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ABSTRACT: Two different ‘a posteriori’ error estimation techniques are proposed in this paper. The effec-
tiveness of the error estimates in adaptive mesh refinement for 2D and 3D electrostatic problems are also
analyzed with numerical test results. The post-processing method employs an improved solution to estimate
the error, whereas the gradient of field method utilizes the gradient of the field solution for estimating the
‘a posterior’ error. The gradient of field method is computationaily inexpensive, ‘since it solves a local
problem on a patch of elements. The error estimates are tested by solving a set of self-adjoint boundary
value problems in 2D and 3D using a hierarchical minimal tree based mesh refinement algorithm. The
numerical test results and the performance evaluation establish the effectiveness of the proposed error
estimates for adaptive mesh refinement.

I INTRODUCTION

The most crucial part of an adaptive FE computation is the availability of an efficient
and reliable error estimation technique to predict accurately the error in the solution.
In order to improve the solution accuracy it is necessary to identify the inherent error
involved in the discretization process of a FE method. Many heuristic error estimation
strategies have been proposed in the past. Error estimates can be broadly clasified into
two viz, ‘a posterior’ and ‘a priori’. Most of the practically usable error estimates are
of an ‘a posterior’ type. It is very difficult to estimate the quantity and quality of errors
‘a priori’. This is due to the fact that the information available before the solution pro-
cess may be insufficient to accurately estimate the error.

An ‘a posteriori’ etror estimation provides two vital parameters viz, error indicator
and error estimator. An error indicator is a value in some norm which identifies the
elements having the largest errors for mesh refinement. On the other hand an error
estimator is a global measure of error acting as a stopping criterion to determine the
level of refinement necessary to achieve the desired solution accuracy. It is computed
from the error indicator and the local error information through the summable squares
of an appropriate norm.

A posteriori error indicators provide not only information on the quality and quan-
tity of error distribution but also provide means for practical mesh optimization. In
order to compute efficient and reliable error bounds, an ‘a posterior? error estimate
uses all the information available during the solution process. ¢ ‘a posteriori error
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estimates bound the true error by approximating the error in the solution. Most erroj
estimates provide an asymptotic rate of convergence as the mesh size is reducec
(Amax — 0) or the degrees of the approximating polynomial (p = o) is increased. A
good error indicator will be able to locate exactly the regions of the problem domair
which need more refinement to reduce the error. It controls the adaptive process in
order to generate nearly optimal meshes. In an optimal mesh the error is equi-
distributed among all the elements and all the error indicators will be asymptotically
equal. )

An efficient error indicator should be computationally inexpensive and should be
simple to implement. Also it should be reliable and must be independent of the type
and class of problems solved. An error estimate should also operate uniformly on dif-
ferent material types. In addition to controlling the mesh adaptation, an error indicator
should help to assess the reliability of the method employed.

Many strategies utilizing the residual as the primary field quantity for error estima-
tion are available [1-6]. These are based on the fact that the insufficient satisfaction
of the governing differential equation leads to estimation of errors in the solution. This
has been a successful error estimation technique in many problems in structural
mechanics, fluid dynamics and electromagnetics. In particular, in linear elliptic boun-
dary value problems employing odd degree polynomial approximation, by minimizing
the residual, it is possible to achieve a faster rate of convergence. The post-processing
method of error estimation employs the solution function, its derivatives or both to
estimate the error. This strategy has also been widely used for adaptive FE application
in fluid flow problems, structural dynamics and electromagnetics [7-11]. The dual
energy method involves solving primal and dual problems providing an energy bound
for the solution error. Although the method is computationally very expensive it has
been applied to solve many adaptive problems in structural engineering and electro-
magnetics [12-14]. Other types of ‘a posteriori’ error estimation procedures utilize the
characteristics and continuity conditions of the field parameters to estimate the error.

The efficiency of ‘a posterior? error estimates depends on the availability of reliable
information. Since an adaptive FE mesh is an optimal feedback procedure, the error
estimate should introduce as few degrees of freedom as possible during the mesh refine-
ment. Another important aspect of error estimation is that it should provide an effi-
cient smoothing of the solution in the vicinity or at points of singularity. Singularities
may be divided into two categories viz, geometrical singularities and problem
singularities. Geometric singularities include sharp bends, re-entrant corners and
curved boundaries and the natural problem singularities involve irregular and abrupt
variation of the solution due to shocks.

