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SUMMARY

Although software testing comprises a large body of knowledge and is extensively used in verification and
validation (V&V) of software and software systems, the need to verfiy engineering software posses unique chal-
lenges. Electromagnetic programs fall under the category of so-called non-testable programs, a group that includes
numerical computation and most other programs that use floating point operations. There are, however, certain
techniques that can be used to check for program correctness in the context of expected behaviour and results.
The approach to testing by multiple methods, multiple codes and multiple algorithms is well known as an effective
tool in testing of scientific software. In addition, testing against canonical and known solutions, evaluation of
programs based on properties of the computation performed and error analysis are all common techniques used
to verify computer programs. Their use in the context of the TEAM series of problems and workshop is used
as an example for a unique method of verification of programs and to underscore the needs of both users and
program developers in this important issue of code validation.

INTRODUCTION

Although it is intuitively understood what the terms testing, verification and validation mean, it is
useful to definé them here, especially because they are often used interchangeably. Testing is the
process by which programs are checked to ensure that they perform the intended functions. Verifi-
cation is formally defined as the process by which a program is evaluated during each life cycle
phase to ensure it satisfies the requirements set forth in the previous phase, while validation is usually
understood as testing of the software at the end of the development phase to ensure it satisfies its
requirements. It is commonly understood that verification and validation must be an integrated process.
For this reason, this work uses the term verification to describe the whole, integrated process.

Verification of computer programs takes many forms and varies with the type of programs that
require verification. The intended use of programs often dictates the type, extent and, indeed, the
need for verification. Some programs only require the execution of a preset sequence which, once
tested, cannot result in faulty output. For example, some computer games or controllers are of this
type. Others, because of their critical nature require that all, or many, of the possible of the paths
through the software be tested and verified to ensure against catastrophic outcomes. Examples of this
type are air traffic control, some financial software, life support systems and the like.

Electromagnetic programs cannot be seen as very large or extensive in comparison with some other
software systems. Also, because they often rely on existing subroutines and libraries the development
of a new program may actually be an extension of an existing program. It would seem therefore that
verification of these programs should be a relatively simple proposition. However, by using numerical
methods we have traded in the exact theoretical result for an approximation as a means of extending
the range of solvable physical problems. Therefore, our results cannot be ‘correct’ in the true sense.
The only thing we can assume with certainty is that our results are a ‘good’ approximation, often to
an unknown result. _

This aspect of scientific computation dictates the main concern in all numerical computation, includ-
ing electromagnetics: how can we verify the correctness of the programs and the accuracy of the
results. These concerns are based on two premises:

1. The result is not in general known. This must be so, otherwise there would be no need for a
program in the first place.

2. All floating point computation introduces errors. Because of this, correct programs, used on correct
data, produce inexact results. In this context the purpose of verification is to ensure that the results
are a good approximation.
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These two aspects of scientific computation mean that testing methods must be found which, in the
absence of known results, can still provide a measure of program correctness.

This paper discusses the subject of program verification as it relates to computational electromag-
netics programs. No attempt is made to dwell on the theoretical subjects of testability but rather to
discuss the general subjects of verification of program correctness as it relates to scientific, numerical
calculations and the issues associated with it. After a short review of general concepts of verification
and testing of software, we discuss general testing methods applicable to general electromagnetic
programs followed by discussion of the TEAM experience in testing of electromagnetic software.
TEAM (Testing Electromagnetic Analysis Methods) is an ongoing experiment in software and model
verification undertaken more than ten years ago for the specific purpose of verifying electromagnetic
formulations and computer programs.

SOME ASPECTS OF PROGRAM VERIFICATION AND TESTING

Verification of a program means different things to different people. For a programmer who is not
involved in the development of the model or the whole software, verification may mean simply that
the program is free of syntax and run-time errors. For the designer of a computer game, verification
means that the program yields the intended results for intended inputs. Verification of numerical
programs has all of the above requirements but also requires that the results obtained are accurate:
that is, verification also means that the program produces accurate (but not necessarily exact) results.

