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Reconstruction of the property profile of a medium from measured data due to an illuminating wave is known as the
inverse scattering problem. It arises in many fields of engineering and science, such as non-destructive evaluation, medical
diagnosis, and seismology. The signifcance and challenge of the inverse scattering problems have attracted much research
activity for decades, yet, it is far from being a resolved issue. Considerable effort is presently under way to find efficient
and accurate inversion techniques. This is taking place independently in many disciplines.

The purpose of this review is to summarize the variety of methods in one dimension and in multiple dimensions. The
sequence used to organize the review is from one dimensional problems to muitiple dimension problems, from
approximation methods to exact methods. Electromagnetic and acoustic methods are discussed in parallel.

1. Introduction

To introduce the basic equations an acoustic wave propagating in an elastic, isotropic and linear
medium is considered first. If p, ¢, p and Ap, v, p’ denote mean values of pressure, speed of sound,
density and their disturbances associated with the propagation of the acoustic wave, the governing
equations are

-Vp = pv,, (1)
—-pVev=p’, )
p=cp'. (3)

Substituting (3) into (2) for p’, and taking the derivative of the result with respect to ¢, taking the
divergence of (1), and eliminating pV- v,, one gets

Ap—p,/ct= Uy, 4)
where u; denotes the inhomogeneity
up=-Vp+v,=¥Inp)-Vp . (5)

In the last equation, (1) is used to remove v,.
In the electromagnetic wave case, the medium is assumed to be dielectric, nonmagnetic and
dispersionless. The set of Maxwell’s equations is

VXE=-B,, (6)
VXH=D,, (M
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V-D=0, (8)

V-B=0 %)
and the constitutive relations are

D =¢E, (10)

B=pH. (11)

Taking the curl of (6), and substituting (7) for V X H, while neglecting Vu, the wave equation is
obtained,

AE—E./c*=0, (12)

where (8) and the constitutive relations are utilized. If one of the components of E is considered, (12)
reduces to (4) with u, = 0. Thus, it suffices to study (13) in which fis either p or one component of E as
needed:

Af—f/c*=u,, (13)
where

u,=V(In p)-Vf for an acoustic wave,
u,=0, for an electromagnetic wave . (14)

Assuming time dependency exp(iwt?) (Where w is the angular frequency of the monochromatic wave)
for £, (13) becomes a Helmholtz equation

@+ Kf=u,, (15)
where £k is defined by

K= w¥c ‘ (16)
or

(A+kin)f=u,, (17)
where k, is the wave number defined as

K= w¥c? (18)
for the background medium with the speed of sound c,, and where n(x) is the index of refraction

ns colc. (19)

2. One-dimensional inverse scattering

In the one-dimensional case, an inhomogeneous layer of stratified elastic media extending from the
origin to x =1 in a homogeneous background medium is considered. A plane wave propagates along
the x axis which coincides with the direction of stratification (see fig. 1). Then, egs. (1)~(3) reduce to

TPy =Py, (20)

- pc’u, =p,, 21)
where (3) is inserted into (2), and egs. (8)-(9) reduce to (a TEM wave occurs)

E =-uH, (22)
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Fig. 1. Inverse scattering in one dimension.

H,=¢E,. (23)
By changing A to d? and dropping the inhomogeneous term u, on the left, (15) reduces to
for(X) + Kf(x) = 0 (24)

which will be treated by impediography. .
On the other hand, an independent variable s is introduced below

s(x) = [ n(x) dx : (25)

which is the travel distance in the background medium in the same time period as the wave travels from
the origin to point x. Changing x to s, (17) is simplified to

fot ki f=(nw),f,, (26)
where

uy=Z2Z/Z, for an acoustical wave,
1

uy,=n" for an electromagnetic wave, (27)

and Z is the impedance of the medium:

Z=pc. (28)
If a transform defined by
f=Ww)""y (29)
is made, (26) further reduces to
Uy, + ko = qu (30)
where
q = [(ln u3).r]2/4 - (ln u3)ss/2 (31)

is a potential function which is compact and smooth if u, is smooth enough. Eq. (30) is the proper form
with which the Distorted Wave Born Approximation and Gel’fand-Levitan’s method will deal. To
extract Z or ¢ from g, (31) must be solved. We rewrite it into the form below

