INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 20, 625-641 (1984)

SOLUTION OF LINEAR EQUATIONS FOR
SMALL COMPUTER SYSTEMS*

NATHAN IDA AND. WILLIAM LORD
Departmem of Electrical Engineering, Colorado State University, Fort Collins, Colorado, U.S.A.

SUMMARY

A solution technique, based on Gauss elimination,; is described which can solve symmetric or unsymmetric
matrices on computers with small core and disk requirement capabilities. The method is related to frontal
techniques in that renumbering of the nodes, such as in a finite element mesh, is not required, and the
elimination is performed immediately after the equations for a particular node have been fully summed.
Only two rows of the matrix need be on core at any step of the solution, but for more efficiency, the
program presented here requires all the equations associated with two nodes to be on core. Minimum
disk storage is achieved by storing only nonzero entries of the matrix, a single pointing vector for each
node, regardless of the number of degrees-of-freedom, and-the use of a single sequential file. Spegial
care is taken of the boundary nodes where only the diagonal and the right-hand-side vector are stored.
Assembly and elimination for these nodes are avoided completely The performance of the program is
compared with both symmetric¢ and nonsymmetric frontal routines and is shown to be acceptable. The
major merit of the method lies in the fact that it can be implemented on small minicomputers. The
reduction of core and disk storage inevitably increases the solution time, but the decrease in the output
file size also makes the back-substitution and resolution processes more efficient. In some cases, the total
solution time can be shorter than for the frontal method due to .this property.

INTRODUCTION

The need to solve large systems of equatjons has led to two well-established approaches, the
banded. and frontal methods. The various frontal methods were developed to accommodate
large matrices with relatlvely small core requ;rements on medium to large size computers,
whereas the banded solution methods* rely mainly on. availability of large core on the larger
computers. The first approach makes efficient use of large and fast disks to achieve reasonable
solution times and can be said to be I/O intensive. The. second approach makes use of fast
CPUs to work within a large core or more likely within a large virtual memory. This can be
said to be CPU intensive, although the use of virtual memory tends to blur this distinction.

There is, however, a third approach which is becommg more popular and more feasible. It
is that of solution of medium to large sized problems on small minicomputers.’ This approach
seems at first to have the basic disadvantages of the previous two approaches, namely, smaller
and slower disks and less powerful CPUs. Programmmg solution algorithms on this class of
computers is not merely a tradeoff between core and solution time, but rather, the practicability
of the process must be established first and then both the CPU. usage and I/O processes
optimized to the point where the solutlon algonthm becomes a useful alternative in terms of
computer time.and cost. The fact that usage of minicomputers is available for long periods of
time with little or no running costs makes th1s alternative a very attractive one.

The solution method presented here, based on the Gauss elimination algomhm, was de51gned
to use a minimum of core and to minimize at the same time the disk storage requirements

* This work was performed with the support of the Army Research Office and the Electri¢ Power Research Institute.

0029-5981,/84/040625- 17$01 .70 Received 15 November 1982
© 1984 by John Wiley & Sons, Ltd. Revised 3 January 1983

626 N y e © i NCIDALAND Wi EORD visic o iii (0 At 4 e

while still remaining feasible in terms of solution time. Realizing that the most expensive and
slower operation, one which is extensively used in both the frontal and the present method,
is the back-space operation;.special care was taken te shorten the records written in the output
file during elimination and to minimize the number of records Thus, for example, a record is
written or read for each node rather than for each varidble. = '

The algorithm presented here was implemented to run on a Tektronix 4081 graphics system
with about 28 Kbyte of available core and 25 mbyte of disk storage. Problems having in excess
of 2000 variables were successfully solved, but for the sake of generality the program listed
in Appendix II is written to run on a VAX 11/780.

Results of a medium sized three-dimehsional problem are presented and compared with
solutions obtamed with the symmetrrc frontal method of Irons' and the nonsymmetric solution
of Hood.? This comparison is also done on a VAX 11/780 computer since none of the frontal
methods could be run on'the Tektronix minicomputer for any reahstrc sized problem.

THE PROGRAM'S PRINCIPLES

The solution process follows the basic Gauss algorrthm as-used in many banded methods, but
relies on an assembly process which is close to that of frontal methods. The assembly is done
node by node rather than the common assembly by elements. Beginning with the first node
in the mesh, the files containing the mesh data are scanned and all the necessary elements
assembled. At the end of this process the equations associated with the current node are fully
summed and ready for elimination. As part of the assembly process a pointing vector is created
to identify each variable in the currently assembled equations. Thése equations are next
eliminated and only then is the next node assembled. This process requires partial assembly
of each element as many times as there are nodes in the element, but it permits the assembly
of the current node without storing any data relating to any of the other nodes in the mesh.

The equations needed for the elimination of the current node are not present on core:
therefore, the output file is searched for the necessary equations and these are loaded and used
in the sequence they are detected. Each output record contains all the equatrons of one node
and these are all loaded and used in a single elimination step.

To ensure that the output file will not have to be searched more than once for each node
being eliminated, the pointing vector for the equations in the current node are arranged in
ascending order of variables and the values in the corresponding locations in the equations
interchanged accordingly. This guarantees that at any stage of the elimination process, the
variables to be eliminated are always at the beginning of the equations. After all the variables
preceding the diagonal have been eliniinated, the elimination proceeds with the variables of
the current node, and each equation is normalized with respect to its diagonal. The output file
is advanced to the end-of-file and the normalized equations written on file along with their
pointing vector in a single record.