Two ‘a posterior? error estimation schemes are discussed in this paper. In the first
method, solutions obtained for two successive adaptive meshes along with interpola-
tion are used to compute the error. In the second method the error is computed as
the gradient of the solution by solving a local problem. The effectiveness of the two
error estimates are verified by solving electrostatic problems in 2D and 3D. The paper
is organized as follows. In the first part of the paper, the methodology and theory
employed to compute the ‘e posterior? error using post-processing and gradient of
field method of error estimation is presented. The numerical case studies and the
performance evaluation of both error estimators are analyzed in the second part of
the paper.
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A Error analysis

In order to assess the efficiency and reliability of an error estimation technique, it is
necessary to provide a detailed mathematical study and analysis of errors and error
measures. To establish a mathematical analysis, we define an abstract boundary value
problem for a weak Galerkin formulation in 2D and 3D as follows,

Let @ be a smooth bounded domain Q C R" where n =2, 3 with boundary
'=dd=T,UT, consisting of two disjoint sections I'y and I', such that 'y N T, = ¢
on whig:_h we seek to find the solution ¢, then the problem is,

A =finQ

¢=¢,0nT,

@

— r

9, ~8onT. ¢))

Assuming that the solution @ lies in the Sobolev space H'(Q) and let V(Q) be the
corresponding Hilbert space containing all the admissible finite dimensional subspaces
of the trial functions used to approximate the solution. Associating a bilinear coercive
and continuous form B(.,.), it is possible to prove that this class of linear self adjoint
positive definite problems satisfies the consistency conditions and the convergence
theorem. This establishes the uniqueness and existence of the solution to this class of
problems [15-16]. The satisfaction of the consistency condition is necessary for verify-
ing the effectiveness of the error estimate. This is due to the fact that the approximate
solution of a FE method converges to a true solution in the sense of a global energy
in some norm. As the solution converges, the error in the solution also converges to
_the true error in some norm measured as a local quantity of error.

The basic theory of FE approximation is based on satisfying the consistency condi-
tions such as completeness and continuity of solutions. The well-posedness of a pro-
blem involving the existence and uniqueness of an exact and approximate solution and
the guarantee of convergence allows estimation of the error in a more reliable way.
This leads to the application of a rigorous mathematical and functional analysis to
the error estimation and application of these techniques to automatic adaptive FE
methods.

All elliptic boundary value problems possessing the property of linear self-adjoint
positive definiteness should satisfy the following set of consistency conditions in order
to achieve an asymptotic convergence of the solution:

e For a well-posed problem:
- The problem has a solution (existence).
- Exact and approximate solutions to the problem exist (uniqueness property).

¢ The solution should vary continuously as a function of input variables.

¢ For a linear self adjoint positive definite differential operator, trial functions should
satisfy the appropriate completeness and continuity conditions to ensure that a
sequence of approximate solutions converge to an exact solution.
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I POST-PROCESSING AND INTERPOLATION METHOD OF ERROR
ESTIMATION

Computing the post-processed field quantities from an approximated solution is simple
and inexpensive in most cases. The post-processed data may be an improved version
of the solution, the gradient of the solution or the higher order derivatives. Based on
the rapid convergence effect of the solution at some special points in the mesh com-
pared to other points, superconvergent techniques have been developed for estimating
the error [7-9]. Post-processing techniques involve methods such as the use of
numerical quadrature points to compute certain field quantities, averaging or smooth-
ing procedures based on projection techniques, extraction procedures and iterative
refinement methods.

In the proposed post-processing technique, the improved solution is used for error
estimation. In this approach, the local error on each element is computed as the dif-
ference between the approximated solutions from two consecutive adaptive meshes
using a mesh halving procedure. The method can be mathematically represented as
follows,

Let M;(Q) and M;(Q) be the two successive admissible adaptive meshes. Mesh M;(Q)
is the superset of mesh M;(Q) such that M;(Q) C M;(Q2) and M;(Q) is halved to
generate mesh M;(Q) i.e each element (quadrilateral in 2D and hexahedral in 3D) is
divided into four elements in 2D and eight elements in 3D. The solution at each mid
edge of the element in the unrefined mesh M,(Q) is interpolated using the original
solution and the interpolated new solution is obtained as ®;. The improved solution
is obtained by using the refined mesh M;(Q). Since the solution at each node
including the interpolated node in the first mesh M;(Q) is solved using the refined
mesh, the solution &; will obviously be an improved solution for the corresponding
element.

