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Finally, uniform alignment of the axis of easy magnetiza-

tion, ultra fine grains, and an increase in the degree of ordering

are needed to achieve higher encrgy product and coercivity.

Both alloy chemistry and processing techniques limit the de-
velopment of these features.

V. CONCLUSION

Extruded Mn-Al-C magnets are fine grained, heavily twinned,
and contain a high density of dislocations and a dispersion of
AL, O,. Although some grains are disordered, no anti-phase
boundaries have been detected in the ordered L1, grains.

The effect of Ni addition on the structure-magnetic proper-
ties relation is established as follows: nickel helps in the devel-
opment of magnetic anisotropy during the deformation pro-
cess resulting in uniformly fine grains and a high density of
twins. Atomistically, nickel atoms couple ferromagnetically
with manganese atoms changing the local Mn atomic environ-
ment. All these account for the higher H, and (BH ),,ax values
for the Ni-containing Mn-Al-C magnet.
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3-D Finite Element Predictions of Magnetostatic
Leakage Fields |

NATHAN IDA anp WILLIAM LORD, SENIOR MEMBER, IEEE

Abstract—"Traditionally electromagnetic leakage fields have largely
been of interest to the designers of electrical machinery and magnetic
tape heads. An increasingly important application of such leakage fields,
however, relates to their use as a2 mechanism for the detection of defects
in ferromagnetic materials, The finite clement simulation of three-
dimensional active leakage fields is described, and the theoretical predic-
tions are compared with experimentally obtained leakage field profiles
for a rectangular slot in a carbon steel bar. Particular emphasis is placed
on techniques for determining boundary conditions and the appropriate
excitation current distribution in the bar.
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INTRODUCTION

EVELOPMENTS in the numerical analysis of low fre-
L/ quency eclectromagnetic phenomena have largely been
driven by the need to study the field distributions in electrical
machinery [1]-[3] and large magnet structures for fusion
applications [4]. During the past decade, parallel developments
have taken place in the modeling of electromagnetic phenom-
ena used for the nondestructive testing (NDT) of critical
metal structures in the aerospace, transportation energy, and
metals industries where reliability, safety, and product quality

considerations are important.
Analytical approaches to the modeling of electromagnetic
field/defect interactions have largely been unsuccessful due to

0018-9464/83/0900-2260801.00 © 1983 IEEE
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[}
both the awkward boundaries associated with realistic defect
shapes and the lack of generality that ensues when making
the necessary assumptions needed to obtain tractable analytical
solutions {5]. Viable models are needed in order to under-
stand the ways in which fields and defects interact to produce
measurable indications, to help in the design of detection
probes for diverse applications, to simulate those testing envi-
ronments which are difficult and/or expensive to replicate in
the laboratory and, perhaps most important in many of the
critical testing situations facing industries today, to provide
training data for automated defect characterization schemes.

To-date, two-dimensional and axisymmetric finite element
code has been utilized for the study of active, residual, and
eddy current NDT techniques [6].

Under active excitation conditions, a direct current is
applied to the ferromagnetic specimen setting up leakage fields
around surface and subsurface flaws which can then be detected
using any magnetic flux sensitive transducer such as a Hall
clement, moving coil, magnetic tape head, etc. [7]. Active
leakuge field profiles have been studied using conventional 2-D
magnetostatic finite element code taking into account the non-
lincar magnetization characteristics of the test specimen [8].
This work has led to the development of a defect characteriza-
tion algorithm capable of predicting the equivalent width,
depth, and inclination of surface defects in ferromagnetic test
specimens [97.

Analytically. such phenomena have largely been modeled
asing an equivalent dipole approximation {10]. Itis interesting
1o note that the equations derived for the dipole equivalent
of 4 rectangular slot are identical in form to those derived by
Karlquist [11] for predicting the leakage field of a magnetic
tape head. This paper is concerned with extending the 2-D
aotive leakage field modeling to the more important 3-D case
ind illustrates the procedure by considering the active leakage
field around a rectangular slot in a ferromagnetic bar. Particu-
lar emphasis is placed on determining the correct current
Jistribution around the rectangular slot before predicting the
cotresponding leakage ficld. In addition the 2-D code is used
to determine the approximate problem boundary conditions
before running the 3-D code.