The back-substitution process is similar to that used in many frontal routines. The output
file is back-spaced, one record is read and the file back-spaced again. Each record, however,
contains all the equations associated with a single node and, therefore, the Varrables of this
node are evaluated before the next step takes place.

The resolution facility is not a separate one as is customary in frontal methods. Rather, all
the right-hand-side vectors are created during assembly, modified during elimination and
written in the output record. The resolution then is merely a repetition of the back-substitution
process with a new right-hand-side vector, after the output file has been advanced to the
end-of-file.

SOLUTION OF LINEAR EQUATIONS 627

Programming details

The program consists of the main program and one subroutine. Program RSOL performs
the assembly, elimination, back-substitution and resolution, whereas subroutine SORT rear-
ranges the pointing vector and the equations in ascending variable numbers. A third subroutine,
referred to as ELEMR in the program, is needed for the assembly of the elemental matrices,
and has to be supplied by the user as it is problem dependent. The program is listed in Appendix
II, whereas a definition of variables is provided in Appendix 1.

In discussing the program details, the 9-element, 16-node mesh in Figure 1 is considered.
It is assumed that there are three degrees-of-freedom at each node and two right-hand-side
vectors. In each element the node numbering is assumed counterclockwise, starting with the
lower left node.

3 i 5 6]
Vil Vil IX
9 o 11 1
v . y vl
5 6 7 Qt
] n
1 2 4

Figure 1. A 16-node mesh

Assembly

The assembly starts with node number 1 and proceeds node by node. This method is adopted
since it is assumed that only the equations associated with two.nodes can be present on core
at any time. The normal way of frontal assembly cannot be used. In -addition, the mesh data
such as connectivity and co-ordinate arrays as well as boundary conditions are assumed to be
in files on disk. Any search for data needed for assembly is done on disk, although a much
faster assembly could be performed if these data were on core:

For the current node being assembled, the elements containing this node need to be
formulated and their contribution summed. Thus, for example, for node number 6, elements
I, II, IV and V are the only elements contributing to the equations associated -with this node.
Moreover, since these are the only equations that can be summed, only the rows in the elemental
matrix corresponding to the current node in each element need be formulated. For node
number 6, element number 1 is first. assembled for which rows 7, 8 and 9-in the elemental
matrix are created in RW and returned for summing in ROW. The contribution of this element
to the pointing vector is created in LDES and updated in LDEST. The right-hand-side values
are also created by subroutine ELEMR and returned: as the last entries in RW. For the mesh
in Figure 1, RW will always contain 12 entries for each.of the 3 variables and 2 values for the
right-hand-side in locations 13 and 14. The length of the equations after assembly is equal to
the number of variables associated with.one node plus the number of right-hand-side vectors.
The maximum length in this example is 29. Initially, as the variables are summed in LDEST
and ROW these are assumed to be of this length such that the right-hand-side. contributions
are summed into locations 28 and 29. The situation in LDEST is shown in Figure 2(a) after

628 .N. IDA AND W. LORD

node — 1 2 6 5 1

r|zlsi4l;s[siwlwlmiwlmhsi 1 O A Y

npEnac lewlewlwlﬁl LhEEE [T I T T T [iam

b}

2 6 5 3 10 9. 1
[1 | 2] 3| a]s]e |16[17|18|13[14[15[[8]e |19|20|21|28]29|3°I25|26|27|31|32|33IRaIRb|
c

Figure 2. Array LDEST during assembly

element I is assembled. When assembling element number II, rows 10, 11 and 12 in the
elemental matrix are created and summed into ROW. The pointing vector is updated as in
Figure 2(b). After assembly of elements IV and V the process is complete and the status of
the pointing vector is as shown in Figure 2(c). At this stage the variables in LDEST and ROW
are reordered in ascending order of variables and the right-hand values are moved to the left
such that no zero entries exist. This would be the case for node number 1 where only element
number 1 is contributing and the total length in ROW and LDEST is 14. The equations of
node 6 are now fully summed and are eliminated, before assembly of node number 7 can begin.

Elimination

Elimination begins by rewinding the output file and reading the first record into LDES and
RW. The first location in LDES is compared with the first location in LDEST. If they match,
this record is needed to eliminate the first NDF variables in the current equations. If these
values do not match, the next record is read and the process repeated until all the variables
preceding the current variables have been -eliminated. Taking node 5 as an example, the
equations associated with node 1 are read as the first record. Variables 1, 2 and 3 are eliminated
and the remaining variables shifted to the left by calling subroutine SORT. This subroutine
also rearranges the variables in ascending order such that the next variables to be eliminated
will be located in the first three locations in LDEST, as in Figure 3(c). The next record is read
and variables 4, 5 and 6 eliminated. This record contains variables 7, 8 and 9 from node
number 3 and 19, 20 and 21 from node number 7 which were not present in equations 13,
14 and 15 associated with node number 5. These are inserted between the last variable of the
equations and the right-hand values by shifting the latter six locations to the right, resulting
in the situation in Figure 3(d). SORT"is again called and the equations rearranged as in Figure
3(e). This process is repeated until variables 13, 14:and 15 appear in the first three locations
in LDEST. At this point, internal elimination within these three equations takes place whereby
variable 13 is eliminated from equations 14 and 15 and variable number 14 eliminated from
equation 15. This situation is summarized in Figure 3(f). In this case, the final length of LDEST
and ROW has not changed but, in general, it can be longer or shorter than the length before
elimination (see section on dimensioning). :

Each of the NDF equations is now normalized by dividing it by its diagonal value and written
in the output file after it has been advanced to the end-of-file.

