Alternative approaches to the
numerical calculation of
impedance

N. Ida

In many practical applications of numerical analysis applied to low-frequency
electromagnetic problems, the desired output is often in terms of coil impedance.
The mesh variable calculated by the more commonly used numerical formulations is
the magnetic vector potential from which quantities like field intensities, eddy
currents and others are calculated. In nondestructive testing applications, the
quantity of interest is often the impedance of a coil or an array of coils. This paper
discusses the calculation of impedance as a post-processing computation and
introduces a new method of calculation of impedances and inductances based on
computation of energy in the finite element mesh. The results presented clearly
show the advantage of using direct integration methods for 2D and axisymmetric
geometries. The energy approach, while valid regardless of dimensionality, should
be restricted to 3D applications. Multiple-coil configurations in 3D applications
present a special problem in analysis. The total impedance or inductance can be
easily calculated but not independent coil or differential impedances. A method for
calculation of these quantities in 3D computations is also presented.
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three-dimensional applications

The use of auxiliary functions, vectors or scalars, to
simplify Maxwell’s equations is a widespread practice in
the numerical solution of electromagnetic field
problemsl'l. This also means that in most cases the
quantity of interest is not found directly and one has to
perform additional calculations to reach the final
result.

In particular, the magnetic vector potential is very popular
both in twol**l and three-dimensionall*-"l calculations,
yet it is of little practical use by itself. Although any
magnetic quantity is calculable from the magnetic vector
potential, one must be concerned with such consider-
ations as errors introduced due to additional calculations
and the relative merits of alternative formulations. It is
also possible that a particular approach will work well in
some situations and fail in others, or it may be suitable for
2D calculations but not for 3D applications.

A point in case is the calculation of NDT eddy current
probe impedances. The impedance can be calculated by
direct integration over the coils’ cross-sectional areas
directly from the distribution of the magnetic vector
potential. Alternatively, the stored and dissipated energy
in the system can be calculated first, and then the
impedance. Moreover, the first approach is only feasible
in 2D or axisymmetric applications. The energy approach
is more general and applicable to 3D problems as well.

Integrating the magnetic vector potential over a coil’s
cross section allows the calculation of impedances for

each part of a multiple-coil arrangement. Calculation of
energies can only be done for the whole system and only
the total impedance is calculable.

The impedance in 2D or axisymmetric problems solved
by finite elements is normally calculated on the basis of
direct (line) integration around the sourcel*-8l. It assumes,
implicitly, that the magnetic vector potential is constant in
the circumferential direction (ie for a coil) or along the
source (ie for a 2D source distribution). This method
cannot be extended to 3D applications. A new method is
therefore proposed based on calculation of the stored and
dissipated energies in the solution domain. From these
energies, the real and imaginary parts of the impedance
are then calculated.

This paper deals specifically with the calculation of coil
inductances and impedances as they relate to eddy
current NDT in axisymmetric and three-dimensional
applications. The two basic methods for calculation of
inductance (and therefore impedance) are evaluated first
for a simple coil in axisymmetric and three dimensions
and then for a differential eddy current probe. It is shown
that for axisymmetric applications either method is
satisfactory.

In 3D applications, however, the energy approach is a
necessity but has some restrictions in terms of range of
applications. The calculation of differential impedances
ofeddy current probes or the calculation of inductances or
impedances of part of a multiple system of coils presents a
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unique problem: one cannot associate part of the energy
with a particular coil or part of the sources. The only
quantity that can be obtained is the total (stored and
dissipated) energy. A method of solving this difficulty
under some circumstances and for the calculation of
differential probe impedances is also presented.

The results presented are compared with those of
analytical calculations wherever possible.

Field equations and calculation of the
magnetic vector potential

The field equations describing low-frequency electro-
magnetic phenomena are derived from Maxwell's
equations. The derivation is not repeated here, but it is
useful to look at the general, steady-state (linear or non-
linear) equations written using phasor notation for the
magnetic vector potential All;

Vx(@ v xXA) = Jj —jwoA 4]

where w is the angular frequency, o the material
conductivity and v = 1/u is the reluctivity of the material.
For isotropic materials and assuming linearity, the
general eddy current equation in phasor notation can be
simplified to

vV XVxA = J —jwoA 9]

Similarly, by removing the last term (the eddy current
term), one obtains the 3D magnetostatic equationl®l

VVXVXA = I 3)

Here A and J; are real vectors as compared to the complex
vectors in Equation (2).

