Location of wire position in tyre
belting using Bayesian analysis

Louis E. Roemer and Nathan Ida

Eddy current testing has been used for the location of conducting wire in low
conductivity materials such as rubber belting['!. Improved signal processing, using
Bayesian analysis, allows one to make an accurate estimate of the wire location.
Bayesian analysis phrases a question to take advantage of prior information. That
question is, ‘Based on the prior knowledge of the expected measurement response
for a single wire, and given the data observed, what is the most likely location of
the wire?’ This method aids the computation of the wire position through directly
asking the question of interest, rather than by indirect inference. Computation is

also simplified.
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Method

Bayes’ theorem!?~4), provides the basis of our computa-
tions, as

P(H|I)p(D|H, I)
P(DII)

where H = hypothesis to be tested, I = prior information
and D = data. The terms in Bayes’ theorem are identified
as the prior probability, P(H|I), which carries a weight
due to prior information. Complete ignorance of any
prior information yields a uniform (or Jeffreys’) prior,
which is the reciprocal of the parameter of interest!2 =4,
The denominator term, P(D|I), the prior probability of
the data, can be ignored (except as a scale factor) in
evaluating the probability (or probability density), as it
does not depend on the hypothesis. The main term of
interest is the likelihood function, p(D|H, I'), which is
Gaussian, being the least restrictive form for a given noise
power(*, That is,

1

2no

p(HID,I) =

p(DIH, I) = exp[ —) (d; — £,)?/207]

As the data terms, d;, take on values close to the
hypothesized dependence, f;, then the exponential term
contributes a heavy weight to those terms. Large
differences between the expected function and the observed
data, in contrast, will weight the contributions lightly,
due to the large value which appears in the negative
exponent.

By integrating the probability density, p(H|D, I), over all
of the data and parameters, we can compute the probability
of the hypothesis being true. If we are seeking the value
of a parameter (which takes on continuous values) as the
hypothesis, integrating over the continuum of possible
values must yield a value of 1.

Ifthe standard deviation, 6, is not known, we can integrate
over this variable, regarding it as a nuisance parameter(*),

If the value of the standard deviation is available, it may
be substituted into the equation, immediately.

Instrumentation

Eddy current testing utilizes the non-uniformity of
conducting objects in the field of a coil (or pair of coils)
to identify the location and characteristics of the
conducting material. Such a situation is shown in
Figure 1. The coil size cannot be reduced beyond a certain
range without degrading the ability to interact with the
material. If the conductive object, here a wire, enters the
field of one coil more than the field of the other coil, then
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Fig. 1 Eddy current measurement apparatus: (a) schematic diagram
of eddy current test apparatus; (b) physical arrangement of
measurement. W is wire cross section. M is rubber matrix
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Fig. 4 3D plot of probability density of finding wire at horizontal
position x at depth &

than any voltage encountered in the experiment, and so
is an adequate approximation to infinity. The integral is
now sufficiently awkward that further analytical efforts
are foregone. However, the few non-zero values shown
in Figure 4 again encourage numerical integration. This
numerical integration is shown in Figure 5, displaying
the probability density, p(x| D, I'), versus horizontal probe
position, x. If we only care about the horizontal location
of the wire, /then integrating the probability density over
¢ will eliminate the nuisance parameter . Again using
the Jeffreys’ prior (this time, it is 1/6) will allow computing
the probability density for locating a wire with only
horizontal position in the hypothesis. That is

p(x|D,I)ocj f 11[1 — ak + bk*]2 M2 dk d6
s=0Jk=0 0k

The identification of the expected three wires is clearly
shown. The graph identifies each as a region of high
probability density, a likely place at which to expect a
wire.