It should be noted that the right-hand-side vectors are updated at each step, makmg them
ready for back-substitution-and resolution.

SOLUTION OF LINEAR EQUATIONS 629

npd:‘;l;]a]q:] ’i13|14ll151’16l1j.|18]25‘|296|271281;91301R5IR,,[i |]
b]'[T T iQL:Is‘i1311“:|15116[167[18T25|22|'27izs[;:lsoik;]ai,]‘ l |
ia—{5[si1a|1i[1s]'16]17]18i25|26|27iza[;§]30in’a|n’b| i [] i [

| , 5 . 8 9 ' 40 , 38 -, ui7

[] | [18]u]ss]re]17].|25]26]27]28]20]30] 7] 8] o [10]20]21 [ma]ri
3 . s . & 7 . 9 . 1 .

' |7]e’|9|13]14'|15]1e|17[18]19[20[2'1]25[26]27’[28[29[30[n;[n’,‘,] [1]

d)

8 9 ,
|13]14|15]1s[17|1a|19]20|21|22|23|24|25|26]27|28|29|30|n In] s

Figure 3. Array LDEST during elimination

Boundary conditions

The assembly and elimination processes are skipped for any node which has specified boundary
conditions. These nodes are identified as part of the input in NBOUND.

For each boundary node, the first location in LDEST is assigned the highest variable number
associated with this node. The second location, corresponding with the first right-hand-side
value, is encoded with the value 1 to distinguish it as a boundary equation. The first location
of each of the NDF rows in ROW is assigned a value of 1-0 and the corresponding boundary

conditions inserted in the rlght -hand vector locations. Thus, for example, if node 12 is a
boundary node the situation in LDEST and ROW will be as in Figure 4, assuming that all
boundary conditions are equal to 0-0 for the first right-hand- side vector and to 1-0E + 06 for
the second.

These equations are written directly to the output file for further use in elimination and
back-substitution. The boundary node records are very short contributing to the overall small
size of the output file..

Back-substitution and resolution

The back-substitution process is straightforward: the output file is back-spaced, a record is
read into LDEST and RW and then the output file back-spaced again. At this stage all NDF

LDEST [3s] o | |

|19] o0 | 10e+06 |

1ol 00 [10e+os |

[10] oo | we+os |

Figure 4. Arrays LDEST and ROW for boundary nodes

630 N. IDA AND W. LORD

variables in this record are evaluated and placed in array A before the next back-substitution
step begins.

If more than one right-hand-side vector is present as initialized by NRHS at the beginning
of the program, the resolution facility is invoked. This consists of simply reading the file to
the end-of-file and repeating the back-substitution with the next right-hand vector.

Dimensioning of arrays

The program listing in Appendix II is dimensioned for a typical three-dimensional problem
with 200 first-order hexahedral elements and 972 -variables. The only arrays that need some
attention are LDES and LDEST. LDES is used in assembly where its size should be equal to
the largest number of variables associated with one node. In the example presented above,
this is 29. During elimination the active size of LDES can be up to BW+NRHS, where BW
is the semibandwidth and NRHS the number of right-hand-side vectors or 20 in this example.
The larger of the two should be used. LDE and RW are dimensioned accordingly.

LDEST can grow beyond the size of LDES but will always be smaller or equal to 2BW-1+
NRHS. In most cases a size which is about 1'5 times that of LDES will suffice, as is the case
in the listing in Appendix II. ROW is dimensioned according to LDEST.

INPUT OF DATA AND SUBROUTINE ELEMR

The input data needed for the solution consists of element data, node co-ordinates and boundary
conditions. The elements data is stored in file NODARRAY.DAT. The first entry in each
record of this file is NNPE, followed by the node numbers of the current element. The last
entry is MAT which assigns a material identification number to each element. This is later
used in ELEMR to introduce the material properties in the elemental matrix assembly.

Before ELEMR can be called to create the elemental matrix, it is necessary to read in the
co-ordinates of the nodes of the current element from file NODPNT.DAT. Each record in
this file contains the x, y and z co-ordinates of a node and the records arranged in ascending
node numbers. The file is scanned and the co-ordinates of the NNPE nodes of the current
element are read in array COOR. These are identified by comparing each node of the element
with the record number.

The boundary conditions data is contained in two files. NBOUND.DAT contains first (in a
single record) the node numbers that have specified boundary conditions. These are read and
stored on core in array NBOUND. Next, this file contains the number of variables per node
(NDF) for each node in the mesh. Each value of NDF is written as a separate record and read
in for the current node (NEP) before assembly begins. If all the nodes in the mesh have the
same number of degrees-of-freedom, it is more efficient to initialize NDF at the beginning of
the program. Later, after the present equations are fully summed, array NBOUND is scanned
to check if the node has prescribed boundary conditions. If so, file BCOND.DAT is searched
for the corresponding node, the boundary conditions for the NDF equations associated with
this node read and the equations changed accordingly. This file contains a record for each node
that is identified in NBOUND as having specified boundary conditions. The first entry in each
record is the node number (KKI), followed by NDF boundary conditions which are stored in
array BCX for the current node.