The absolute error e is computed from the difference between the two solutions ¢,
and ®;. The absolute error on each element will not indicate to what extent the
approximated solution deviates from the exact solution in the sense of a global con-
vergence and so it is necessary to use some suitable norms to measure the error. Since
the approximated solution converges to the true solution in the global energy sense,
the use of an energy norm is more appropriate and natural. Although different norms
to measure the deviation of the approximated solution from the actual solution can
be used, the L, norm has an advantage in that it can be associated with any quantity.
An L, norm is a dimensionless scalar quantity and can be used to represent the error
in the energy of the system.

A Error measures

The following are the different error measures used in the post-processing error estima-
tion. The computed absolute error is e = |$,, — &;| where ®,, and &, are exact and
approximate solutions respectively. Using the L, norm, the error in each element can
be represented as follows:

o)
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The relative percentage error for each element in L, norm is,
7 = {|le}}/|| @l } *100% 3

Adding the error and the approximate solution, the relative percentage error in each
element is,

n = (led/ (|2l + [el)* }*100% @)

The relative percentage error 7; is used as.the local elementwise error. indicator .to..
identify elements having large errors. Using the global measure of error e, the
estimator in relative percentage error can be computed as follows:

tebo= {5 tell) ®

N $
7= {Ile."L,/ [Zl lel? + lle ,,,2] }*100% (6)

The refinement criterion is fixed using the elementwise relative percentage error and
the error estimator . An element is marked for refinement whenever u; = nr. This
relationship is based on the fact that an element with a large local error will contribute
more to the global error than an element with small error. The overall accuracy of
the solution is determined by the error estimator. The stopping criterion for the mesh
is based on the global relative percentage error compared to the specified global relative
percentage error 7,. The mesh refinement continues as long as 97 = ;.

III GRADIENT OF FIELD METHOD OF ERROR ESTIMATION

In a singular region of a problem domain, one cannot expect to have a very smooth
solution. Naturally the gradient of the field or flux will be highest at the singular
regions of the problem where the rate of variation of the solution is larger than other
regions. This is the basic idea behind the gradient of field error estimate. The improved
gradient of the solution is computed by solving a local problem on a patch of elements
forming a subdomain connected to each node of the element in question. The patch
contains all the elements connected to each of the nodes under consideration. The error
in the gradient is computed as the difference between the gradient from the local prob-
lem and the gradient of the original solution. The gradient itself or the error in the
gradient can be used as a criterion for the local as well as global error estimation. The
error in the gradient of a particular element acts as a good error indicator for identify-
ing elements for refinement. The global error estimator is computed using the element-
wise local error indicator. The mathematical derivation of the gradient of field error
estimate is as follows,

Let g, and g be the gradient in the exact solution &, and the approximated solution
& respectively and let e, be the error in the gradient, i.e ¢, = |g — g.|. Let  be the
gradient of the solution on an element computed from the local problem employing
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the same approximation function which is used to approximate the solution ¢. In the
case of a linear first order approximation, the derivative or the gradient of the solution
g must be constant in a given element. Because g is discontinuous across neighboring
elements it is a poor approximation to the true value of the gradient g,,. To improve
the approximation of the true gradient value, the gradient at each nodal point g is com-
puted using the local problem formulation. The local problem involves finding the
improved gradient by means of an averaging technique. This is based on the fact that
nodal values are heavily influenced by changes in the field quantities of neighboring
elements. A simple averaging technique is used to implement the error estimator in
the proposed method. This. method is simple and easy to implement, and is computa-
tionally inexpensive compared to other methods.

