2490 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-2t, NO. 6, NOVEMBER 198

h ELECTROMAGNETIC FIELD MODELING ON SUPERCOMPUTERS

Nathan Ida

Abstract

The relatively new area of problem solving on
supercomputers offers exciting new possibilities for
numerical . solution of 3-D electromagnetic field
problems. The solution of systems of equations with
tens of thousands of unknowns and bandwidths in the
thousands is all but impossible on conventional com-
puters. The availability of new vector supercomputers
such as the CRAY 1 and the CYBER 205 brings both hope
and new challenges. The faster machine cycle, vector
instructions and parallel computing combined with
advanced I/0 devices promises to speed up the solu-
tion of large problems considerably. On the other
hand, efficient programming on such machines is far
from being trivial and in most cases, one has to com-
promise portability of the code. In addition, these
machines require a front end computer and are not
interactive, complicating and lenghtening the program
development process.

This work presents an overview of the work done
to date on electromagnetic field modeling on superco-
mputers. Some data on field solution on an attached
array processor is also included since array proces-
sors are a special class of supercomputers and for
comparison purposes.

Using some very large eddy current problems the
various aspects of computing are presented together
with results showing dramatic improvements in solu-
tion times. The problem of code portability, vector
complex computation and program conversion are also
addressed and, finally, the need for new algorithms,
specifically designed for vector computing is
presented.

Introduction

The very existence of supercomputers is in
response to the need for large scale computation in
many diverse areas. Accordingly, since their appeara-
nce some significant problems in numerical weather
modeling'!, wave propagationé, petroleum reservoir
simulatlon3 and statistical modeling in semiconductor
physics®, to name but a few were addressed. Other
areas of regesrch have greatly benefited from this
powerful tool°~/,

At the same time only limited emphasis was given
to electromagnetic field modeling although, it seems,
this should be a very appropriate application.
Modeling of fields is unique in that it requires a
large number of mesh points with relatively dense
meshes. In addition, especially in eddy current prob-
lems, skin depth considerations and infinite bounda-
ries must be taken into account increasing the number
of unknowns in the solution region considerably. The
need for accurate 3-D solutions in moving coil appli-
cations compounds the problem to the point where
only an increase by orders of magnitude in computer
performance can render the solution feasible.

The author is with the Electrical Engineering
Department, The University of Akron, Akron, Ohio
44325.

" Considerable amount of ground work has been done
in other fields or is progressing. Thus, for example,
large structural analysis programs such - as NASTRAN
have been converted to run on vector computersg. Some
of the algorithms crucial to efficient implementation
of large scale field programs such as the Gauss
elimination and"thi ngjugate Gradient algorithms
have been vectorizedi0-1¢, Although no one can expect
these algorithms to be optimal at such an early
stage, the basis for cost-effective solution of very
large problems exists. There also exist whole libra-
ries with vectorized routines that should allow
explorisiqﬂ of this field with little user
effort®7s1%,

Vector Versus Scalar Computing

In conventional architectures, each instruction
is fetched from memory and then executed for a
limited number of operands. Since in most computer
architectures a single memory address per instruction
is allowed, operations on an array can be viewed as
repetitively applying the same instruction to each
element of the array. In contrast, a vector operation
is the application of a single instruction to all the
elements of an array (or pairs of arrays). The issua-
nce of such an instruction performs the vector opera-
tion, specifies the starting addresses of the vectors
involved and their length. For example, consider the
following:

00 100 I=1,N

DO 100 J=1,N

C(I,9)=A(J,1)+8(J,1)
100 CONTINUE

In a scalar mode, this results in N*N instruc--
tions, each calculating one element of C. In vector
notation. on the CYBER 205, this can be written as

C(1,1;N*N) = A(1,1;N*N) + B(1,1;N*N)

and only a single instruction is necessary to perform
this calculation.