Because there are different types of programs and different requirements, verification also varies
from one program to the other. However, it is understood that program verification is the process by
which the program is deemed to be ‘correct’ in some, yet undefined, sense. To verify a program’s
correctness we must test the program, that is, the program must be subjected to a series of tests, that
will either show that the program is ‘correct’ or otherwise detect possible errors in the program which
can then be corrected.

There is little disagreement that programs should be tested. Even the best software designer will
agree to this, and certainly the user will. But there is wide disagreement as to what constitutes program
testing and how extensive testing should be. Should one try to exhaustively test a program to ensure
that no errors of any kind exist? If so, are we willing to invest the resources needed to do so?
Postulating a tradeoff between exhaustive testing and resources may be a middle of the road solution
but then the question is: when do we stop testing, and what are the consequences of incomplete
testing? These are subjective arguments. There are also objective arguments: can software be tested
to ensure that it is entirely free of errors, are there differences between different types of software,
and who should do the testing? In addition, there are other complicatinng factors in software verifi-
cation. There is an almost universal dislike for testing of software on the part of all involved. Devel-
opers and users dislike it mainly becuase it takes time, sometimes more than half of all development
time. Many are humbled by the testing experience but, most important, we feel that bugs in software
are somehow the result of our own failure. That is, we feel that if we were more careful, thought a
little more about it, or were more adept at coding, bugs should have never occurred in the first place.
Fortunately, software bugs, while certainly important in electromagnetic software, are almost never
the main issue in program verification: the model on which the program is based and numerical errors
are the main target.

To answer some of these questions, it is important to first classify both programs and testing
methods and to relate these to verification of electromagnetic (or more generally, numerical) software.

TYPES OF PROGRAM

For the purpose of this paper, programs may be classified as (1) non-numerical and (2) numerical.

Non-numerical programs

These programs are understood to perform operations which lead to known, exact solutions. That
is, for any given set of inputs a known output or outputs are obtained. In controlling traffic lights,
any sequence of inputs will result in an exact (even if incorrect or catastrophic) sequence of outputs.
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The question of accuracy has no meaning. Although there are different types of non-numerical pro-
grams, this general description should suffice.

Numerieal and scientific programs

The main difference between numerical and non-numerical programs is that in numerical programs
the results are often unknown and are never exact. This means that testing of numerical programs
must rely on different techniques. Firstly, we cannot rely on comparison with exact, known values
for two reasons: these are usually not known (otherwise there will be little need for the program);
if results are known, such as from an analytic solution devised for comparison, the program, which
is almost always based on approximations, cannot be expected to reproduce exact results. However,
we can say that if the two results are close (by whatever measure we wish), the numerical program
approximates the exact results ‘well’ or ‘very well’ or ‘satisfactory’. Thus, the test we just performed
has served in increasing our confidence in the program. But will it perform similarly well on some
other problem for which we do not know the results? Perhaps not, but if we perform a number of
such tests, an acceptable level of confidence will have been reached to the point that we may consider
the program to be ‘correct’.

This classification leads to another: that of testable and non-testable programs.'* Testable programs
are those for which the correct results can be determined. Non-testable programs are those for which
the exact results either cannot be determined or it is not practical to do so. Clearly numerical programs
fall under the second category. This is a revealing point: our purpose in verifying electromagnetic
programs is trying to test the non-testable. That is not to say that we cannot verify program correctness
and accuracy. We can but we must also remember that because of the inherent numerical errors
involved we can never be sure how close our solution is to the exact solution.

For this reason, much of the effort in verification of electromagnetic programs is based on multiple
coding and comparison of results with experimental and analytical results and with results from
other programs.

TESTING METHODS

Testing methods can be classified in two very broad categories: >

1. exhaustive testing
2. partial testing.