Subroutine ELEMR creates the elemental matrix and has to be supplied by the user. It is
somewhat unique in that, for each element, only the rows corresponding to one node are
transferred back to RSOL and therefore only part of the matrix need be assembled. For each

SOLUTION OF LINEAR EQUATIONS 631

node being assembled, ELEMR is called as many times as the number of elements containing
this node. In each call, the rows in the elemental matrix corresponding to the cusrent:node
are assembled-and: then transferred back to'RSOL imrarray:RW. and summed-into array ROW.
This procedure has been detailed in the section on assémbly. The rows that need assembly'are
identified by KEL. This subroutine alse neéds: to supply the material properties, ‘pérhapsin-a
DATA statement. If an-existing subroutine is tobe used; it is:perhaps:simpler:to ¢reate the
whole elemental matrix in each callto ELEMR but to transfer back-only:the NDF.rows defined
by KEL, (i.e.’ rows: NDF*KEL, NDF*KEL-1;.......] . NDF*KEL—NDF +1). Ail -data
necessary for the elemental mamx assembly is t:ansferred through COMMON/ CZ/ TEE

ST PSR
The method presented in the previous sections was compared w1th both t,he symmemc frontal
solution of Irons’ and the nonsymmetric frontal routine of Hood.? This latter routine was used
without plvotmg to render the comparlson valid. Although the main advantage of the current
method lies in the possibility of rurining ‘medium to large’ Size programs on small core small
disk mlmcomputers, it was practically 1mpossnb[e to compare the three programs on such a
computer. The core requirements, €specially for the nonsymmetric frontal routine, were too
large for a realistic problem to be implemented. On the other hand, a very.small test problem
would not reveal the limitations or the advantages of this method. The comparison was therefore
done on a VAX 11/780 computer. The program listing in Appendix 11 is alsathe VAX 11/780
version used for thie comparison. The method was, however, 1mp1emeﬂted ona Tektromx 4081
graphics system ‘and used to run threg- dlmensxonal finite element. solutlpns in"excess of 2000
variables in size.:Some, data on this 1mplementat10n is also provided in addltlon tcx the mentioned
comparison.

The comparison for the nonsymmetric case is done on a three- d1mens1onal magnetostatic
problem solving for the magnetic field around a slot in a current carrying steel bar. The three
components-of the: Magnetic-Vector Potential are calculated at each node-of the mesh. The
‘mesh has 324 nodes. (972 variables),and 200 first-order. hexahedral elements: . :

The symmetric case is compared by solving a threerdimensional heat conducuon prob,lem
for-the temperature at-each node of the above mesh.. TR

. -Table I .shows the data for the nonsymmetric case.. The tlme needed for assembly and
ehmmatlon is' much higher:than in the frontal routine, but that needed for back-substitution
or resolution is significantly lower. Indeed, the total time for the solution is shorter than for
the frontal method. As the number of variables per node and the number of right-hand-side

EREE

.‘Table 1. Comparison of results for nonsymmetric routines

"Currenit'routine ° Froftal routine
Assembly - 2457 " sec. 295 "' sec.
Elimination 1266 sec. ‘
Back-substitution 189 sec. 1565 sec.
Total solution time RN 11 ¥ S 1760 sec.
Resolution 198 sec. 1603 sec.
..Total disk storage .. - . ..367616 - bytes, .- - .. 1989632 bytes.
.. Disk storage/variable . . 604:18 bytes . . 2046:95. bytes ..

Totalcore '~ 1 2129 " words 55.?88’:_ words

632 . N. IDA AND W. LORD

vectors increase, the performance of the current routine should 1mprove in comparlson to the
frontal routine. : -

More importantly, from the pomt of view of the routine’s merit, as staied ih the mtroductlon,
is the significant reduction of-core and disk storage. The disk storage is reduced by a factor
of 5-4 and the core storage by.a factor of more than 26. :

. ‘Table II summarizes the data for the symmetrical case. In this case, only one vanable per
node is used. The assembly and elimination times are again longer, but the back-substitution
times for both routines are comparable. The reason for the reduced back-substitution time is
that the symmetric frontal routine uses back-substitution by elements, whereas the current
routine back-substitutes node by node. There are fewer records in the frontal routine output
file although they are much longer, as suggested by the disk storage data in Table II. In contrast,
the nonsymmetric frorital routine uses back substitution by varlables, accountmg for the large
back substitution time. o % R :

Table II _Cojhp%xi‘isoh of results .‘f(l)r symmetrié routines

Current routine Frontal routine

Assembly : o 220 ¢ osec 1 - sec.
Elimination . 137 . - sec. - 6 sec.
Back-substitution) - 65 sec. . - 46 sec. .
Total solution time 422 . sec. .63 sec.
Resolution 72 sec. 98 sec.

" Total disk storage - 1 65536 bytes - 164452 bytes

"' Disk storage/ variable 328-69- bytes. -+ 507-26 - bytes

Total core 731 words 4536 words

Again, as for the nonsymmetric solution, the routines merit should be judged mainly by the
reduction in core and-disk:storage. The disk-storage is reduced by a factor of 6 2 ‘whereas the
core requirements are reduced bya factor of 2-5. o :

Table III summarizes the, data for both the symmetric and‘nonsymmetrlc solutions on a
Tektronix 4081 graphics minicomputer. The tinme measurements are in toiai time rather than
CPU time used in Tables 1:and II. The word length-used is 32 bit, as for the VAX 11/780.