ELECTROMAGNETIC F1ELD EQUATIONS

The relevant Maxwell equations, defining the magnetostatic
ficld ina regron with impressed current densities are given by

V-B =0 | (1)
UXH=J (2)
along with the constitutive relation
B=uH. 3)
introducing the magnetic vector potential A as
B=7XA ()

and by substituting (4) and (3) into (2) the magnetostatic ficld
equation is

TX T X A)] = (5
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where v is the reluctivity tensor in the three-dimensional
volume and J is the current density vector. The reluctivity
can be assumed to be single valued or different in each spatial
direction. Changes in material permeability can be modeled by
changing the reluctivity for neighboring elements but within
each element v is assumed to be constant. As the magnetic
vector potential 4 in (§) is not uniquely specified by the curl
equation (4) one may apply the Coulomb gauge V-4 =0
explicitly {12]. Although the Coulomb gauge is not enforced
explicitly in the present work, the zero divergence of the mag-
netic vector potential is ensured locally by the choice of
isoparametric finite elements and the choice of boundary
conditions [13].

THREE-DIMENSIONAL FINITE ELEMENT FORMULATION
AND DISCRETIZATION

The finite element method used here is based on a variational
formulation equivalent to (5) and the associated boundary
conditions. A suitable energy functional can be written as

F(A‘)=f {(3v(VXA) (VXA)-A4-T }dv. (6)
v

The stationary point of this functional is found by taking the
first variation with respect to each unknown and equating it to
zero

M(,Z):af {3v(VXA) (VXA)-A-T}Ydo=0.(7)
v

The volume of interest is now discretized into a number of
cight node hexahedral isoparametric clements. The magnetic
vector potential is approximated at each node in the volume by
a set of shape functions {12] N;:
k
A=Y N4,

i=1

(8)

where k is the number of nodal points in each finite clement.

Substituting (8) into the variational expression (7) and
taking this variation with respect to each unknown variable in
an element, one reaches the standard finite element equation
for an element

[k]e {A}vz - {Q}c =0 (9)

where [k], is a (24 X 24) elemental matrix, {4}, is the (24 X 1)
vector of unknowns for the element, and {Q}, is the (24 X 1)
source vector for the element. The entries in the elemental
matrix and source vector are calculated using an eight point
Gaussian quadrature. Each elemental equation is then summed
into a global matrix of the form

(k1{4}-{Q}=0 (10)
where [k] is the [3V X 3N7] global matrix, {4} is the (3N X 1)
unknown vector, {Q} is the (3N X 1) global source vector, and
N is the number of nodal points in the solution region. The
next step is the application of the boundary conditions to
the global system of equations and selution using Gaussian
elimination.
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3

The system of (1) is too large to be stored in a computer’s

memory for any realistic problem, therefore, a frontal method

[14], [15] of assembly and elimination has been adopted,
rather than the more common in core, banded solution.

CURRENT DENSITY DISTRIBUTION

In many magnetostatic applications the current density
distribution is either known exactly or can be assumed to have
~a simple approximate distribution. In calculation of leakage
ficlds around two-dimensional slots the current density has
only once component in the z direction and is assumed to be
uniform everywlere in the current carrying region [16]. In
other cases the current density can be approximated in a simple
manner such as flow in current sheets [17].

In the calculation of leakage fields around three-dimensional
defects, no simplifying assumptions can be made as the very
existence of such fields is a result of the three-dimensional
distributiongof the currents around the defects. In addition
defects have'“irregular boundaries, making the calculation of
three compopents of the current density vector impossible
cother than numerical means. In this work the three-
dimensional ‘current distribution is calculated by numerically
solving Laplace’s équaition for the electric scalar potential in
the current carrying region,

For a source free region the potential distribution can be
caleulated from Laplace’s equation in three-dimensions, for
the electric scalar potential

Vig=0

(1)

provided the correct boundary conditions are known. Within
the conducting region, for which the current density distribu-
tion is sought the following equation applies