(u5''),, — qus 2 =0 (32)
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which is a forward problem discussed in [1]. Also, the independent variable need to be changed back to
x from s by inverting (25). This can be accomplished numerically.
In the time domain, the same approach can be applied to (13) and leads to

U = Uy = V0, , , (33)
where

v=Z for an acoustical wave,

vy=c¢ for an electromagnetic wave, (34)

T is the time for a wave traveling from origin to x, that is,

'r=fdx/c(x). (35)
b :
Eq. (33) is needed for the derivation of Balanis’ method.
2.1. Impediography

Applymg the well-known WKB approxxmatlon to one version of the one-dimensional wave equation
(24) gives

fx)=A exp( f k(x) dx) + B, exp( f k(x) dx) (36)

where A, and B, are arbitrary constants and may be determined from boundary condmons This
approxxmatlon suggests a solution in the following form

f(x) = A(x) exp(-—i f k(x) dx) + B(x) exp(i Jf k(x) dx) , (37
0 0

such that A, and B, are respectively the first terms of the power series expansions of A(x) and B(x) with
respect to a small parameter.

By substituting this solution back into (20, 21) or (22, 23), and neglecting high order reflections,
A(x) and B(x) satisfy

dA/dx = )23 d(ln £) ¢ ( 1fkdx>, (38)
0
dB/dx = —-‘;- 9-(-%-‘} exp(—zi of kdx) , (39)

where {(x) = Z = pc is the impedance in the acoustical case, and {(x) = c is the local speed of wave in
the electromagnetic case. Now, the reflection coefficient may be approximated as

R(w) = B(0)/A(0) ~ — % f exp<—2i f k dx) d(ln ¢), | (40)

@

where, again, only the first-order reflection is taken into account. To simplify (40), a new independent
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variable is introduced as the two-way traveling time from 0 to x, that is,

(x) =2 f dx/c(x) . (41)

Inserting (41) and the relation k = w/c, (40) can be rewritten as

R(w)= -;— J’ d(In ¢) exp(—iw7) . ' (42)
0

The impulse response is related to the reflection coefficient inverse Fourier transform as

®©

R(w)= f r(r) exp(—iwr) dr . | (43)

0
Comparing the last two equations, one concludes that

)= 2 (In £(2), | (44)

This simple equation is known as the impediography equation which relates the ¢ directly with the
impulse response. Integrating (44) over (0, 7), another form is obtained

T

[ oy ae= L m(eeyiecn. , (45)

0

At this stage, { is a function of independent variable 7. It is necessary to cast T back to x by inversion of
(41)

x=%jc(7')d1'. (46)

Thus, the impedance (or the local speed of wave) can be calculated via (44) (or (45)) and (46) given the
impulse response and the impedance (or speed) at x <0.

Impediography was extensively discussed in the literature during the early 70°s [2, 3]. The
impediography equation has been derived either from the wave equation [4] or from discrete reflection
analysis [S]. The above derivation makes use of the WKB approximation [6]. Since the WKB
approximation is a first order approximation to the solution of a wave equation, impediography is valid
only for media with sufficiently small spatial variation, so that the reflection is an order of magnitude, or
so, smaller than the transmission [4]. See [7, 8] for examples.

2.2. The Distorted Wave Born Approximation (DWBA)

DWBA has evolved from the well-known two-potential formula which was derived in context of
particle scattering in [9]. In the following, the DWBA is derived from the wave equation. Assuming
that g, is chosen to be the reference potential to equation (30) and, moreover, ¢, is the corresponding
solution, that is,

('I’O):s + ktz)d'o = qO'/’O : (47)
Multiplying (30) by ¢,, (47) by ¢, and subtracting the products, yields
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Yoy — W(Wo)ss = (g — Qo) ¥thy - (48)
For ¢ and y,, there exist the following asymptotic forms

i = exp(—ik,s) + Rexp(ikys)  s<0, (49)

¢ = T exp(—ik,s) §—>®, (50)

W, = exp(—ikys) + R, exp(ik,s) s<0, (51)

Yy = T, exp(—ik,s) s—>®, (52)