In exhaustive testing all possible routes in the program are tested. Once these are all found to be
correct, the program is said to be correct. This is easily done on small, simple programs, but is very
difficult and expensive on large programs. In numerical software, extensive testing can only guarantee
that the program is correct, not that its results are accurate. In most cases, only partial testing can
be performed, in which case, we infer the correctness of the program from the tests performed. Clearly
this cannot guarantee program correctness but can increase our confidence in the program.

There are two general methods of testing:*”

1. Black box testing: The program is viewed as a black box with inputs and outputs only. The internal
structure of the program is either not known or is disregarded in the testing phase. Tests are
performed by providing inputs and analysing outputs. The outcome of these tests then tells the
user whether the program is ‘correct’ or ‘incorrect’. This type of testing method is also called
specification based testing or functional testing and is most often performed by outside users of
the programs rather than by the developer of the program. For example, the user will only have
an executable code and therefore the structure of the program itself, its language or, for that matter,
the computer itself must all be disregarded and attention focused on inputs and outputs.

2. White box testing: The internal structure of the program is known to the user. While black box
testing may still be performed, the user will often use knowledge about program structure to design
tests which are most likely to reveal errors. This type of testing, also called program-based testing
or structural testing, is often performed by the developer of the program rather than by an outside
user. In this type of test, the tester has much more freedom in taking into account program structure,
and other parameters.
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In general it is believed that black box testing can reveal all errors in a program but this would
require an infinite sequence of tests and therefore cannot, in general, ensure program correctness.
White-box testing is a finite process but cannot detect all errors in the program.? Either way, in the
context of numerical programs, neither can guarantee correctness or accuracy.

VERIFICATION OF ELECTROMAGNETIC PROGRAMS

In light of the preceding discussion, how can we test electromagnetic software? No single answer to
the problem exists: once we have traded the exact solution for an approximation, we can only hope
for an approximate solution. Therefore, since an exact solution cannot exist it is also not possible to
assume that testing will tell us that the solution is correct in the absolute sense. However, there are
a number of methods that can be used to decrease the possibility of incorrect results:

1. Standard methods of path traversal should be used to ensure program constructs are correct. These
will usually be based on flowcharts of the program and should eleminate all bugs which cause
software failure. Indeed, we may view this step as part of the development stage since it is common
to all software development. Before this is done, the software is not usable and the special issues
associated with the numerical aspects of the software cannot be addressed. On the other hand,
software bugs can affect numerical results. This means that throughout the verification process
we may have to look for software bugs.

2. There are some additional steps that can be taken by the developer to ensure program correctness,
at least to some degree. One is to check physical laws associated with the computation: is the
circulation of the magnetic field correct, is the energy in the system correct, does power propagate
in the required direction, are the divergence conditions satisfied: These will often point to problems
in the program, the mathematical model (formulation) or both, and should give a good indication
on how to proceed.

A second useful indicator is the rate of convergence in iterative algorithms. Often, errors in the
program will cause a lower rate of convergence rather than causing a catastrophic fault.

A third step that may be taken is to use perturbation methods to verify program correctness
even in the absence of known results. Perturbation methods assume that the same calculation,
done in a perturbed way, should yield the same results if the program is correct. For example,
various calculations may be done in a different sequence, or subroutines may be called in different
orders. Any variation in results may indicate faults. Different compilers may also detect errors by
virtue of their use of different paths through the programs.

A fourth step is to vary the precision of computation. Some indication on errors may be had
by simply reducing or increasing the precision of the calculation. Excessive sensitivity on computer
precision may indicate a problem with the program, the algorithms used, or both.

3. After the program seems to be working, the program should be tested on data for which the
solution is known: analytical solutions, simplified artificial problems, or perhaps related subject
problems which use the same mathematical equations (pressure or temperature instead of electric
potential, for example) may be used for this purpose. In this step, correctness and accuracy can be
evaluated, although inferences from these simplified problems to others should be made cautiously.