In two-dimensional applications only one component of
the current density J; and the magnetic vector potential A
exist. This further simplifies the equationP-#l:
A azA)
| — + ——| =—IJ +jwoA 4
(axz ay2 s J ( )

The z component is taken for convenience. Using similar
arguments as for Equation (3), the 2D magnetostatic
equation is

%A %A
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Finally, in axisymmetric geometries, the eddy current and
magnetostatic equations arel®]
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Regardless of which of the above equations one solves, a
distribution of the magnetic vector potential is obtained
throughout the region. This distribution is defined by
nodal values of A in a mesh. These values can be either
complex (Equations (2), (4) and (6)) or real (Equations (3),
(5) and (7) and can have either a single component of A at
each node (Equations (4)-(7)) or three components
(Equations (2) and (3)).

For the purpose of this work it will be assumed that the
magnetic vector potential has been calculated using a
finite element mesh. The axisymmetric results presented
are based on the solution of Equation (6) or (7) in a
triangular or quadrilateral mesh. The three-dimensional
results are based on the solution of Equation (2) or (3) in
an eight-node hexahedral element mesh.

The equations above and the finite element formulation
in terms of the magnetic vector potential are assumed to
result in a unique solution for the magnetic vector
potential. Since this has a bearing on the calculations
presented in this work, a brief discussion of the unique-
ness aspect of the finite element formulations used is
included in the appendix.
Direct calculation of inductance and
impedance

The impedance of a circular filament of radius r; can be
calculated directly from the distribution of the magnetic
vector potentiall8);

Z; = jw2mriAfls ®

where I is the impressed current in the filament.
Integration of Equation (8) over the turns in the cross
section of a coil (or coils) yields the correct impedance.
The impedance, the current density and the magnetic
vector potential are complex quantities. The vector
notation for the magnetic vector potential has been
removed since in 2D geometries it is a single-component
vector. With discrete values of A, this simple scheme is not
possible and a somewhat different approach is required.
Considering first Figure 1a, the magnetic vector potential
within the cross section of the coil is known only at nine
discrete points. The simplest way to treat this problem is to
assume for each element an average 4. and r. These
values, known as the centroidal values, are calculated
either as a simple average within each element

Ac = (A +A5 +Ag)/3 )
re= (rp+ry+rg)/3 (10)
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Fig. 1 Discretization of the coil and calculation of centroidal values: (a)
triangular elements; (b) quadrilateral elements



or, with better accuracyl®l, as

4, = [112(A2+A,+A +(A1+AJ+AK)2)]°'5(11)

re =[11_2([rf+r}+r%{ +(rp +ry trg) )]0'5 12)

where I, J and K are the three nodes of an element.

If the finite element chosen is that of Figure 1b, these
simply become an average over four nodes:

Ac = (A1+A5 +Ag tA41)/4 (13)
Fe = (r1+rJ +rkg +rL)/4 (14)

Either way, if there are N, turns in the area defined by
element i and the area of this element is A;, one can write
for the impedance of a coil contained in element i as

Z; = jw2nre Ai(NsA)/I @as)

Summing this over all the elements in the coil’s cross
section, the impedance of the coil is obtained as

jw2nNg
i

n
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Since, in general, the turn density N; is not readily
calculable, one can write the impedance in terms of the
current density in the coils, J; (= N I):
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Similarly, for two coils connected differentially and
carrying opposite, equal currents, one obtains
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where 1, and ny, are the number of elements in the two
coils. The self-inductance of a single coil can be calculated
directly from Equation (17) as
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and the inductance of a differential probe as
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It is obvious that in magnetostatic situations the impe-
dance in Equations (17) and (18) reduces to the DC
resistance of the coil. This is, by definition of the finite
element model®-%], zero. The inductance, however, is
independentof frequency and Equations (19) and (20) still
hold. Re(4,,) is now replaced by 4, It is interesting to note
that an equ1valent in 2D to the coil geometry is a long
conductor or a system of conductors. Equation (17), for
example, becomes

_]wJ

Zcond =
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while Equation (19) becomes

n
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In these calculations the impedance or inductance is
calculated directly from the magnetic vector potential and
therefore no additional errors are introduced. Some errors
are inevitable in the calculation of 4. and r, as well as in
the calculation of A;, but these can be made smaller by
using a larger number of elements in the coil’s cross
section.