Table II1. Solution on the Tektronix 4081 graphics system

Symmetric routine - Nonsymmetric routine

. Total solution time . 2 hrs. 12 min. 8 hrs. 37 min.
Total disk storage 65536 bytes 367616 bytes
_ Total core 731 words ., 2129 words
CONCLUSIONS

A solution method has been described which can solve for symmetric and nonsymmetrlc systems
of equatlons with 31gn1ﬁcant reduction in core and disk space requirements. This accounts for
the practical 1mp1ementat10n of the algorithm on a small minicomputer, where neither a

SOLUTION OF LINEAR EQUATIONS 633

symmetric nor'a nonsymmetric frontal routine can be implemented. The large solution times
are, in many cases, more than canipensated: for ‘by.the low running: costs and availability of
such minicomputers. The program can also be used-as-a test program before veéry large and
expensive programs are run on large computers.

APPENDIX LI DEFINITION OF VARIABLES

A(NUMVAR) = Array, steres the results during back-subsntutlon r
BCX(NDF) = Stores the boundary conditions for the current node, if’ any
COOR(3, NNPE) = Co-ordinate array for the current element bemg assembled.
KTEST = Variable transferred to SORT to indicate if reordering is needed or
only shift to the left.
KEL = Transfers the current node value to ELEMR. This variable then g governs
the rows in the elemental matrix that are assembled.
KKI=Current boundary node number being read. : :
LDES(*) = Pointing vector: used in assembly to create the pointing vector and in
elimination to store the pointing vector for the equations read’ from file.
LDEST(*) =During elimination stores the pointing vector for the node bemg
eliminated. Also used for back-substitution. :
LDE(*) = A temporary storage for LDES during elimination.
MAT =Material property varjable. The value of this variable refers to the
material properties assigned to each element i in ELEMR
MAXN = A variable assigned a value la*rger than the number of vanables in the
mesh. Used té détect the lerigth of LDEST.
NBA =NBA points to the location of the first rlght-hand vector
NBB =NBB points to the location of the last varlable in each equatlon being
eliminated.
NBOUND()= Array, stores the node numbers Wthh have boundaly condltlons
(applied).
NDF = Number of degrees-of-freedom per node.
NEP = Current equations (node) in the elimination process.
NH = Number of nodes having specified boundary conditions.
NNPE = Number of nodes per element.
NODYV = During elimination it has the value of the first vanable in the current
node. It also stores the value of NUMVAR for subsequent resolution.
NPT(NNPE) = Node number array for the current element being aSSembled
NRHS = Number of right-hand-side vectors..
NUMEL = Number of elements.
NUMNP = Number of nodes. '
NUMVAR =Number of variables. During elimination this counts the thumber of
variables eliminated. Also used in back- substltution to sense "the end
of the process.
RA(NDF) = Temporary storage for one variable in each of the NDF rows in ROW
RW(NDF, *) = During assembly this contains the rows assembled in ELEMR. During
elimination it contains the rows read from file, and during back-substitu-
tion it contains the rows read from file for. vanable calculatlon

* See section on dimensioning of arrays.

634

N. IDA AND W. LORD

RWA(NDF, NRHS) = Temporary storage for the right-hand-side vector during elimination

[er B or I o]

c

99

40

12

when the length of ROW and LDEST are increased.
ROW(NDF *) =Contains the equation being eliminated during elimination.

APPENDIX II: PROGRAM LISTING

COMMON/C1/LDEST(177) sROM(I+177) s Ky KTEST s NDF s MAXN s NRHS
COMMON/C2/RW(3+135) sCOOR(3,8) 4 NFT(8) +MAT s NNFE,KEL
DIMENSION RWA(3)sRA(3,3)sLDES(135),LDECIIE)
1/NBOUND(150) yRCX{(3) rA(972)

EQUIVALENCE' (A(1)sLDES(1))» (AC136)yLTE(L))

1y (AC271) s NBOUND(1)) '

VARIABLE INITIALIZATION AND INFUT

NEF=0

NRHS=1
NBA=81
NEB=NBA-1
NUMEL=200
MAXN=99999 -
NUMNF=324
NUMVAR=(

OFENCUNIT=1,NAME='TEMPOR AT/ s FORM="UNFORMATTED ' » TYFE="NEW')
OFEN(UNIT=2sNAME='NODARRAY.DAT’ yFORM="UNFORMATTED « TYFE='0LD)
CPEN(UNIT=3,NAME=‘BCOND DAY +FORM=‘UNFORMATTEL » TYPE="0OLLD')
OFEN(UNIT=4yNAME='NBOUNLD.DAT’ »FORM="UNFORMATTED »TYFE="0LD"?
OPEN(UNIT=5,NAME='NODFNT . DAT s FORM='UNFORMATTED» TYFE="0LD")
OFEN(UNIT=8,NAME='QUTF.DAT’ s FORM='FORMATTED’ s TYFE="NEW"

READ(4)NH» (NBOUND(KL) 2 KL=1,NH}
WRITE(6+700) .