4. One simple method of verifying programs is to use a second program to solve the same problem.
This method, sometimes known as dual coding,' is useful only if the second program was written
independently of the program that is being verified and only as a comparison. That is, if both
programs provide identical (or more often, very similar) results, then we may assume the program
being verified is correct. Just as well, it may be that both programs are wrong. If the results are
different, there is nothing that can be said about either program unless one is known to be correct.
The latter is a very dangerous position to take: no program can ever be assumed to be correct in
absolute terms. Dual coding is seldom practical as a general technique because of the effort
involved, but there are instances where it may be done, at least partially. For example, one may
already have a previous code which can be used for this purpose. Or, perhaps, in the development
process the developer may decide to implement two or three different formulations in the same
program. While this cannot guarantee that the results obtained with any one formulation are correct,
comparison of the different results may reveal errors and inaccuracies that can then be used to
correct or improve the program.

There is, however, one particular form of dual coding that is useful in electromagnetics, and in
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particular in static fields: that of dual formulations. The advantage of these is that they bound the
solution in terms of energy. Because dual methods approach the solution from below and from
above, it is possible to decide on how accurate the solution is even in the absence of comparison
data.® Unfortunately it is not always possible to do so.

5. Verification can be done against independently produced results by different programs, different
formulations and, if appropriate, against experimental results. This method, while not always poss-
ible, ensures against the possibility of bias which can occur in dual coding (if the same person
or group develops both codes). It also provides comparison across a wider sample of results,
increasing the confidence in the program. Comparison with experimental results, if these are avail-
able, provides some measure of absolute accuracy which is not available in comparison with
numerically produced results. That is, with experimental results we have a means of evaluating
different programs against absolute (if not exact) results. This method is a modified form of a
voting system' and is the basis for the TEAM approach to testing.

In all of these, either black-or white-box testing may be used. In most cases related to electromagnetic
programs, it seems that white-box testing is more common as the developer often does the testing.
Although it is normally not advisable that the developer of the program also does the testing, it is
often a necessity, especially with white-box testing.

THE TEAM EXPERIENCE

A successful model for verification of electromagnetic computation methods and software is afforded
by the TEAM series of workshops. The TEAM series of workshops originated in 1985 as a means
of comparing eddy current codes, but it later expanded to include other aspects of computational
electromagnetics including static and high frequency applications.'® The basic idea behind these work-
shops is a series of ‘problems’, each geared towards some aspect of computational electromagnetics.
In this model, a person or group defines a completely specified problem. That is, the proposers choose
the subject and extent of the problem, compile, generate, measure or compute the results one should
expect of a correct computation, write a detailed statement of the problem, and present the final
statement to the TEAM group for possible adoption. Although TEAM has a governing board, problem
adoption is done in a forum open to all participants in TEAM activities. Once a problem is adopted
it is published and available to anyone interested in using the problem, its results and any results
that may be generated by participants. The problem definition contains comparison results, tables or
plots that the user may compare to, and references to the sources of the problem and available
published results. Workshops are scheduled at various intervals, ranging from a few weeks to a few
months, in which participants present, discuss, and summarize their experience with their own
software. Results and methods are compared in informal presentations which are normally only
finalized on the day of the presentation or shortly before. TEAM workshops are normally held in
conjunction with other relevant meetings and conferences, and are organized in rounds, each round
lasting about two years. The number of workshops in each round varies from about two to five. Each
round is concluded with a final or global workshop, normally in conjunction with the Compumag
conference. Most decisions regarding TEAM problems, such as adoption of new problems, closure
of old problems, location of new workshops and the like are taken at this workshop in an open forum.

To encourage open discussion TEAM publishes all presentations in a proceedings of each workshop
but does not review any of the results. Formal papers are discouraged, while discussion of risky,
questionable, and incorrect results as well as partial solutions is encouraged. All discussion related
to given problems is encouraged including software issues, formulations, presentation of results, and
errors. After presentations on a specific problem, the results are summarized, and differences, trends
in results and errors are analysed. There will usually be no conclusions associated with these sum-
maries: the conclusions are left to the code user.

