-
nectivity information and computation of stiffness matrix and assemblage of global matrix and
solution techniques are performed by different procedures aided by the data structure.

The technique implemented here starts with an initial coarse mesh data assuming that the coarse
mesh is at a refinement level of ‘0’ (macrofather). The solution is obtained and subsequently error
estimation parameters are computed. The mesh data along with the solution and the error
estimators help to identify the region to be refined in the next phase. The neighbors are identified as
the one sharing four edges of an element in 2D and sharing six faces and 12 edges in 3D. In the
subsequent refinement levels, based on the difference in the level of refinement, information such as
the list of neighbors, node numbers and the corresponding nodal coordinates, constrained nodes,
node types like regular nodes, constrained nodes or boundary nodes are computed. Fig. 8 illus-
trates the various arrays and the index pointers used in the storage organization.

The element sequence array maintains the natural order of element sequence which helps to
identify the locations and their corresponding refinement levels of refined and unrefined elements.
This is created by assigning a continuous number in all subsequent refinement levels. For instance
referring to the tree data structure with different levels in Fig. 6, the labelling procedure to maintain
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the natural order of element sequence can be represented as shown in Table 1. Fig. 9 shows the
minimal tree data structure and its interaction with different integer arrays.

The main problem in the use of tree data structure is that of the amount of tree traversal involved
in computing the data necessary for adaptive refinement [1, 3, 6,41-43]. This has been minimized
in this implementation by the use of a minimal tree based data structure. In this approach,
although the refinement is hierarchic, the tree does not ‘grow’ as the refinement proceeds deeper in
a particular branch of the tree. By maintaining the connectivity information between the elements
and their neighbors and using a natural order of element sequence (element location) and its
generation, the algorithm checks only the parent element and the corresponding children at any
level of refinement. This means the minimal element tree preserves only two levels at any point in
time during refinement. The level may pertain to a macrofather and father or a father and son or
a son and a grandson. After refining the parent element, data pertaining to the parent element is
lost and the corresponding data arrays are updated by the details of the children elements. By this
technique the ‘growth’ of the tree to different levels is curtailed and the data related to the complete
refinement tree need not be stored. 7

3 : 1

Element Number] Level Number Ptr Index Node PrIndex | Node Types
Number
Element Sequence Array Node Numbers and Types
Neighbor
Pr Index | Hleighbor Ele# | Ng| Ed1| E®2| E® Ed4| Fen
Neighbor Array Constrained Néde Array

Edl...Ed4 - Edge Constrained Nodes
Fen — Face Constrained Node

Fig. 8. Integer arrays used in the data structure.

Table 1

Minimal hierarchical data tree and natural order of element sequence

Level number Family hierarchy. Sequence number

0 Macrofather 1,2,3

1 Father 4-11,12-19,20-27

2 Son ) 28-35,5-11,12,36-43,14-19,20,
44-51,22-27

3 Grandson 52-59,29-35,5-11,36-43,14-19,

20,44-51,22-27
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F; Parent Element

Element Level
Number Number

:

Pointer Index

l ,

Nodal
Compute Element Neighbors F:‘ Node Number Coordinates

:

Constrained Nodes

]

Compute Geometric
Data of Sons <

T 1]

Si S Sj Update Element and Node
Type Arrays

Fig. 9. Functional data flow and interaction in the data structure.

4. Numerical case study and performance analysis

In order to evaluate and verify the efficiency of the refinement algorithm and its associated data
structure, a set of self adjoint, elliptic boundary value problems in 2D and 3D have been solved.
A classical electrostatic problem with a L-shaped domain having a corner singularity has been
chosen for implementation and performance evaluation of the proposed algorithm. The boundary
value problem solved in 2D using the h-adaptive algorithm is defined in the Fig. 10.