Similarly, vector intrinsic functions can be
used. The following code segments perform identical
operations
SCALAR DO 100 I =1,N

A(1)=SQRT(B(I))+C(1I)
100 CONTINUE
VECTOR A(1;N)=VSQRT(B(1;N))+C(1;N)
where VSQRT is the equivalent vector intrinsic
function to the scalar function SQRT and performs the
same operation ,on all the elements of array B in a
single instruction.

On the CYBER 205 one can assign (dynamically)
each of the arrays A, B and C as descriptors

0018-9464/85/1100-2490$01.00©198S IEEE

~ DESCRIPTOR AD,BD,CD
followed by appropriate ASSIGN statements

ASSIGN AD, A(1;0)
ASSIGN BD, B(1;0)
ASSIGN CD, C(1;0)

and the vector statement becomes:
CD=AD+BD

The operations above resulited in a new vector of
the same length as the input vectors. The vectoriza-
tion process can be extended to situations where a
single scalar is calculated such as in the case of a
dot product:

A=0 ;
DO 100 I=1,42300
A=A+X(1)*Y(1)

100 CONTINUE

This can be vectorized as

K=42300
A=Q8SDOT(X(1;K),Y(1;K))

where the vector function Q8SDOT was used to issue
the necessary machine instructions.

The efficiency of vector computers relies on the
parallel execution of pairwise operations that make
up a vector operation. The CYBER 205 employs pipeli-
ning to achieve this. In a pipelined structure, each
pipeline operates on different elements in the data.
A pipelined adder, for example, is divided into seg-
ments, each of which performs specific operations in
each machine cycle. After a start-up time require to
“£i11 the pipeline", this adder will produce a sum
for each machine cycle. This structure, immediately
suggests that maximum efficiency on such a machine is
achieved for long vectors, where the start-up time
adds little to the overall execution time. An intere-
sting question in this regard is: what is a "long
vector"?. The answer obviously depends on the opera-
tion to be performed. The start-up time on the CYBER
205 1is about 50 machine cycles (depending on the
operation performed) and any vector of length Iless
than about 10 should be considered less efficient
than equivalent scalar operations. The CRAY 1 in
contrast, has a start-up time of less than 10 cycles
for most operations and therefore is faster for short
vectors. _

Vector computers also have scalar processors for
unvectorizable portions of the code. These processors
by themselves are significantly faster than other
sequential computers and allow a relatively painless
transfer of programs from scalar to vector environ-
ments. Automatic vectorization by the compiler adds
to this aspect by recognizing the simplest of the
loop structures as vector operations and issuing
appropriate machine instructions.

~Program Conversion

Since 1in most cases it is more feasible to
convert an existing program to run on a vector compu-
ter rather than to develop a new one, the effort
involved 1in such an undertaking must be considered.
Since vector computers have scalar processors it is
possible’ to proceed in three steps.

1. Conversion of the program to run on the vector
machine with 1ittle or no explicit vectoriza-
tion.

“require 7

“lent to developing special routines for

2491

2. Explicit vectorization. Parts of the program may
significant changes in order to take
advantage of the available vector instructions.

3. Algorithm chahges. This step is in fact equiva-
vector
computing.

Step 1: No Explicit Vectorization

In this step, only a minimum of changes to the
original programs are usually required, depending on
the scalar computer on which the program was origina-
My written. This may include changes to PROGRAM
statements, OPEN and CLOSE statements and some
control statements used to transfer files from and to
the front end computer. Thus, for example, in tran-
sferring programs from a CYBER 720 to the CYBER 205,
only the PROGRAM statement and some Hollerith strings
needed changés - while transfer of VAX programs also
required changes in OPEN and CLOSE statements.
Overall, these are very minor changes.

At this point, the program will run more or less
as a scalar program on a vector machine. The CYBER
205 does vectorize some of the loops in the program.
Only the simplest of the loops (loops without any
kind of branching or recursiveness) are automatically
vectorized by the compiler but this, and the optimi-
zation by the scalar processor are sufficient to
significantly reduce the solution time.