WRITE(6,701) (NBOUNDCLK) s LK=1yNH)
WRITE(4+702)

WRITE(6+709)

ASSEMBLY

CONTINUE

NEF=NEF+1

IF(NEF.GT.NUMNF)BO TO 199

READ(4)NDF

00 60 JJ=1:NH :

IF(NBOUNDI(JJ) JEQ.NEF)GC TO 64

CONTINUE

KK=0 ‘
KN=NBA+NRHS :
DO 12 IJ=1+KRN

LDEST(IJ)=MAXN

DO 12 KJ=1,NDF

ROW(KJi I.H)=0,

REWIND 2

D0 14 J=1,NUMEL
READ(2)NNPEs (NPT(KL) sKL= inNPE)yhﬁT
WRITEC6s703)NNFEs (NFT(KL) +KL=1,NNPE) s MAT

* See section on dimensioning of arrays.

16

18

30
22
32

34

38

40

46
48
50
41

52
14
20

SOLUTION OF LINEAR EQUATIONS

DO 16 KEL=1/NNPE
IF(NFTC(KEL) JNE.NEP)GO TO 16
GO 10 18

CONTINUE

GO 1O 14

CONTINUE

KM=KEL

KK=KK+1

KJF=1

REWIND S

D0 22 II=1,NUMNF

[0 24 KF=1,NNFE
IFCITLNENPTCRF))IGO TO 24
GO TO 26

CONTINUE

GO TO 30

READ(S) (COBR(IK-KF)»IK=1+3)
WRITE(6:704) (COORCIKYKF) »IK=143)
B0 28 KJ=1,NIF

LDES (NDFXRP-KJ+1) =NDFENPT(KF)-KJ+1
IF(KJF.EQ.NNFE)GO TO 32
KJP=KJP+1

GO TO 22

READ(S)

CONTINUE

CONTINUE

CALL ELEMR

HH=NDFXNNFE
IF(KK.NE.1)GO TO 42

DO 34 KJ=1,NDF

00 34 JJ=1,M¥

ROW(RIy JI)=RU KTy JJ)
CONTINUE

DO 38 JJ=1,MM
LDEST(JJ)=LDES(JS)

[0 40 IJ=1,NRHS

D0 40 JJ=1sNDF

ROWCJJ s NBATT JY=RW(JJ MM+)
LDEST(NBA+1)=LDES(MH+1)
GO TO 14

2 DO 44 M=1,MM

DO 44 LM=1,NBA
IFCLDES (M) JEQ.MAXN)IGO TC 44
IF(LDES(M) JEQ.LDEST(LM})GO TG 44
IF(LDEST(LM) «NE,MAXN)IGD TO 44
LOEST(LH)=LDES (M)

LDES (M) =MAXN

GO TO 48

LDES(M)=MAXN

D0 50 KJ=1sNDF

ROW(KJ s LM)=ROW(KJIs LMY +RW (K4 M)
CONTINUE

DO 52 IJ=1sNRHS

DO 52 KJ=1sNDF
ROW(KJyNBA+I S =ROUW(KI s MBATTI S 4R (K Iy HM4T D)
CONTINUE

CONTINUE

[0 5S4 II=1sNRB

IN=II+1

635

636

CTOoOONn GO m

58
G6

54

64

b6

70

76
74

78

88

N. IDA AND W. LORD

DG 56 JJ=INsNEA
IFCLDEST(JJY L EQ.C)GOD TO 54
IFCLDEST(ITYLLTLLDEST (D))60 TO S&
KRG=LDEST(II)
LDEST(II)=LDEST(JJ}
LREST(JJ)=KG

[0 58 JK=1,NDF
RWW=ROW(JK,I1)

ROWCIK IT2=ROWCJIK, J 1)
ROW(JKy JJ)=RUWW

CONTINUE

CONTINUE

CONTINUE

GO TO 62

CONTINUE

REWIND 3

0 66 JJ=1sNH
REAICIIRKT y (BCX (JK) » JK=1 9 NDF)
WRITE(Ss705)KKY s NHs (BCX(JK) s JK=1yNDF)
IF(KKILEQ.NEF)GO TC &8
CONTINUE

CONTINUE

KJ=NEP¥NDF

LDEST (1)=KJ

LOEST(NBA+1)=1

D0 70 JK=1sNDF
ROWCIK,1)=1.0

DO 70 IJ=1,sNRHS

ROW{JIKy NBA+TJY=BCX(JK)
CONTINUE

KK=2

LDEST(2)=1

DO 72 IJ=1,NRHS

D0 72 KL=1sNDF

2 ROWCKL,»IJ41)=ROW(KLNBA$+ID)

GO TO 80

2 CONTINUE

KK=0

B0 76 KI=1,yNBA
IF(LDEST(KI).ER.MAXN)GO TO 74
KK=KK+1

CONTINUE

CONTINUE

KK=KK+1

LODEST(KK)=LDEST(NRBA+1)