J =-07¢ (12)

where g is the conductivity tensor. As for the reluctivity tensor
in (5), this:can be either single valued in the whole conducting
region or differ from element to element and can be different
in each spatial direction. In this application Ox, 0y,and g, are
not used explicitly but are assumed to be single valued in the
whole conducting region. Equation (11) is solved using a
finite element formulation in a form similar to that described
above. Itis, however,simpler in that the resulting global matrix
is symmetric and only one scalar unknown is calculated at
each node of the discretized volume. Only the current carrying
region need be discretized but within this region the elements
must correspond identically to the clements in the same region
in the finite element discretization of the whole region. This
is important since from (12) the current density components
are calculated at the centroid of the element and assumed to
be constant throughout each element. When introduced in the
finite element solution, lhc‘boundury of corresponding current
carrying elements must match exactly. This requiicnlent is
assured by simply using the sume mesh data for both the current
distribution and the magnetic vector potential calculations.
The solution of (11) using the finite element method is stan-

dard and the only complication that can arise is the specifica- ‘
- density exist in the vicinity of the slot. An added benefit of

tion of the boundary conditions for the electric scalar potential.
In the case of w slot in a current carrying bar this is simplified
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Fig. 1. Bar geometry and boundary conditions for current density
calculations.

Fi'g.'2. Constant potential plot on a plane through slot.

by the fact that away from the slot boundaries the curtent
density is uniform and has only one component (Fig. 1).. At
these boundaries, the boundary conditions are specified aé oy
and ¢, being sct arbitrarily to ¢ = 1V on the plane z =2z¢ and
¢ =0V on the plane z=0. From this the distribution of|the
potential is calculated and an arbitrary electric field intensity
distribution is calculated as E = -~ V¢. From this the correct
current density is found by normalizing these values with
respect to the electric field intensity component in the uniform
distribution region and multiplying by the impressed current
density o
_ E . |
J = — J() 13}
z0
where £, is the z component of the calculated electric field
intensity at the boundary (actually at the centroid of any of
the elements in the first layer, at the boundary), and J, is|the
uniform impressed current density. Both £ and Jy have only
a z component at the boundary.} ‘
This method avoids both the need to specify exact boundary
conditions and the error associated with the specification of
the conductivity which is not always known or not knawn
exactly. However, it is implied that the conductivity is si gle
valued everywhere in the conductor and, therefore, spatial
variations in ¢ cannot be accommodated. If this is desired the
current densities can be calculated directly from (12). \ ‘
As the geometry of the bar to be studied is symmetric, only

one quadrant of it need be modeled as shown in Fig. 1. Fig. 2

is a plot of constant potential lines at a cross sectional plane
through the bar and slot at x=0. The current is normal
(;,'yerywhe"re to these lines. Table I gives a summary of maxi-
mum, minimum, and nominal (uniform) values of current
d@nsity components. This table clearly shows the importance
of current density calculations singe large variations in current.

the method described above is that by inspection of potential
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TABLE T
Mixisus, MAXIMUM, AND NaMiNal CuRRENT DENSITY
COMPONENTS (A m?)

Nominal

Minimum Maximum (Uniform Distribution)

A~
=

-3998.27 29 886.9 0
Jy -22066.2 1383.53 0
Ja 91633.0 155 976.4 124 000.0

plots as in Fig. 2 it is possible to decide on the distance away
from the slot that the boundaries in the z direction should be
placed without having to go through the expensive procedure
of boundary perturbation. It also shows that uniform distribu-
tion exists very' kldse to the slot boundaries.and it is only
necessary to discretize a small length of the bar for the 3-D
solution. | ‘

The current density values are now incorporated in the 3-D
finite element procedure as input, along with the mesh and
material properties data.