This relatively simple and all-important step in
the program conversion must be performed whether any
further vectorization will be undertaken or not.
Similarly, although other machines will require dif-
ferent changes, these are in essence of the type
described above unless the language used on the supe-
rcomputer is different than the language of the prog-
ram. For example, the adaptation of a VAX 11/780
program to run on an FPS-164 attached array processor
required only minor changes in OPEN statements.

Step 2: Explicit Vectorization

After the program is running and an initial
assessment of its performance has been done, one can
proceed to vectorize those parts of the program that
the compiler cannot vectorize including, perhaps,
treatment of loops that vectorize under unsafe condi-
tions (variable limits). Minor changes in algorithms
are also appropriate at this stage provided they do
not require rewriting and extensive testing. An
important part in program modification is the treat-
ment of 1/0 statements, memory allocation and calls
to subroutines. Also, as a rule, operations should be
performed columnwise rather than the more conventio-
nal rowwise operations.

The first step in the process is to recognize
those parts of the program that will benefit most
from vectorization. In it's simplest form this deci-
sion can be based on previous experience or on speci-
fic knowledge of the algorithms involved. In a finite
element program, the elimination and backsubstitution
routines are the primary targets for vectorization.
If specific software exists, capable of accurately
timing subroutines or loops in the program {i.e. the
SPY routine on the CYBER 205) better decisions can be
made. As an example to this aspect consider Table 1.
An eddy current program was timed using the SPY
routine on the CYBER 205 before and after vectoriza-
tion. The element assembly routine (ASSEMB), elimina-
tion (UDU1) and backsubstitution (UDU2) are listed
separately. It is clear that most of the vectoriza-
tion effort should be directed at subroutine UDUl

2492

with UDU2 as the next priority. Any improvement in
other “rOgtiAes . Would' be'marginal at this stage.
Inspection of the timing after vectorization reveals
a more uniform time distribution between the various
routines indicating better performance. As a second
step, other routines may be vectorized to improve
performance.

Step 3: Algorithmic changes

This last step in the program conversion is less
defined than the previous two. It is also one in
which maximum performance can be-achieved. The main
trust should be in changes in algorithms or perhaps,
use of different algorithms that are better suited to
vector computing. As in the previous stage, it would
be natural to begin with those parts in the program
that use large portions of time (total and/or CPU).
The elimination and backsubstitution algorithms, or
in more general terms, the solution algorithm are
certainly the prime candidates for this type of
program conversion.

Thus, for example, the program used to obtain
the results in Table 3 uses a SKYLINE storage algo-
rithm " and a segmented elimination and backsubstitu-
tion method. The skyline algorithm is very efficient
but it requires extensive searching and branching -
two highly nonvectorizable operations. A simpler
algorithm, such as using a constant bandwidth storage
scheme has a larger storage overhead but the vectors
are of constant length and less searching is
required. This may prove to be more efficient
overall.

Similarly, the Gauss elimination algorithm may
not be the best approach. There are more than ample
indications that the Conjugate Gradient algorithm in
one form or another holds the key to truly efficient
and fast solution programs. As they are today there
are still many difficulties in vectorization of these
highly recursive algorithms but some have been vecto-
rized with significant improvements in timing.

Some Results

To put the foregoing arguments in perspective
consider first Table 2. It represents the initial
conversion of two programs to run on an FPS-164
array processor connected to a (dedicated) VAX
11/780. Improvements of more than a factor of 4.5
were realized for the larger problem with no explicit
vectorization and only the absolutely necessary
changes in the program itself. The improvement factor
can be increased up to 15 {for the particulfg proces-
sor used) using explicit vecorization!®. This
however 1is too low a factor to have a significant
impact on field computation.