0 78 IJ=1sNRHS

D0 78 KL=1,NDF
ROW(KLyRK+IJ-1)=ROWCKL o NBAHID)
CONTINUE

NKK=KK+NRHS-1

O 88 KJ=1,NDF

WRITE(62706) (ROWCKJILI) rLI=15NKK)
CONTINUE

WRITE(62707) (LDEST{LS) :LJ=1:NKK)
WRITE(4s708)NEP

ELIMINATION

NUMVAR=NUMVAR+NDF
MK1=KK-1

SOLUTION OF LINEAR EQUATIONS

K=KK
IF(LDEST(KK) JNEL1)GD TO 110
RE=KK+NRHE-1

WRITECLINDF s 8E (LDEST (L) e Tl o KK » COROWOIH T 2 T 1 0 RED -

LH=1sNDF
Go TO 99
114 CONTINUE
REWIND 1
Ki=0
NODW=NURY SR-NIF -+
LL=9
112 KE=LDEET(LY
LL=LL+1
IFORRL,BENOGDVIGE TO LS50

114 READCLSNDF yMEs (CLDES TIY s I 1oLy MKy - (CRWCIH TT T T=1 v 8K » SH

=1 NEF D
ME=MK-NRH5+1
Kl1=RK1+1
LO=LDES{1)
IFCLUOES{MK) EQ 1ILD=LD~HIF+1
IFLLIDGNE,LOESTCLY)G0 TO 114
IFCLDES MR JEG, 12060 TO 144
MRZ=MR-~1
D0 116 L=1»MK
LOECLY=LDES(L?
114 CONTINUE
Do 118 Ld=1.NOF
D 120 Kd=12NDF
120 RWACR. I =ROWIR D)
TFCLJ L ABF =L CRONDF L0 LMK =R 1
DO 122 JJ=LJshkd
00 124 L=bJyps?
IF(LDEST(J4) . NE. LD
LBES{LY=0
D0 126 KJ=1,NDF
126 ROM{KJy JAY=ROM(K Sy S -RWIL Gy Ly dRHa (R D)
GO 70 128
124 COMTINUE
28 CONTINUE
122 CONTINUE
IF(LJ.NELLXGD TO 146
K=Jdd
Ka=LDEST (KD
Do 130 Kd=1sdDF
DO 13L IJ=1:HRHE
130 RA(KIy I =ROW(R I ESII-1)
0D 132 M=1,HKHRTZ
IF(LDES{MY,EQ, D60 TO 132
LOEST(K)=LDES (i)
LOES{MY=0
D0 134 KJ=1,NDF
134 ROW(NJyK)=~RW(LJs M) KRKA (KD
K=K+1
132 CONTINUE
LIEST(K)=KA
D0 136 KJ=1:NDF
D0 134 IJ=1:NRHS
136 ROW(KJIsK4TJ-1)=RA(KI-TJD
1646 CONTINUE
D0 138 KJ=1,NDF

SULYIGT T 124

637

638

Daw S ae

[awd

142
140
118

144

1354

146
158
156

152

162

1464

N. IDA AND W. LORD

00 138 IJ=1,MRHS
ROWIRKJ s KT A= 1) =ROWRSy RIS 3 ~RE (Lo MK T -1 Y REWACK DD
IFCLJLEQ.NIFIGD TG 140
DO 142 II=1+MK
LIES(II=LDECID)
CONTINUE

CONTINUE

CONTINUE

KTEST=~1

CALL SORT

K=K~-NDF

GO TO 144

IFCLLEQ. 1)R=MK1+1

00 148 LJ=1.NDF

DO 148 K=1,NDF

00 148 IJ=1:NRME

B ROWIKIyR+TI-10=ROWK D4 T0-1) -ROWOK I LIYRRWIL Sy T 0410

RTEST=9

CaLL SORT

K=K-NDF

CONTINUE

GO 70 112

CONTINUE
IF(LLVER1IR=MR1+1

DO 192 JK=1:NDF
RN=K+NRHE-1

DO 154 I=JK,KN

RWCIK Ty =ROWCIK 1) ZROW I UKD
CONTINUE

JU=JK+1
IFCJLWGTWNDF)GD 7O 1Z6
[0 158 JF=JLsNIF
RWACJF Y =ROWLJFy 2K

[0 160 I=JK»KN

ROWCOPy Th=ROW I TR (I T aRYa (IR
CONTINUE

CONTINUE

CONTINUE

CONTINUE

JI=NEF-1 ,
IF(RLLEQ.JJDBD TD 144
READICLY

Ri=RKi+i

GO TO 142

R=R+NRHE-1

WRITECIINDF s R (LDESTLI) » T=10 K0 s CORUCIH DY T=12KD
1y JH=1,NDF)
WRITECSr710INEF K

GO TO 99
CONTINUE

NODV=NUMVAR
BACKSUBSTITUTION
WRITE(S,711
[0 200 IJ=1,NRHS

WRITE(6»712)14
WRITE(6,715)