Integrating over (0, ), (48) becomes

[ ot~ w85 = [ w(a - gy s, (53)
0 0

Integrating by parts, the left hand side of the equation can be evaluated as
[Yow, — ¥(¥)]o =12ko(R, — R), (54)
where (49)—(52) are utilized. Substituting this result into (53) yields the two potential formula:

2R~ Ry)/i= | w(g = adods. - (55)
0

Now, derivation of the DWBA can commence. Assuming that g, can be chosen such that it is very close
to g, then, ¢ is expected to be close to ¢, too, and ¢, can be used as ¢ in (55). If so, (55) reduces to

2ko(R = Ro)/i= [ (g go)(W)'ds (56)

which is the DWBA. In particular, it reduces to the Born approximation
2k0R/i=f q exp(—i2kgys) ds (57)
0

if g, vanishes, and therefore ¢, = exp(—ikyx). An equation similar to the impediography equation can
be derived from this. '

If the frequency for each experiment is varied, N projections of g — g, onto ' are obtained from N
experiments. Then, g can be recovered from the projections by methods of, for example, Gram—-Schmit
orthogonalization and singular value decomposition {10, 11]. They also suggest that the DWBA can be
applied repeatedly to new values of g to achieve higher precision. However, the constrains for the
convergence of the iterative DWBA method are unknown to the authors and need further study.

2.3. Goupillaud’s method

Goupillaud’s method [12, 13] is based on discrete analysis of wave scattering in a layered medium.
The analysis relies heavily upon physical intuition, in particular, the decomposition of transmitted and
reflected waves, while other methods employ more mathematical arguments. Consider the well-known
Goupillaud layered medium, i.e., the travel time across each layer is the same, say, 7. (See fig. 2(a)).

To derive the method, the transmission and reflection coefficients at the kth interface between the
kth medium and the (k + 1)th medium are assumed to be ¢, and r, respectively. In the setting of time
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Fig. 2 (a). Goupillaud layered medium. Fig. 2 (b). Derivation of M matrix.

domain Fourier transform, the transmitted and reflected fields for that sections of the medium, shown

in fig. 2(b), can be expressed in matrix form, by noting that the forward and backward transmission
coefficients are both (1 - r;)"’? and the backward reflection coefficient is —r,,

&)= M &) - 9

where

al .
wonW ] W= glor (59)

M=1} [rkW W

and T, and R, denote the forward and backward components of the total field in the kth medium.

Employmg (58 59), a system with N layers can be described. Eq. (58) is used N + 1 times for N + 1
interfaces to get

I:;:] MM, - My [Tﬁﬂ] . | (60)

Let a matrix M* be defined by

M =MM, - M, = (tst, - 1,)”" [;)va:g((’,‘c g’,_l)) vv‘(,i 11(;((,’: vvg))] (61)
where F and G are given by the following recursive formulas:

Fk, W)=F(k~-1, W)+ r W*G(k—1,W™), (62)

Gk, W)= G(k -1, W) + r W™ F(k -1, W™ 1), | (63)

and initially,

FO,w)=1, GO, W)=r,. (64)
By repeated use of (62, 63), F and G are built from (64); The form of F is:

Flk, W )=1+F, ()W 2+ F QW™+ -+ + F (k)W . (65)
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G has the same form as F. Since det(M,) = t,, and det(M*) = det(M,M, - -- M) = det(M,)det(M,)- -
det(M,), F and G have the relation below

k
F(k, W)F(k, W) = Gk, WGk, W) = T11. (66)
R} can be derived from (60) in terms of F and G as
Ry =TY- G(N,W™)/F(N,W™). (67)

In particular, the reflection coefficient R of the system is (67) if one sets T§ =1, that is, the incident
wave is set to unity, ‘

R=GN, W Y/F(N,W™). ' (68)

If all the coefficients of all interfaces are known, one can compute F and G by (62)-(64), and therefore,
can calculate the reflection coefficient by (68).