Table 3 represents the conversion of two prog-
rams from scalar environment (VAX 11/780 and/or CYBER
720) to a vector environment (CYBER 205) without any
explicit vectorization. The first program is a mesh
generator (20,000 triangular elements, 10,201 nodes).
The second is a 3-D program running an eddy current
problem with 735 equations(245 nodes, 144 elements)
and a bandwidth of 174. Four resolution steps were
performed. Clearly, the improvement in the second
case 1is significantly higher indicating a problem
with relatively long vectors and extensive matrix
operations. More significant and dramatic are the
improvements possible with explicit vectorization of
the code. Table 4 shows the performance of large
eddy current problem on a VAX 11/780 as compared to a
CYBER 205 (columns No. 1 and No. 2). If one compares
the total time, the vectorized code runs faster by a

factor of more than 160. The true advantage of vector

~machines can be seen in column No. 3 of Table 4. This

problem could not be run at all on the VAX 11/780 or
the CYBER 720. These solution times are quite remar-
kable considering the.fact that only limited explicit
vectorization was performed, without any changes in
algorithms. :

It s quite clear that further improvements can
be ' obtained, perhaps by an order of magni tude,
through algorithmic changes.

Program Portability

As a rule, vectorized programs are not portable,
not even from one vector computer to another. Prog-
rams written on a CYBER 205 will not run on a CRAY
and vice versa, although, depending on the extent of
vectorization, the changes necessary may not be
extensive. Similarly, because of the fact that the
programs must be written, edited and modified on a
front end computer, -these may not even be portable
between sites with identical vector machines. The
main impediment to portability is the fact that the
vector instructions are not part of a standard
language. The new FORTRAN 8X proposal promises to
change this somewhat but the problem of portability
should remain for the foreseeable future. The user
must weigh this aspect before engaging in vectoriza-
tion of programs.

Another problem, not directly related to
portability 1is the fact that almost none of the
vector operations (on the CYBER 205) accepts complex
variables. This is important in eddy current applica-
tions since it requires appropriate changes in the
elimination/backsubstitution routines to take advan-
tage of vector operations.

/

Future Developments

The use of supercomputers in numerical modeling
of electromagnetic field problems is, in a sense,
inevitable. Before these computers become well accep-
ted it is necessary to explore fully the existing
algorithms and develop new ones as required. The well
known, trusted algorithms such as Gauss elimination
should be reevaluated. Frontal methods should, most
certainly be abandoned since their memory optimiza-
tion interferes strongly with vectorization due to
extensive branching and extensive 1/0 operations. The
field of iterative algorithms, used only sparingly in
electromagnetic field problems should in fact offer
considerable improvements in solution times despite
the complications in vectorization. :

Conclusions

Conversion of existing programs from scalar to
vector environments offers new possibilities in 3-D
field analysis. Larger problems can be solved at
reduced solution times and costs. The amount of time
invested in the conversion process determines the
improvement obtained, but even for negligible vecto-
rization an improvement of more than an ordér of
magnitude in solution time is achieved. Further vec-
torization can improve this factor considerably but,
to take full advantage of the machine's features it
is necessary to.make changes in algorithms and to
consider new algorithms. In particular, iterative
algorithms should be investigated.

References

2493

[1] D. L. Williamson and P. N. Swarztrauber, A nume- [9] J. F. Gloudeman, The impact of supercomputers on
rical -weather prediction model - computational finite ‘element analysis, Proceedings of the
aspects on the CRAY-1, Proceedings of the IEEE, IEEE, Vol. 72, No. 1, January 1984, pp. 80-84.
Vol.:72,No.1, Jangary 1984, pp. 56-67. y {10 J. Ortega and E. Poole,. "Incompiete Choleski

2] 0. G. Johnson, Three-dimensional wave equatio Conjugate Gradient onthe CYBER 203/205," Super-
computation on vector computers, Proceedings of computer Applications Symposium, Oct. 31 - Nov.
the IEEE, Vol. 72, No. 1, Jan. 1984, pp. 90-95. 1, 1984, (Purdue University and Control Data

[3] R. P. Kendal, J. s. Nolen and P, L. Stanat, The Corporation)
impact of vector processors on petroleum reser- {111 o. Barkai, K. J. M."Moriarty and C. Rebbi, "A
voir simiflation, Proceedings of the IEEE, Vol. modified conjugate gradient solver for very
72, No. 1, January 1984, pp. 85-89. - large systems," Supercomputer Applications Sym-