This approach is not suitable for 3D applications. In the
calculation of impedance using Equation (8), the mag-
netic vector potential has been implicitly assumed to be
constant along the circumference of the filament, as well
as having a single component in the direction of the
current. Neither of these assumptions is correct in 3D
geometries and therefore the impedance must be calcula-
ted from relations that are independent of local variations
in magnitude and direction of the magnetic vector
potential.

Calculation of inductances and impedances
from energy considerations

The impedance of a source can be calculated from the
energy of the system by associating its inductance with the
stored energy and its resistance with the dissipated energy.
Thus in Equation (1) the left-hand side represents the
stored energy in the magnetic field, while the second term
on the right-hand side is the eddy current density and
therefore represents the dissipated energy.

The stored energy can be expressed as a volume
integral:

W= ;_ f B-H dv (23)
4

Rewriting this in terms of the components of B alone and
assuming constant reluctivity in each spatial direction, the
energy stored in a finite element of volume v; can be
written asl*l

Wy = 5 0xB% +vy B} +v:BD)v; (24)



The flux density B is not known and has to be calculated
from A:
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Substituting this in Equation (24) and summing over all
the elements in the solution region yields the total stored
energy in the system:
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From this the inductance of the source, regardless of its
shape and distribution, can be written as

L = 2wI? @27

where [; is the current in the source (coil).

The calculation of the resistive part of the system is based
on the eddy current distribution. The dissipated energy in
a finite element isl”]

P; = vilJeil*|o (28)

Here J; is the resultant eddy current density in a finite
element and can be written as

Jei = —jwoAi (29)

where 4, is the centroidal value of the magnetic vector
potential and is calculated similarly to the 2D or
axisymmetric case. The element used here is an eight-
node brick and therefore the average is done over eight
values for each component of A and the resultant absolute
value of A is calculated. Thus substituting Equation (29)
into Equation (28) and summing over all the elements in
the finite element mesh yields the total dissipated
energy

N
P= i P = Z viow? [Agl? (30)
= :

i=1
The source resistance now becomes
R = P/I? @31)

and the source impedance can be written as

Z=R+jwl = 1—12- (P +jw2W) (32)

s

In the 3D magnetostatic case only the stored energy term
exists in the original equation and therefore only the
source inductance can be calculated. (The source resis-
tance is zero since it is assumed in the finite element
formulation that the source is perfectly conducting.)

The considerations above are equally applicable to two-
dimensional and axisymmetric problems. In 2D applica-
tions, assuming that the source current density is in the z
direction, only B, and B, exist in Equation (25):

04
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and Equation (26) can be written as
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without any change in Equation (30) other than the
calculation of 4; in an element with a different number of
nodes (Equation (9), (11) or (13)). In this equation A, is the
area of element / since the depth is assumed to be
unity.

In axisymmetric geometries the source is assumed to be in
the positive ¢ direction with field components in the » and
z directions. Thus Equation (25) becomesl’]
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Br=-5
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and, by introducing the volume as v; =
Equation (26) becomes
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where r; is the centroidal distance from the symmetry line
and is calculated using Equation (10) or (12).

21rrc,-A is
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Equation (30) remains unchanged other than the intro-
duction of v; above.

Thus the inductance of a coil or any other configuration of
sources can be calculated from the distribution of the
magnetic vector potential, regardless of the geometry and
source distribution. There are, however, three problems.
associated with this approach.

® The calculation of the reactive term requires space
differentiation of the magnetic vector potential. This is
by itself a simple task since it can be done in the finite
element program with little extra computational
effortl*]. The problem is one of accuracy, since differen-
tiation of an approximate solution may introduce
errors, especially if the discretization of the geometry is
relatively coarse. This, as will be shown later, is
especially important in 3D calculations. The calcula-
tion of the resistive part poses no such difficulty since it
is calculated directly from the magnetic vector
potential.
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Fig.3 Axisymmetric and 3D meshes used. The Inconel and tube regions are the same as in Figure 4. (a) Triangular element mesh (6000 elements, 3146
nodes); (b) Quadrilateral element mesh (3000 elements, 3146 nodes); (c) 3D hexahedral element mesh (1040 elements, 1346 nodes, 4092 variables)