An initial coarse mesh on the L-section with 12 quadrilateral elements is used to initiate the
refinement process. As explained earlier, the post-processing and interpolation a posteriori error
estimation strategy is used to control the refinement process. The error in energy norm and the
relative error have been computed locally and globally during each refinement sequence. Fig. 11
shows the initial coarse mesh, intermediate mesh and the final mesh for the 2D test problem. The
singularity lies near the re-entrant corner of the problem domain. As expected, it is found that the
mesh is denser near the re-entrant corner and is sparser in the remaining areas of the domain. The
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Ta
AD =0 in Q
® =0 onI‘,
T, Q I, ®=c K onl,
L2 =0 onT,
an

T,

Fig. 10. L-shaped domain with corner singularity.

(a)

(b)

JEARBNG]
IREREAN

(c)

(d)

Fig. 11. Sequence of adaptive meshes on an L-shaped domain: (a) initial coarse mesh — 12 elements; (b) third level
refinement — 120 elements; (c) fourth level refinement — 306 elements; and (d) fifth level refinement — 534 elements.
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solution plot for the corresponding meshes are shown in Fig. 12. The flux plot shows that the
equi-potential lines become smoother from one mesh refinement to another indicating an improve-
ment in the accuracy of the solution.

Fig. 13 shows the convergence of the error in energy norm and the local and global relative error
convergence as the refinement proceeds. As optimal mesh is one in which the error in energy norm

»

N

%

(b)

/
/

.

(c) (d)

Fig. 12. Adaptive solution plot on an L-shaped domain: (a) coarse mesh — 12 elements; (b) Level 3 — 120 elements; (c)
Level 4 — 306 elements; and (d) Level 5 — 534 elements.
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Fig. 13. Error convergencé plot.
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is equally distributed. Comparing the mesh plot and its corresponding flux plot and the error
convergence plot, it can be concluded that an optimal ( or nearly optimal) mesh is obtained after
four levels of refinement with 306 elements and 369 degrees of freedom. However for the sake of
verifying the convergence and the optimality of the mesh, two more levels of refinement have been
performed.

The fifth and sixth levels of mesh refinement did not contribute anything significant to improve
the solution since the mesh is already optimal (or nearly optimal). The density of elements near the
re-entrant corner increases as the refinement proceeds to the higher level,

The 3D mesh refinement algorithm is used to solve for the potential distribution inside a metallic
cube. The coarse mesh with 2 x 2 x 2 elements in a cube of 1 x1x 1 units is used to initiate the
adaptive refinement. The sequence of meshes generated during the refinement is shown in Fig. 14.

Fig. 14. Potential distribution inside a metallic cube — sequence of 3D adaptive meshes: (a) initial coarse mesh with
2x 2 x 2 elements; (b) Level 3 meshes with 456 elements; and (c) cut out view of the Level 3 mesh.



K.C. Chellamuthu, N. Ida | Finite Elements in Analysis and Design 17 (1994) 205-229 | 227

Since there is more error on the upper plane of the cube due to the discontinuity, it is found that the
refinement concentrates on the upper portion of the domain compared to other regions. Fig. 14(c)
represents the cross sectional view of the domain representing the three dimensional adaptive
refinement in the interior of the problem domain. !

5. Conclusion

A flexible and efficient algorithm for the computation of 2D and 3D adaptive mesh refinement is
proposed and implemented. A simple a posteriori error estimation using post-processiﬁg and
interpolation techniques is used to guide the mesh refinement process. The hierarchical mesh
refinement algorithm is implemented by imposing a one-level rule. The algorithm reduces the
amount of tree traversal by using a minimal tree based data structure and thus a trade-off between
the storage and computation is achieved. The organization of the dynamic data structure and its
functional interaction for data flow to facilitate the refinement algorithm is also analyzed. A numer-
ical case study is carried out by implementing the algorithm and data structure to solve linear
elliptic boundary value problems in electrostatics. The numerical test results and the sequence of
adaptive meshes verify the application potential of the proposed algorithm and the data structure
for generating two and three dimensional adaptive meshes.
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