In the context of inverse problems, the 7’s need to be related to R. Let the R be expressed as a power
series of W:

Ry=dy+dW3+d,W™*+ ... (69)

Then, the d’s of R} must agree with the d’s of Rg(k < N) up to and including the —2k power of W since
the first order reflection from the kth interface takes 2kt time units. This permits us to accumulate F
and G while calculating r’s. To see that, (62, 63) are inserted into (68):

_GIN-1L,W Y+ r ,ZW™FN-1,W)

= , 70
FIN-1,W ) +r W "GN -1, W) (70)
or
RFIN-1,W )+ r W *™RGIN-1,W)=GN -1, W )+ r , W N -1, W). (71)
Applying (70) again at the second R in (71) results in
N-1
REN-1,W H=GWN -1, W)+ [] 2r,WwFWN, W), (72)
i=0
where (66) and (62) were also used. Inverting F(N, W ™), the following is obtained
N-1
RFEN-1, W H)=GW-1, W )+ [[ nw®+.... (73)
i=0
Equating the coefficients of W ™2" of (73) gives us the desired formulas
k
Z d;F_y(k—1i)
re= =l k=1, (74)
[Ta-rh
i=Q
with r; = d,,. '

Equipped with (74), the inversion can now be performed. First, set 7, = d,, F(O, W™')=1 and
G(0, W™ ') =r,. Then, apply (74) to F, G, r, and d, to calculate r,; apply (62, 63) to calculate
F(1, w™) and G(1, W), Again, (74) is ready to use for r,. In this way, all reflection coefficients
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needed can be found. Finally, the relation below permits the reconstruction of the impedance Z(k) if
any one of them, for instance, z,, is known.

_11 A=r)/(1+r)=Z(k+1)/z,. (75)

Goupillaud’s method is an exact method in the discrete case. For a continuous medium, it gives
better approximation for finer slabs. Since it incorporates both first and high order reflections,
Goupillaud’s method is still valid in case of large impedance variations. See [5, 14] for the application of
Goupillaud’s method, and comparison with other methods.

2.4. The methods of Gel’ fand—Levitan and Marchenko

Gel’fand and Levitan (GL) derived an elegant method to reconstruct the second order equation from
the given spectrum [15]. More precisely, in our case, consider (30) with a boundary condition
(0, ko) — h(0, ky) =0, (76)

assuming g a sufficiently smooth function on any finite interval. Their work was devoted to the solution
of the following problems: determine the existence of an equation of the form (30) provided the
spectral function p(k,) is known; and reconstruct the function q. The first treatment of this type of
problem is given in [16]. The uniqueness and solvability of the inverse problem was established by
Marchenko and Krein in [17] and [18] respectively. An outline of the derivation given by Gel’fand and
Levitan follows. .

Assuming the spectral function of (30) is known, namely,

plke) = { GV Fa+ otha) ko>, )

Then, the equation possesses the eigenfunction expressed in the form
d(x, ky) = cosV kox + f K(x, t) cosVkytde. (78)
4]
By an orthonormal process, that is let ¢(x, k,) satisfy

[ 6, k)25, ko) doke) = 5~ ), (79)

or
j d(x, ko) cosV kyy dp(k,) =0 for y<x, (80)

since @(y, k) is a combination of cos\/%k,y, which is implied by (78). We obtain the GL equation,
which is uniquely solvable,

£x, )+ K(5, ) + [ (3, 0K Gz, 1) de=0, | (81)
(1]

where
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K. (x, x)=q(x)/2 (82)

and

o«

flx, y)= f cosV kyx cos\ k,y do(k,) - (83)

If the spectral function p(k,) is known, the above GL theory solves the inverse spectral problem.

However, what is commonly known is the system response, such as the impulse response, rather than

the spectral response. A more direct approach was taken in [19] which establishes the following:
(Marchenko’s equation)

Kx, y)=—-r(x+y)— f K(x,)r(y +t)dt, (84)

where 7(t) is the impulse response measured at origin.

Now, the inversion is in order. Solve (84) for K(x, y) from the given data (¢). Then, (82) can be
used to obtain g. See [20-23] for examples which are based on this method. The GL theory was derived
in a restricted sense in the time domain in [24, 25].