Comparison of
elements

triangular and quadrilateral

In order to explore further the effect of the choice of
elements for the solution, the geometries shown in Table 2
were modelled using the finite element meshes in Figure 3.
The self-inductance of the coil is calculated, but, unlike
the results in Table 1, no analytical results exist except for
the first geometry which has already been discussed in the
previous paragraph. Considering first the results for the
direct calculation of self-inductance in columns 2 and 4,

the results for the quadrilateral element are consistently
higher by as much as 10% depending on the geometry.
(The error percentage shown in column 4 compares this
column to column 2).

The differences between calculating the inductance from
energy considerations or direct integration are small, as
indicated by the differences in columns 2 and 4. Again in
the triangular element case the errors are lower because
of the fact that the number of points at which the flux is
calculated is double that for the quadrilateral elements.



Table 1. Comparison of inductance of a coil in air with the theoretical value. All errors are with respect to the
analytical solution, and inductances are in mH
Analytic Triangular Quadrilateral 3D

Direct Energy Direct Energy Energy

0.757327 0.758028 0.761405 0.757120 0.705309

3.85% 3.76% 3.33% 3.87% 10.45% Eddy current
0.78764579

0.756447 0.755220 0.761084 0.755020 0.716817

3.96% 4.11% 3.37% 4.14% 8.99% Magnetostatic

Table 2. Comparison of inductances of various geometries. All errors are with respect to the second column

and inductances are in mH

Geometry Triangular Quadrilateral 3D
Direct Energy Direct Energy Energy
Coil in air 0.757327 0.758028 0.761405 0.757120 0.705309
0.09% 0.54% 0.56% 6.87%
0.349953 0.349641 0.353479 0.350610
W 0.09% 1.00% 0.80%
e 0.544888 0.544966 0.547199 0.543830
5 0.01% 0.42% 0.61%
% '
U 0.426203 0.426358 0.429755 0.426467 0.473780
N W 0.04% 0.83% 0.76% 11.16%

Thus again, although the solution in terms of the magnetic
vector potential is more accurate for the quadrilateral
elements, the error introduced by calculating the self-
inductance from energy considerations is lower in the
triangular element case.

The 3D resultin the last row is again within the same error
limits as for the coil in air, indicating a mesh that is too
coarse.

Calculation of differential impedances from energy
considerations

As discussed earlier, using energy considerations to
calculate inductances and impedances results in values
that do not reflect the actual source distribution. Thus, in
general, a differential eddy current probe cannot be
modelled using this method.

In the particular case where the two coils are identical and
linearity can be assumed, it is possible to derive the
differential impedance from that of a single-coil (absolute)
probe. The two coils in Figure 4 can be viewed as two
different positions of a single coil, since the conditions
around coil 2 are identical if coil 1 is moved to this
location. Thus, if the impedance of a coil is calculated to
correspond to the position of coil | and then, separately, to
coil 2, the differential impedance of the arrangement in
Figure 4 is the difference between the two impedances
calculated above. Performing such calculations only
requires the assumption of superposition, which is
implicit in a linear system.

In modelling NDT phenomena where an absolute or
differential eddy current probe is moved past a dis-
continuity, a relatively large number of probe positions
needs to be modelled. It is however sufficient to calculate
the impedance of an absolute probe and then, if necessary,
the differential impedance can be derived from the

impedance of the absolute probe.

To confirm this, the geometry in Figure 4 was modelled
using the meshes in Figure 3. It consists of an Inconel 600
tube (22.2 mm in diameter, 1.27 mm wall thickness) inside a
19.1 mm thick carbon steel plate with a gap of 0.38 mm
between the tube and the steel.