Let g, = V&, and g = V¢ and so the true error in the gradient is ¢, = |V$,, — V®|.
Let g, and g, be the x and y components of the nodal derivatives of the solution com-
puted from the local problem. Using the same approximation function the x and y
component of the improved gradient can be interpolated for the element:

&, = Ng, and §y=Ngy )

Now the improved gradient is & = {2} + gz}%. The error in the gradient is
represented as follows,

1
e‘= [[gx—gx]2+ [gy_gylziz (8)
and this can be explained as follows,
e, = {(eg) T(ep) + (ev)r(ev)}z where e, = |g; — & and €y = lgy - gyl (&)

The elementwise gradient error (local) in L, norm can be computed using the above
result as,

leedl® =, (ep) () + ()7 (eg) Va2 (10)

The global error norm of the gradient is,

y :
lealin = {3 e} an

Using the total and exact gradient error, the global relative percentage error can be
computed as,

11 = {{legll/lgec} *100% (12)

For most problems, it is difficult to find the actual solution. Hence by adding the error
to the approximate solution an improved solution which is close enough to a true solu-
tion can be obtained. Using the computed gradient from the local error problem, the
actual gradient may be approximated by adding the error in the gradient with the
values of the computed gradient. Then the relative percentage error can be written as,
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~ ;
= {leclis | 3 Tl + el 100m @

Where [lgfl..? = | g0 and gdlf =~ led? + el i = 1N

By using a specified maximum allowable relative percentage error 7, it is possible to
establish a relation between the computed relative error and the specified error. This
empirical relation can be used as an error indicator for mesh refinement. The element
will be refined whenever u; = 57. In this case, the global relative error 5, helps to
meet the user specified error tolerance and is useful in deciding the level of refinement
necessary whereas the local relative error in some elements may be very high. Under
these conditions it becomes necessary to adjust the maximum allowable error in an
element using the following equation,

~ .
leah = 7e]{ 35 le + el /| = a9

Now a more reliable error criterion for elementwise refinement can be obtained as
follows,

ri — "ee!i "Lz (,.5)

a

Using the above error measure, it is possible to identify the elements for refinement.
For {; < 1 larger elements can be used for refinement since the allowable maximum
error is larger and for {; > 1 smaller elements need be utilized for refinement. Using
the size of the current element and the values of the refinement ratio {;, it is possible
to determine the size of an element to be refined.

IV NUMERICAL TEST RESULTS AND PERFORMANCE ANALYSIS OF
ERROR ESTIMATES

The above error estimates are applied on a linear self adjoint boundary value problem
in 2D and an electrostatic problem in 3D. The 2D problem is a common L-shaped
domain with a corner singularity in the form of r sin20 where r and 6 are polar
coordinates. The presence of this corner singularity influences the convergence rate of
the solution. Due to the pollution effect of this singularity, it will introduce error in
the solution in other regions of the domain. In order to reduce this effect, elements
around the corner must be refined more than in other regions. In this investigation,
the error estimate is applied and a hierarchical tree based data structure with a one-level
rule is used for mesh refinement [17]. The mesh refinement algorithm generates a
smooth mesh which has a gradual transition from fine mesh near the re-entrant corner
to a coarse mesh of larger elements away from the singular region. The refinement
was initiated with an initial coarse mesh of 12 first order quadrilateral elements. Figure 1
shows the L-shaped domain with appropriate boundary conditions. Figure 2 and
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Figure 1 L-Shaped Domain.

Figure 3 show the sequence of adaptive meshes and the corresponding equi-potential
plots of the solution for the post-processing error estimate. Figure 4 shows the con-
vergence plot indicating the relation between the relative percentage error and the
number of degrees of freedom.

The post-processing error estimate generates a nearly optimal mesh. As shown in
Figure 2(d) the solution converges in the fourth level of refinement with 306 elements
having 369 degrees of freedom. The corresponding contour plot in Figure 3(d) shows
a smooth curve which is an indication of the convergence of the solution to the required
accuracy. The interpretation of the optimal quality of the solution is also verified by
the error convergence plot shown in Figure 4. The numerical test results for the post-
processing error estimate are presented in Table 1. The above results show that the
mesh is nearly optimal at this refinement level. For the purpose of verification and
for the sake of completeness, additional levels of refinement were added and the adap-
tive meshes and the corresponding solution plots are also shown. The gradient of field
method is tested on the same problem. The sequence of adaptive meshes and the
corresponding equi-potential contour plots are presented in the Figure 5 and Figure 6
respectively. Table 2 shows the numerical test results for the gradient of field method
of error estimation. Almost the same level of solution accuracy is achieved for this
problem using the gradient of field method of error estimation with only 126 elements
and 167 degrees of freedom in the fourth level of mesh refinement. A nearly optimal
mesh is obtained with fewer degrees of freedom compared to the post-processing
method. As can be seen from the adaptive meshes in Figure 5, the refinement is
mostly concentrated near the re-entrant corner as expected. The adaptive mesh and
the corresponding flux plots show the superior performance of this method over the
post-processing approach. Figure 7 shows the asymptotic convergence plot of global
effectivity indices for post-processing and gradient error estimates. The asymptotic
convergence plot indicates that the post-processing method under estimates the error
in the solution whereas the gradient of field method over estimates the error. Since
effectivity index is a good measure of error leading to the convergence of the solution
an asymptotic convergence helps establish the reliability of the method employed.
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Figure 2 Sequence of Adaptive Meshes on an L Shaped Domain (Post-Processing Error Estimate).
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Figure 3 Sequence of Adaptive Contour Plots on an L Shaped Domain (Post-Processing Error Estimation
Method).
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Table 1 Numerical Test data for Post-processing Error Estimate
Mesh No. of Max. Global Global Global
number elements relative relative energy effectivity
error % error norm fefl index