2.5. Balanis’ method

As in [26], consider equation (33). The impulse response of the system can be represented as follows
[27]; if y is continuous and vanishes for 7<0 and 7— o,

Y(r,)=8(r—t)+r(r+1), 7=<0, (85)

Y t)=8(r—t)+r(r+1)—K(r, t) + J’ K(r, x)r'(t + x) dx, (86)
where r'(¢) stands for the derivative of r with respect to t, and K(7, t) satisfies

K.,-K,—vK,=0, (87)

K(r,)=0, t< -7, t>7 _ (88)
and , . ‘

2K (r,7)-vK(r, ) =7, (89)

Integrating (86) over the range (—r, ) with respect to ¢

f r(r +t)dt - f K(r, ) dt+ f f K(r, x)r'(t +x) dx dt =0, (90)

- — -

with ¢(r, £) =0 and 8§(7 — t) =0 for ¢ < 7. Reversing the order of integration of the last term, and noting
that K(r, —7) =0 and r(¢ <0) =0, one finds that

j r(r+t)de— K(r, t) + J‘ K(r, x)r(t+x)dx=0. (91)

Thus, the following integral equation (Balanis’ equation) is obtained:
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t+r T
f r(t)dt — K(r, t) + f K(r, x)r(t+x)dx =0, |t<r. (92)
0 -t

This integral equation has a unique solution for K(r, ¢) provided 0 <|R(w)| <1, where

R(w) = f r(f)e ™ dr. (93)

Now, the process of inversion is clear. It contains two steps. First, (92) is solved for K(r, t) from the
impulse response r(t). Then, y(r) can be readily recovered by means of (89) which can be written,
explicitly for the potential function, as :

Y1) = 2K, (r, 1) I[1 + K(, 7)] | (94)

Examples of Balanis’ method can be found in refs. [28-33]. It was reported that, comparing with
other exact methods, the method provides an efficient numerical implementation with less storage
requirement and appears to be robust with respect to noise data.

2.6. Method of characteristics

The method of characteristics was first developed by Courant et al. [34] for the solution of nonlinear
hyperbolic differential equations. They also proved the stability of the procedure. The idea was
introduced to inverse problems by Santosa and Schwetlick [35]. See [36, 37] for other examples.
Starting from scratch, by inserting (21) and v = u, (where u is the displacement), (20) reads

(pc’u,), = pu, . (95)

Changing the independent variable from x to 7 defined by (35) in (95), Webster’s horn equation is
obtained ’

Zu,=(2u), . (96)

Now, following the standard procedure, the first step is to rewrite the second order differential system
(96) in the form of a first order hyperbolic system. By setting v; = u,, and v, = Zu_, (96) becomes

vl _fo Z']][Ul]
lal=13 %710 o)
or in matrix form
V,=AV, . ' (98)
The next step is to diagonalize the matrix A4, so that _
TV, =-ATV,, (99)
where T is the transform matrix, A= —TAT ' = diag(A;, A,). It is easy to show that
{1 0 ]
A= [0 -11 (100)
if
_[-Z 1
T “[ V4 1]' (101)

Now, it is clear that the characteristic directions are
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dt/dr=A, for i=1,2, (102)
and the characteristic derivative is

dv/dr = aV/ar + (3V/at)(dt/dr) =aV/aT + A, aviat for i=1,2. (103)
Finally, (101)-(103) are inserted into (99) to obtain

Z(dv,/dr) =dv,/dr for dt/dr=A=1, (104)
and

—Z(dv,/dt) =dv,/dr for dt/dr=Ar=—1. (105)

It is convenient to view the inverse problem in the t-r plane as a boundary value problem (illustrated
in fig. 3). Commonly given data are the exciting pressure f() and the measured displacement g(t) at
x =0, that is,

pctu(0,1)=f() and | (106)

Employing the governing
conditions (108, 109), one s
method to discretize the equation pair and to ¢
[36] uses a local regulation method to improve t

u(0,t)=g(®) .

Utilizing these boundary conditions, v, and v,

v,(0,)=u,0,)=g'(t),
v,(0, 1) = Zu,(0, ) = f(t) ,

v,=v,=0 for r=t=0 and <0.

dglt)
wig
Vpm=t(t)

equations (104, 105) in the domain ¢ >
hould find Z(¢>7>0). For example, [35] employs the finite difference
alculate the impedance profile Z(r) at discrete points.
he error caused by the finite difference approximation.