BoUNDARY CONDITIONS

The boundary conditions are specified in terms of the com-
ponents of the magnetic vector potential. Fig: 3 summarizes
these conditions.  On the outer boundaries, at x =x, and
v =1o. the components of the magnetic vector potential are
set to zero as these are assumed to be remote enough from the
bar so as to have. negligible flux densities in all three spatial
directions. These boundary conditions are applied at a distance
2.5 times larger than the size of the bar, a figure obtained from
two-dimensional numerical experiments with a similar problem
(identical current density but two-dimensional slot). The
boundaries at x =0 and y =0 are symmetry planes, therefore,
these are left as open boundaries. At z =0 and z =z, the im-
pressed current crosses the boundarics and there the boundary
conditions are specified explicitly in terms of the components
o the magnetic vector potential. As pointed out earlier, the
magnetic vector potential has only a z component at these
boundaries, thercfore, it is equivalent to an infinite bar with
uniform current density flowing in the z direction, i.e.,a simple
two-dimensional situation. The values of 4, are calculated
using a 2-D finite element program [18], while 4, and A, are
set to zero. These are then entered in the finite element pro-
cedure as boundary conditions on the planes z =0 and z = z,.

RESULTS
The method described above was applied to a steel bar with
a slot § in deep, & in wide, and 4 in long, and the results com-

pared with measured data. The bar was 13 X 1§ in and very .

long to ensure uniform current distribution in the measure-
ment. Fig. 4 is a block diagram of the experimental setup used
to measure flux density profiles. For the finite element
modeling a section two inches long was used. The cyrrent
through the bar for both the experimental setup and the finite
element solution was 125 A which resulted in a current density
of 124 000 A/m? in the uniform distribution region of the bar.
The solution region was divided into 1000 hexahedral isopara-
metric elements with a total of 1331 nodes and 3993 variables.
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Fig. 3. Boundary conditions.
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Fig. 4. Experimental setup for leakage field profile measurements.

The solution time for this problem was about S—;— h of CRU
time on a VAX 11/780. From the finite element solution pf
(10) the components of the magnetic vector potential are
found at the nodes in the solution region. From the magnetic
vector potential, the components of the flux density are calcu-
lated using (4). Again, as in the case of current density distribu-
tion, the flux density components are assumed to be unifor
within an element. These components are calculated at the
centroid of the element as a simple average of the nodal flux
densities. In order to compare ‘the calculated flux densities
with measured values “leakage field profiles” were calculated:
at cross sectibnal x-y planes at a lift-off of 0.010 in above the
bar surface. Similarly, measurements were taken by scanning
the bar with a Hall element at the same lift-off and cross
sections as for the calculated profiles. These are compared
in Fig. § for thé normal component (y direction) of the flux
density at five different cross sections as indicated in Fig. 5(a).
Only a few profiles are actually ‘compared in Fig. 5§ becauge
of limitations in the mesh size that can be accommodated o

the available computer. These, however, are part of a complete
profile of the leakage field of the slo;t. Using the experimenta]
setup the bar was scanned at sho:t intervals and the Hall e]
mth output digitized and displayed (after proper scaling an
rotation) to produce a ¢omplégc 'three-dimensional leakag
field profile as in Fig. 6. The marked curves indicate th)
individual scans (profiles) corresponding to the calculated leak.

age profiles in Fig. 5(a). ’
The numerical results presented in Fig. S(a) are in goo#
agreement with the experimental measurements. The maxi-
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Fig. 6. Three-dimensional leakage field profile of slot. Marked contours
correspond to calculated profiles in Fig. S(a).

mum error in the flux densities is about 9 percent in the slot
region. This error is believed to be mainly due to measure-
ment errors, inaccurate machining of the slot and positioning
of the Hall probe. This assumption is supported by the fact
that the maximum error in the magnetic vector potential
compared to a two-dimensional calculation at a cut section
through the middle of the slot was only 2.5 percent. Another
possible source of error, besides the numerical error is due to
partial cancellation of components of the flux density which
occur in the calculation process [13].

CONCLUSION ;
The method presented here is capable of predicting leakage
fields of defects regardless of their shape or location. Impor-

tant parameters such as variations in conductivities and perme-
abilities in the vicinity of defects can be incorporated directly.
The accuracy of the numerical process is very good considering
the relatively coarse discretization and can be improved by
mesh refinement. Finite element analysis is developing into a
powerful tool for defect characterization capable of providing
not only such important information as lcakage field profiles
for irregular and subsurface defects but also training data from
defects and material conditions which are impossible or not
practical to manufacture or to measure. 4
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