[4] K.C. Bowler and G. S. Pawley, Molecular dynamics posium, Oct. 31 - Nov. 1, 1984, (Purdue Univer-
and Monte Carlo simulations in solid-state and sity and Control Data Corporation)
elementary particle physics, Proceedings of the [12] R. Schieber, " A new implementation of sparse
IEEE, Vol. 72, No. 1, January 1984, pp. 42-54. Gaussian Elimination,” ACM Transactions on

[5] W. Fichter, L. W...Nagel; “B. Penumali, W. P. Mathematical Software, Vol. 8, No. 1, September
Petersen and J. L. D'arcy, "The impact of super- 1982, pp.- 256-276.
computers on IC technology development and {13] Control Data Corporation, “MAGEV Library
design,” Proceedings of the IEEE, Vol. 72, No. Utility," 1980. ‘

1, January 1984, pp. 96-112. [14] J. J. Dongarra, C. B. Moller and G. W. Stuart,

[6] D. Fuss and G. G. Tull, "“Centralized supercompu- “LINPAK Users' Guide," SIAM, Philadelphia, PA.
ter support for magnetic fussion energy 1979.
research," Proceedings of the IEEE, Vol. 72, No. [15] R. C. Young, "Application of a floating point
1, January 1984, pp. 32-41. system APL190L array processor to finite element

[7] N. Schmidt and 0. G. Johnson, "A vector elastic analysis," Report prepared for the Department of
model for the CYBER 205," Supercomputer Applica- Energy, Contract DE-AT03-76ET35301, April 1982.
tion Symposium, Oct. 31 - Nov. 1, 1984, (Purdue
University and Control Data Corporation).

[8] N. Ida, A finite element model for 3-D -eddy

current NDT phenomena, Submitted for Publication
in IEEE Transactions on Magnetics.

Table 1. CPU time distribution between the various subroutines of an
eddy current program before and after explicit vectorization.

Subroutine Before Vectorization After Vectorization
ASSEMB » 4.2% 18.0%
uoul 67.5% 47.2%
ubu2 21.8% 18.9%
A1l others 6.5% 16.9%

Table 2. Comparison of performance of a VAX 11/780 to an FPS-164 Array
processor attached to a VAX 11/780 for three different eddy

current problems.

VAX Alone FPS-164 VAX/FPS-164

cPy cpu CPU Ratio
Problem 1 | 675.41 Sec. 185.96 Sec. 3.632
Problem 2 | 8 Hrs. 19 Min. 1 Hr. 50 Min. 4.53
Problem 3 | 3 Hrs. 19 Min. 39 Min. 3.56

Problem 1, 729 equations, bandwidth=276.

Problem 2, 4074 equations, bandwidth=318.

Problem 3, As problem 2 but only backsubstitution was performed for 10
probe positions {(no elimination).

2494

Table 3. Comparison of ‘performance between scalar and vector
computers.
VAX 11/780 CYBER 720 CYBER 205 IMPROV. RATIO
VAX/205 | 720/205
PROB. 1 | 581 sec. - 109.47 sec. 5.3 -
PROB. 2 | 306.38 sec. 587.275 sec.| 17.22 sec. 17.8 34.0

TABLE 4. Performance of the CYBER 205 and the VAX 11/780 for two
large eddy current problems.

12,513 variables

12,513 variables

19,716 variables

VAX 11/780 CYBER 205 CYBER 205

Mesh Gen. 4 Min. 57 Sec. 16 Sec. 28 Sec.
Elimination 12 Hrs. 20 Min.
Backsubstitut.

(one step} | 22 Min,
Backsubstit. *{ 8 Hrs. 48 Min.
Total 21 Hrs. 13 Min. 29 Min. 54 Sec. 66 Min. 16 Sec.
Clock Time Appr. 82 Hrs. 30 Min. 10 Sec. 66 Min. 44 Sec.

* 24 backsubstitution

backsubstitution steps.

steps. The third column includes 31