1 21 17.925 6.8762 15.634 0.8208
2 48 15.8911 5.0606 11.8287 0.8535
3 120 9.7408 2.2487 6.9199 0.8813
4 306 7.0493 0.2047 0.8497 0.9104
5 534 7.0422 0.1548 0.6392 0.9727
6 891 7.0424 0.1233 0.5085 0.9817
7 1491 7.0401 0.0988 0.4244 0.9999

Table 2 Numerical Test data for Gradient of field Error Estimate

Mesh No. of No. of Global

number elements nodes effectivity
index

1 21 34 1.0867

2 30 47 1.1384

3 39 60 1.1676

4 126 167 0.9997

5 192 245 0.9998

6 309 378 0.9996

7 489 578 0.9998

8 759 872 0.9999




150 K.C. Chellamuthu and N. Ida: ‘A posteriori’ error indicator and error estimators

1 ] 11 H3H
HH % 1 n
B
Coarsc Mesh - 12 Elements Level I - 30 Elements Level OI - 39 Elements Lf:vcl IV - 126 Elemenis
Figue - Sa Figure - 5b Figure - Sc Figure - 5d
mi
1 T
Level V — 192 Elements Level V1 - 309 Elements
Figure - Se Figure - Sf
e ] AREBERANS
] ]
- y4—1 M4 .
s
HH
Level VII - 489 Elements Level YOI - 759 Elements
Figure - Sg Figure - Sh

Figure § Sequence of Adaptive Meshes on an L Shaped Domain (Gradient Error Estimation Method).



K.C. Chellamuthu and N. Ida: ‘A posteriori’ error indicator and error estimators

=

Coarsec Mcsh ~ 12 Elements
Figure - 6a

ﬁ\
W
Level OI - 39 Elements
Figure - 6¢

Level V - 192 Elements
Figue - 6¢

\

Level VII - 489 Elements
Figure - 6g

~\

|

Level O - 30 Elements
Figure -  6b

Level IV - 126 Elements

—— \.

Figure - 6d
Level VI - 309 Elements
Figure - 6f

1

Level VIII — 759 Elements
Figure = 7.6h

Figure 6 Sequence of Adaptive Solution Plots on an L Shaped Domain (Gradient Error Estimation Method).
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Figure 7 Asymptotic Convergence Plot of Effectivity Index.

V PERFORMANCE ANALYSIS OF ERROR ESTIMATES

The gradient of field error estimate generates a mesh following the one-level rule of
adaptive mesh refinement algorithm. The mesh has a gradual transition from the
singular region to the nonsingular region of the domain. The performance of the error
indicator to refine the local elements based on the estimated error indicates that most
elements with large errors in the singular regions are refined. In order to generate a
graded mesh, the adjacent neighboring elements are also refined following the one-
level rule. The algorithm along with the error indicator generates a geometrically
graded mesh towards the singularity. Additional number of adaptive mesh sequences
shown in the figures indicate that after obtaining the nearly optimal mesh, the errors
are equi-distributed and further refinement will not contribute a significant improve-
ment in the solution accuracy.