SOLUTION OF LINEAR EQUATIONS 639

IF(IJWEQ, 160 TO 209
NUMVAR=NOIV
REWIND 1
D0 208 JJK =1,NUMNF
208 READ(1)
209 CONTINUE
BACKSPACE 1
READCLINDF s MKy (LOEST(I) » I=1 oMK}y ({(RWCJH» 1) 2 I=1,MK)
1y JH=1,NDF)
BACKSFACE 1
MK=MK~-NRHE+1
IF(IJLEQ.1YGO TO 201
00 202 JJK=1sNDF
RW(JJKyMK) =RU(JIKs MK+T -1
202 CONTINUE
. 201 CONTINUE
IF(LDEST(MK) . NE.1)G0 TO 212
00 210 I=1yNIF
M=NDF+1-1
A{NUNVAR)=RU{MsHK)
NUMVAR=NUMVAR~1
210 CONTINUE
GO T0 220
212 CONTINUE
A(NUMVAR) =RUW (NDF» MK) /RW{NDF s MK-1
NUMVAR=NUMVAR-1
LK=MK~1
LJ=NDF-1
Do 222 JJ=1,LJ
M=NDF-JJ+1
NN=M-1
AW=0,0
DO 224 I=MsLR
AW=AW+RW(NN, I)XACLDEST(I))
224 CONTINUE
A(NUMVAR) = (RW (NN MK) -AW) /RW (NMNyNN)
NUMVAR=NUMVAR-1
222 CONTINUE
NUMVAR=NUMVAR-1
220 CONTINUE
[0 230 J=2,NUMNFP
BACKSPACE 1
READ(1)NDF s MK s (LDEST(I) s I=1 s MK) v CCRWCIHs)y I=1,HK)
1y JH=1,NDF)
BACKSPACE 1
MK=MK-NRHS+1
IF(IJ.EQ.1)G0 TO 204
00 205 JJK=1sNDF
RWCJIKy MK =RUW(JIKy MK+TJ-1)
205 CONTINUE
204 CONTINUE
IF(LDEST(MK).NE.1)G0 TO 232
DO 234 I=1sNDF
M=NDF-I+1
ACNUMVAR) =RUW (M, MK)
NUMVAR=NUMVAR-1
234 CONTINUE
GO0 TO 230
232 CONTINUE
LK=MK~1

640 N. IDA AND W: LORD

[0 240 JJ=1sNDF

M=NDF-JJ+2

NN=M-1

AW=0,0

00 242 I=MsLK
AW=AWFRW (NN T RA(LDEST(I))
CONTINUE

ACNUMVAR T = (RW (NN MK) ~AWY 7RW NN NN)
WRITE(67,713)NUMVAR A (NUNVAR)
NUMVAR=NUMVAR-1

240 CONTINUE

230 CONTINUE

-3
-
ro

C
WRITE(S»714)(ACI)»I=1,NODV)
€ WRITEC(6,714) CACT) ¢ I=1,NOD)
200 CONTINUE
C

700 FORMAT(1X,'THE FOLLOWING NODES HAVE SPECIFIEL BOUNDARY
1CONDITIONS’)
701 FORMAT(10I8B)
702 FORMAT(2X, ASSEMEBLY/ELIMINATION REGINS’}
703 FORMAT(101I8)
704 FORMWAT(ZEL2.5)
705 FORMAT(2I8,3E12.5)
706 FORMAT(10E12.4)
707 FORMAT(10I8)
708 FORMAT(IB)
709 FORMAT(1X, NODE NO. NONZERO ENTRIES IN ROW’)
710 FORMAT(2IS8)
711 FORMAT(2Xs BACKSUBSTITUTION BEGINS’)
712 FORMAT(2Xy'BACKSUBSTITUTION STEF $ 51447 BEGINS')
713 FORMAT(IB,EL12.5)
714 FORMAT(3E12.5)
715 FORMAT(1X»’VAR. NO. RESULT "}
STOF
END

SUBROUTINE SORT
COMMON/C1/LDEST(177) yROW(Zr177) s Mo KTEST o NLF y MAXN s NRHS
NF=0
KK=NDF+1
M=M+NRHS-1
DO 10 I=KK,M
NP=NF+1
LDEST(NF)=LDEST(I)
DO 12 L=1,NDF

12 ROW(LsNP)=ROW(LI)

10 CONTINUE
IF(KTEST.EQ.0)GD TO 26
NRE=M-24NDF-NRHS+1
NRC=NRB-NDF
00 20 I=1,NRC,NDF
KA=MAXN
N=T+NDF
[0 22 J=NyNREsNDF
IFCLDEST(L) LT.LDESTCJ))GO TO 22
IF(KALLT.LDEST(J)IGD TO 22
KA=LDEST(J)
K=J

22 CONTINUE

W N =

SOLUTION OF LINEAR EQUATIONS 641

IF(KANE . MAXN)GD TO 24
60 10 20

24 CONTINUE
[0 40 KJ=1,NIF
MM=I-1+KJ
LL=K-14KJ
K1=LDEST (MM)
LIEST(MM)=LDEST(LL)
LDEST(LL) =K1
DO 40 LJ=1:NDF
R1=ROW(LJyHMH)
ROWCLJ s MM =ROW(L I LL)
ROW(LJsLL)=R1

40 CONTINUE

20 CONTINUE

26 M=M-NRHG+1
RETURN
END

REFERENCES

. B. M. Irons, ‘A frontal solution program for finite element analysis’, Int. j. numer. methods eng, 2, 5-32 (1970).

. P. Hood, ‘Frontal solution program: for unsymmetrical matrices’, Int. j. numer. methods eng, 10, 379-399 (1976).

. E. Thompson and Y. Shimazaki, ‘A frontal procedure using skyline storage’, Int. J. numer. methods eng, 15, 889-910
(1980).

. S. K. Gupta and K. K. Tanji, ‘Computer program for solution of large sparse, unsymmetric systems of linear
equations’, Int. j. numer. methods eng, 11, 1251-1259 (1977).

. A. Recuero and J. P. Gutierrez, ‘A direct linear system solver with small core requirements’, Int. j. numer. methods
eng, 14, 633-645 (1979).