LS
2%
<l
P

Vym=Vyu= O

Fig. 3. A boundary problem.

are expressed in terms of f and g as follows

(107)

(108)
(109)

where (34) is used. By realizing the causality of a physical system, another pair of boundary conditions
is obtained:

(110)

>0, together with the boundary
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3. Multiple dimension inverse scattering

The system considered is illustrated in fig. 4. There is a finite inhomogeneous object embedded in a
homogeneous medium. A probing wave illuminates the object. Thus, the scattered wave around it can
be measured. It is hoped that the property profile of the object can be reconstructed by processing the
measurements.

The idea used in the one-dimensional case may be extended to convert (17) into a desired
Schrodinger form. First, the coordinate variable x is changed to r as defined by

xi

= f n(x) dx, . | " (111)
Xoi
By the above coordinate change, (17) becomes
Af + k3 f=V(nu,) Vf, (112)
where

u,=2Z/Z, in the acoustical case, and
u,=n"' in the electromagentic case. (113)

Then, a transform is given as

f=u"y (114)
which leads (112) to ‘

Ay + ki =—-0y, (115)
where the object function O is defined as

=-V(nu,)V(ln u,)/4+ A(ln u,) /2. (116)
To solve eq. (115), a Green’s function is introduced by setting it to satisfy

(4+ k2)g(r) = —5(r) . (117)
The Green’s function represents the field of a point source at origin and can be derived as

g(r) = exp(ik,R)/(47R), : (118)

where R = |r|. Since the system considered is linear, the solution of (115) may be written in terms of the
Green’s function by superposition:

W)= o+ [, 8r= YOG ar (119)

RS
scattered wave

/

e ——

N

Fig. 4. A general model.

incident wave
——
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where i, is the incident wave, that is, it satisfies

Ay, + kg‘/fo =0 (120)

and v the volume occupied by the inhomogeneous body.

Earlier research work assumes that waves propagate in straight-paths. Under this approximation, a
class of geometrical optics-based methods Has been developed. The methods which reconstruct property
profiles from projections fall into two categories: spatial and Fourier domain reconstruction.

An equation can be established from the accumulation of losses (to reconstruct an attenuation
profile) or traveling time (to reconstruct a speed profile) for a ray. For a set of rays, a set of equations is
established. To solve the equations, conventional direct methods give unacceptable noisy solutions [38).
On the other hand, the projection method [39], the method of singular-value decomposition [40] and
the algebraic reconstruction technique (ART) [41-43] achieve various accuracies. ART is among the
most efficient methods.

The set of equations can be replaced by a more accurate integral equation which leads to the
convolution method [44, 45] and the Fourier transform method [46, 47]. The former, like the methods
mentioned in the last paragraph, is a spatial domain method. The latter is the only method which works
in the Fourier domain according to the projection-slice theorem. These two methods, specially the
Fourier transform method, are very efficient computationally.

Despite the fact that some of the above methods are currently in practical use, straight-path is
obviously a restrictive assumption for acoustical and electromagnetic waves. Some suggestions, for
example, ray-tracing, have been proposed to accommodate corrections. However, for improved
accuracy, diffraction must be taken into account.

3.1. The Born and Rytov approximations

These methods are the first attempts to take the effects of diffraction and refraction in weakly
inhomogeneous media into account. The Born approximation is simpler. Let the total field ¥(r)
expressed as a sum of the incident field ¥,(r) and the scattered field Y,(r). Then, (119) can be rewritten
as

b=v=do= [ sOu,dr'+ [ oy ar (121)

If the scattered component is smaller than the incident field and may be neglected, the following
approximation is reasonable:

30 = [ &= 0 () dr (122)

This is the so-called first-order Born approximation. It is easy to see that Yo+ ¢, is a better
approximation of ¢ than , alone. Thus, the equation

520) = [ g 10 + 1 ar (123)

results in a more accurate solution. @ is the second-order Born approximation. In this way, the
nth-order Born approximation can be obtained:

590)= [ gt = )06 ) + 40D (124)