The post-processing and gradient of field error estimates are also applied to solve
3D electrostatic problems with two different geometries. The first problem involves
finding the potential distribution inside a cube and the second problem is a 3D version
of the L-section problem. The first problem was initiated with a coarse mesh of
2 x 2 x 2 elements in a cube of 1 X 1 X 1 units dimension with conducting boun-
daries. The mesh refinement algorithm in [17] employs first order isoparametric hex-
ahedral elements. The sequence of adaptive meshes are shown in Figure 8 for the
post-processing error estimate and in Figure 9 for the gradient of field method of error
estimate. Since the post-processing error estimate provides a very slow rate of con-
vergence of the approximate solution to the true solution, a larger number of degrees
of freedom are required to achieve the needed accuracy in the solution.

Due to the imposed Dirichlet boundary condition on the upper plane of the cube,
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Figure - 8b I — Level Mesh with 84 Nodes

Figurc — 82 Coarse Mesh — 27 Nodes

Figure — 8d IIT - Level Mesh with 898 Nodes

Figure — 8¢ I - Level Mesh with 252 Nodes

Figure 8 Sequence of 3D Adaptive Meshes for a Cube (Post-Processing Error Estimation Method).

Level Mesh with 84 Nodes

Figure-9b I-

Figure - 9a Coarse Mesh — 27 Nodes

Figure — 9d III - Level Mesh with 853 Nodes

Figure - 9¢ II - Level Mesh with 277 Nodes

Figure 9 Sequence of 3D Adaptive Meshes for a Cube (Gradient Error Estimation Method).
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Figure 10 Sequence of Adaptive Meshes on a 3D L-Shaped Domain (Post-Processing Error Estimation
Method).
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Figure — 11a Coarse Mesh ~ 16 Nodes Figure - 11b I - Level Mesh with 63 Nodes
Figure — 11¢ II - Level Mesh with 144 Nodes Figure - 11d III - Level Mesh with 582 Nodes

Figure 11 Sequence of Adaptive Meshes on a 3D L-Shaped Domain (Gradient Error Estimation Method).
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there is a discontinuity which introduces more errors in the potential near the boundary
than the other regions of the domain. As expected there are more refinements in the
upper plane compared to other parts of the geometry. In the third level of refinement,
the number of degrees of freedom is 898. However when the same problem was solved
using the gradient of field method of error estimate, the corresponding level of
accuracy was reached with 484 elements having 853 degrees of freedom for the same
level of refinement. From the numerical results of the 3D problem, it can be concluded
that the performance of the gradient of field method is better compared to the post-
processing error estimate. _ o

Both error estimates are also applied on a 3D L-section problem by imposing appro-
priate Dirichlet and Neumann boundary conditions. The corresponding adaptive
meshes for the post-processing and the gradient of field methods are shown in Figures
10 and 11 respectively. The refinement is concentrated near the re-entrant corner of
the 3D L-section as verified with its 2D counterpart. By comparing the two sets of
adaptive mesh sequences for the same level of refinement, it can be concluded that
the post-processing method needs more degrees of freedom than the gradient of field
method to obtain the same accuracy. In the third level of refinement, the post-
processing method generates 604 degrees of freedom whereas the gradient of field
method needs only 582 degrees of freedom. Since at each level of mesh refinement,
the post-processing method generates a mesh by the mesh halving procedure, it is com-
putationally very expensive compared to the gradient of field method. On the other
hand the gradient of field method can be easily formulated as a local problem and
solved with fewer computational resources. The difference in their performance is due
the fact that the rate of change or the variation of the gradient of the solution near
the region of singularity is larger than the ;ate of change of the solution function itself.
This behavior helps to identify the exact number of elements needed near a singular
region to generate an optimal mesh.

VI CONCLUSIONS

Two different types of ‘a posteriori error estimation strategies for adaptive mesh
refinement were presented. The performance characteristics of both error estimates are
verified by solving two electrostatic problems in 2D and 3D adaptively. A hierarchical
minimal tree based algorithm is employed for generating a graded adaptive mesh. The
numerical test results, the sequence of adaptive meshes and the flux plots established
the effectiveness of the proposed error estimation strategies for adaptive mesh refine-
ment. The higher element density of the mesh near the singular regions of the test
problems indicates the acceptable performance of error indicators in steering the adap-
tive process. The numerical test results and the comparative analysis of the perfor-
mance of error estimates allow us to conclude that the gradient of field method is
simple to formulate and computationally less expensive and is efficient compared to
the post-processing error estimate.
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