The impedance plane trajectory of this geometry is shown
in Figure 5a. It is a plot of 70 probe positions in the
complex plane and describes the probe movement from
some distance away to the middle of the steel plate.
(Because of symmetry about the centre of the plate, a
symmetric loop is described by moving the probe past the
steel plate to some distance away from the plate.) The
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Fig. 4 Geometry of steam generator testing problem including a differential
eddy current probe



Fig. 5 Impedance plane trajectories obtained from axisymmetric
calculations: (a) by modelling the differential eddy current proble; (b) by
subtracting appropriate absolute probe position impedances

same result can be obtained by calculating the impedance
of a single coil moving from the first position of coil 1 to
the last position of coil 2 in Figure 4. Thus by calculating
78 absolute probe positions and subtracting the appro-
priate impedances, the differential impedance is obtained
as

Zay = Zagi+s) — Za@i) (39)

The impedance calculated in this way is plotted in Figure
5b. The two trajectories are almost indistinguishable,
although differences of up to 0.8% exist in individual
probe position impedances.

This method allows the calculation of differential
impedances in 3D applications wusing energy
considerations.

Conclusions

Calculation of impedances or inductances of coils in
axisymmetric geometries can be done by direct integra-
tion over the coils’ cross sections or by calculating the
dissipated and stored energy in the solution region. Both
methods produce good results but, when energy consi-
derations are utilized, the calculated inductance or
impedance reflects the source as a whole and it is, in
general, impossible to calculate the impedance of a single
coil in a system of coils. In addition, the phase
information is lost and the need to calculate spatial
derivatives of the magnetic vector potential may introduce
additional errors, especially for coarse discretization.

Because of these difficulties, there is little or no incentive
to calculate inductances or impedances in axisymmetric
geometries from energy considerations.

The use of different elements like the four-node quadri-
lateral element can produce improved results in terms of
the magnetic vector potential but not necessarily in the
final result. When calculating impedances from the
magnetic vector potential, the number of elements in the
source cross section is of prime importance. Thus using a
large number of less sophisticated elements can produce
superior results for the same discretization levels.

In three-dimensional geometries the energy approach is

the only possible method of calculating inductances and
impedances. In linear problems it is also possible to
calculate the differential impedance of eddy current
probes from the impedance of a single coil. This is a
crucial point for the successful application of 3D
numerical models to NDT problems.

Appendix. A note on uniqueness of solution

The solutions of the 2D and axisymmetric equations in
(4)~(7) use the one-component magnetic vector potential
formulationsl'-*l. In all of these the Coulomb gauge is
used to arrive at the form givenl'l.

For 3D applications the divergence of the magnetic vector
potential is not necessarily zero and there is some doubt
whether the solution obtained through the magnetic
vector potential is unique.

There are two main methods of overcoming this difficulty,
short of explicity imposing a gauge:

® the use of a modified vector potentiall'o—2]
@ the use of isoparametric finite elements and properly
specified boundary conditionsl*’!

The second of these methods was used to produce the
results in this work and the first was used to verify the
uniqueness of the solution.

Isoparametric finite elements use product shape functions
which in turn guarantee that the magnetic vector potential
is uniquely interpolated to the boundaries of the mesh[!3],
This method will guarantee a unique solution provided
that the boundary conditions are specified correctly.

A different approach is to view the 3D field equations
(Equation (1) or (2)) as follows:

v VXVXA =-3A[dt -V ¢ (40)
By defining a modified vector potential

A* = A+fV odr 41)
this equation becomes

VVXVXA* = _g 0A*/ot (42)
or, for the steady-state excitation,

PVXVXA* = jwoA* 43)

where an implicit gauge V ¢A* = is satisfied.

This particular form of the equation is only valid in
conducting regions of the solution domain. In non-
conducting regions a magnetic scalar potential is used:

H=-Vvy 44)

and, from the divergence of B, the equation to be
solved is

Veuvy=o0 (45)

The solution for the magnetic vector and scalar potentials
must be matched on the interface between conducting and
non-conducting regions. Both the formulation and
boundary matching are described in detail
elsewherelto-11],



For the purpose of this work it is important to note that all
calculations in Equation (8)-(36) remain essentially the
same. The magnetic vector potential is replaced with A* in
conductors. The field in non-conducting regions is
calculated directly from the gradient of the magnetic
scalar potential in Equation (44).

As mentioned above, this method was used to verify the
results presented which were calculated using the
magnetic vector potential alone. Although one could
argue that the modified vector potential is a better choice
for general field problems, in 3D NDT applications it is
often necessary to describe complex, arbitrarily shaped
defects, thus complicating the interface conditions. The
vector potential is therefore used throughout the solution
region and the uniqueness is guaranteed through the
choice of element shape functions and boundary
conditions.
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