To derive the Rytov approximation, a transformation is necessary. ¢ is defined as the complex phase
and set to ’
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¥(r) = exp[#(r)] . (125)
This is substituted into (115) and leads to a Riccati equation:

A + (Vo) + ki = -0. (126)
Let

W = exp(¢) (127)
and

p=¢yt ¢,. (128)
Substitute (127) into (120) to yield '

Ay + Vo, -V, + k3 =0. ' (129)
Substituting (128) into (126) gives

A, + 2V, -V, + Vo, -V, = -0, (130)

where (129) is used. With a monochromatic plane incident wave, ¥, = exp(—ik, * r), and ¢, = —ik, - r.
Thus;

A(Yod,) = YA, + 2V, -V, = ko) - (131)
Arranging the above identity results in: )

(A+ k5)(bod,) = (A, +2V8,-V4,) . (132)
Combining (130) and (132) yields,

(A + k) () = —(O + Vo, V) , (133)
which is equivalent to the following integral equation '

bot (1) = [ gl = r')(0 + Ve, V&) )uh(r) 0r . (134)
Provided V¢, - V¢, is negligible compared to O, this equation reduces to the Rytov approximation:

8= [ 8r=r)OG W) ar (135)

The Born and Rytov approximations are equivalent for weak scattering. To see that, substitute (132)
into (134) to reach ‘

b, = U, , (136)

or
P = g (G ®ryy) = §PN - @Plg) 2+ -], (137)

since §® =y, exp(d,) = ¥, + ¢ . This shows that the Born approximation is the first term of the
series expansion of the Rytov approximation. However, their validities are quite different [48]. Under
the Born approximation, the change in phase between the incident wave and the total wave must be less
than 7, so that the product of the size and the refractive index of an ojbect is vital. On the other hand,
only the change in scattered phase over one wavelength has great importance to the Rytov approxima-
tion. Moreover, a recent paper [49] indicates that the Rytov approximation error is the third-order
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perturbation term in contrast to the first-order of the Born approximation error. Thus, the Rytov
approximation is generally superior [50, 51].

Direct computation of the approximations from (122) and (134) is usually expensive and inefficient.
Taking the Fourier transform of both leads to the Fourier Diffraction Projection Theorem provided the
insonification wave is a monochromatic plane wave [52]. The theorem claims that the Fourier transform
of the field data along a line is proportional to the Fourier transform of the object function along a
circular arc. Thus, multidimensional FFT will make the computation very efficient.

There are a variety of methods to implement the idea. The experimental procedures, for example,
rotating either the object or the transmitter [53], varying the frequency of the incident wave [54] and
synthesizing an aperture [55], were proposed to fill up the Fourier space of an object function. To
measure the data, either transmission [56] or reflection [57] modes can be adopted. Furthermore, there
are three distinct algorithms proposed to convert a non-uniform grid to a uniform grid for use of FFT:
filtered backpropagation (56], interpolation [52] and interpolation-free [55]. Their computational
complexity are of the order of O(N*), O(N*logN) and O(N?) respectively. With the Fourier
Diffraction Projection Theorem, it is possible to implement high order Born or Rytov approximations.

3.2. Inverse moment methods

Moment methods are widely used for forward scattering problems. The application to inverse
scattering is formally introduced in [58]. A particular moment method called sinc basis, multiple source,
moment method was proposed to permit strong scattering.

Starting with (119), a set of base functions e, is chosen such that the function (OY)(r) can be
expanded as :

(OW)() =2 ae,(r). (138)
7
Substituting (138) into (119) and switching the order of integration and summation yields
W)= )+ Za, [ g ryar (139)
J

Since e; and g are known functions, the integration can be performed directly. Set

q,(r)= f ej(r')g(r —-r)dr ’ (140)
and now (139) can be rewritten as .