Signal processing or filtering of the original data, using
the expected curve as a matched filter, could be considered.
Unfortunately, the parameters of the filter would have
to be chosen in advance of the processing. A comparison
of the filter output for different filter parameters would
be arbitrary, having established no test of goodness.
Bayesian analysis allows the parameters to vary, asking
at each step what value the probability density takes on
as a result. Alternatively, low pass filtering might be used
to allow counting zero crossings, to approximate wire
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Fig. 5 Probability density of Figure 4, integrated over depth
parameter,

positions!!. Though one may view the question as a
matched filter question, using the single wire model as
the signal to be matched, the Bayesian method must be
superior, as it does not fix or assume all of the parameters
(o, 9, signal level) before the measurements.

Conclusions

Bayesian analysis presents a computational method that
directly answers the question of interest. The simple
computation and generality of the method would suggest
a wider use than just the problem presented.
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Fig. 2 Calculated detector voltage for single wire object versus
horizontal displacement above wire

the bridge (shown in Figure la) becomes unbalanced.
The bridge unbalance results in a change of the detector
voltage, V. As the wire size is often comparable to the
wire separation (or the probe proximity, due to intervening
layers of rubber material), the data collected will include
the effects of more distant wires as well as the wire of
interest. The voltage expected from the instrumentation
of Figure 1 can be computed, using the induced magnetic
field, H. It is assumed that a current, I, is induced in the
wire at position x, = 0 (see Figure 1).

Since the induced voltage is proportional to the changing
magnetic flux density intercepted by the coils (the
component perpendicular to the surface), we shall
concentrate on the perpendicular component of H.

g=_1
2nR
Icos 6 16
H!an = = 2 2
2nR 2n(x* + 0¢)
Isin 0 Ix
L= =

2nR  2m(x? + 8%)

Of course, these equations are only an approximation,
assuming infinitely thin, long wire, with no interaction
between adjacent wires imbedded in the rubber matrix.
In Figure 1, x is the displacement from the reference
position. A wire position is shown at x = x,. The depth
of the wire centre (below the probe assembly) is §. Using
Faraday’s law,

d(4)
v, = ——
dt

where A is the magnetic flux intercepting the eddy current
probe’s coil. The coil voltage, v,, will be proportional to
the coil turns, the coil area and the magnetic intensity,
H, which is perpendicular to the coil area. All these terms
are included in the instrument gain. Thus, the eddy
current instrument’s detector voltage is expected to yield
a measurement of the form

k(x — xq)
(x — x0)* + 62
for the detector voltage resulting from the individual coil
voltages. The instrument gain is k. A graph of v(x), for

v(x) =

k = 1, is shown in Figure 2. The most probable value of
d is indicated by the position of largest probability
density. We integrate out the variable § as a nuisance
parameter.

We start with the equations in order:
P(H|I)p(D|H, I)
P(D|I)

where the hypothesis, H, is that x is the wire position, 6
its depth, that the instrument gain is k, and the standard
deviation of our computation is 6. Again, capital P means
probability, lower case p is a probability density.

Substituting the likelihood function, p(D|H, I)

p(x,0,k,a|D,I) =

p(DIH, I) = exp[ — Y. (d; — f;)*/20%]
no J
with
_ k(x;—x;)
-f;_(xj“xl)2 +62

where x; is the point in question, of which we ask, ‘Is x;
directly above a wire?’ First, we get rid of the nuisance
parameter, o, using the Jeffreys’ prior, 1/0. Integrating
over ¢, we have

© 1 1
p(x, 5,k|D,I)ocJ -

e=00 /210

x exp[— Y. (d; — f})*/26*] do
j
which yields

p(x,8,k|D,I)oc[1— ak + bk2]2~ M2

where N = number of data points a= ;
[(x;— x))* + 02T and b=} ; [(x; — x)°]
6272

x)d]/
/[(x - x)7 +

Again, the gain constant, k, is of no interest to us, so we
integrate out that nuisance parameter, in the form

p(x,rSID,I)OCJ

k=0

oo}

%[1 — ak + bk2]@~M2 dk

This last integral is done numerically, using 10 1° < k <
10. Even a k value as small as 10 gives a voltage far larger
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Fig. 3 Unprocessed eddy current bridge voltage