W(r) = o(r) + 2 a,q,(r) . (141)

(138) and (141) may be coupled to solve for O(r) numerically provided ¢ (r) is given over enough
points. :

The sinc basis, multiple source, moment method is a realization of the above procedure. In the
method, the base functions are set to be the shifted version of multiple dimensional sinc functions [59]:

e(r)= H sinc[(w/h)(r, — nyh)], (142)

k
where r=(r,..., rx); h the step size between grid points in each coordinate; j an index number
specifying individual grid points at (nyh,...,n x?); n’s integers. Then, whenever Oy is a band limited

function,
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a; = (0Y)(r)) (143)
and

by =a,(r) = | e")g(ri = r') ar'(6]. (144)
Now, (141) reads

U= o+ 2 aby (145)

or in matrix form,

[¥]1=14] +[BI[A], (146)

where [ is an index to one of the points of interest. To improve the condition of the ill-posed problem,
multiple sources were suggested. In this case, (145) becomes, for the field outside the object,

Um = fom + 2 @by, 1=1,...,L; m=1,...,M; j=1,...,N; (147)
; .

where L is the number of receivers used in each experiment, M the number of experiments with
different views, N the number of grid points of the image. (147) is still a valid expression for the field
inside the object. However, the coefficients, b, are different in this case. To show the difference, a
letter ¢ replaces b in (147) as

fm=fom* 2 @mcy,  I=1,...,L; m=1,...,M; j=1,...,N. (148)
J

The matrix form is the same as (146) except that [¢], [¢,] and [A] are also matrices now.

To solve the nonlinear system in (147, 148) for O(4r) and ¢(r), four procedures were suggested in
(58], and the second procedure, so called the alternating variable linear Kaczmarz method, was further
studied in [61]. With the helsp of the FFT and backprojection, the total computation complexity of the
procedure reduces to O(N”log N) for an N X N image [62]. Unfortunately, the iterative solution
behaves as the Born approximation does, that is, the method fails to converge to the solution whenever
the phase difference between the incident wave and the total wave is greater than =« [63]. A direct
method may improve the solution considerably.

3.3. The methods of Gel’ fand—Levitan and Marchenko

The Gel'fand-Levitan and Marchenko’s inversion theory were extended to three dimensions by
Newton [64-66]. The derivation of these theories is complicated and lengthy, and is omitted here.
Interested readers may refer to these papers. The steps involved in these methods are listed below.

Assume ¢, is a plane wave whose direction is represented by a unit vector 6, that is, ¢, =
exp(—ik,8 - r). Then, Gel'fand-Levitan’s spectral inversion may be accomplished by
(1) Calculate the inner product for given spectral function p and py(p|O = 0),

K(x, y) = (d(ko, %), d(p(ko) = po(ko)) (ko5 ¥)) - (149)
(2) Solve the 3D counterpart of Gel’fand-Levitan integral equation for A(x, y)

h(x, y) = K(x, y) - f h(x, 2)K(z, y)dz for |x|>]y]. ~ (150)

Izl <ix|
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(3) Calculate the Radon transform:

Wi, 6,%) = | bz, »)8(a =0 9)dy (151)
(4) Finally, the potential function is obtained by
O(x)=—20-V[w(@ x",0,x)— w6 x,6,x)]. (152)

For inverse scattering problems, the spectral function may be constructed from the S matrix via the
Jost function. A more direct method is Marchenko’s method which may be implemented by the
following procedure:

(1) Calculate the Fourier transform:
K(a,0,08')= [i/(21r)2] j kA(k, -0, 8') exp(—ika) dk , (153)

where the far field scattering amplitude A(k, 6, 8) is a normalized observation at direction 8’ for
the above setting.

(2) Solve the generalized Marchenko equation for w
w(a, 8, x) = f Ka+x-6,6,68") de’ +fd9' j K(a+pB,6,6)w(B, 0, x)dB . (154)
x-6'

(3) Calculate the potential function
O(x)=260-Vw(0-x", 6, x). , : © (155)

Unfortunately, the authors are unaware of any applications or any numerical results using these
methods.

4. Conclusions

From the above discussion, it is clear that one must solve an integral equation if an exact solution is
preferred. With today’s computer technology, this would be computationally expensive, and possibly
prohibitive for multi-dimensional inverse scattering. Nevertheless, exact methods may have consider-
able potential in the future.

For the present time, an approximation seems necessary in order to be practical. In the framework of
crack models in NDT, a generalization of DWBA seems appropriate and possible. The implementation
of such a method would be quite feasible. To approach more general problems, the far field scattering
amplitude may be employed by means of an approximation technique, such as a hologram.
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