After a particular problem has been solved by many groups, using as many formulations and
programs as is practical, and over the course of perhaps ten or more workshops, the participants may
deem a problem to be adequately solved. At this point it is understood that little is to be gained in
additional solutions and the problem is closed. A complete summary is prepared including all relevant
results, comparisons, errors, and any experience that has accumulated, and the summary is submitted
for publication in a journal for the benefit of the computational electromagnetics community. All
problems remain in a sense open since anyone may decide to revisit a particular problem at any point
in time, especially if there is something new to be learned about the problem or the results.
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Table I. TEAM problems

Prob. Description/type Status Reference
1 Cylinder in uniform, transient field (3-D, transient) S 11
2 Infinite cylinder in magnetic field (2-D, steady state) S 11
3 Coil over a conducting plate with holes (3-D, steady state, mul- S 11

tiply connected)
4 Rectangular aluminum block, with rectangular hole in S 11
exponential field
5 Four aluminum cubes enclosed within an iron box under lami- S 11
nated iron pole
6 Hollow sphere in sinusoidal field (axisymmetric, steady state) S 11
7 Plate with hole (like problem 3 but thicker conductors) S 12
8 Coil above a crack (3-D, low frequency, low-level fields) S 12
9 Moving coil in a cylindrical tube (axisymmetric, velocity S 12
effects)

10 Plate over a coil (3-D, transient, non-linear) S 13

11 Sphere in step field (similar to problem 6, but transient S 12

excitation)

12 Cantilevered beam in crossed field (3-D, moving conductor) S 12

13 Non-linear steel channels (non-linear, 3-D, static) A 14

14 Eddy current losses in Euratom LCT coil (pulsed excitation) S 12

15 Rectangular slot in a thick plate: a problem in non-destructive A

testing (3-D, steady state)

16 Magnetic damping in torsional mode (3-D, coupled problem) S 14

17 The jumping ring (transient, coupled problem) A

18 Waveguide loaded cavity (2- or 3-D, high frequency) A

19 Microwave field in a loaded cavity (3-D, lossy materials) A

20 3-D static force problem (3-D, non-linear) A

21 An engineering oriented loss model (3-D, eddy current, non- A

linear)

S = solved and closed; A = active.

The purposes of the problems in TEAM are:

1. to test both formulations (that is, the mathematical models) used to build the program and the
programs themselves. Although the stated goal is the testing of analysis methods through compari-
son of results, they also verify program correctness and, more importantly, program accuracy. For
this reason, problems are chosen to encompass all or most of the important aspects of compu-
tational electromagnetics. Participation in TEAM activity, which does not carry any ‘reward’ such
as formal refereed publications is, to a very large extent, based on the value participants place on
their ability to gain confidence in their own software or software supplied by software vendors.
In the latter case, TEAM problems supply independent testing of the programs under realistic con-
ditions

2. to detect formulation and program characteristics which must be modified and improved. Often
these characteristics are not necessarily errors but have, perhaps, slow convergence, inefficient
algorithms or methods of presentation, for example

3. to encourage unbiased testing with multiple formulations and multiple programs by as many differ-

ent programs as is practical

. to share experience gained in solving various problems or in the development of programs

. to create a repository of solved prablems which can then be used by developers to verify new

programs, and extensions and modifications of existing programs.

TN

TEAM PROBLEMS

To ensure a balanced approach to testing of various electromagnetic problems, TEAM has adopted
a variety of problems. Some are intended to test static fields programs. Others are useful for quasistatic
applications and still others for time-dependent fields. Within these, there are various levels of dif-
ficulty. Results provided with the problem are either experimental or analytical, and in some cases
numerical. Emphasis is on verifiable results, and some problems have been verified experimentally
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or analytically by more than one source. To date a total of 21 different problems have been adopted,
some that have been closed and some that are still open. Table I summarizes the TEAM problems,
their levels and topics, and their status, together with some reference material.

Although the TEAM approach to verification is very broad it may be viewed as a modified form
of white-box testing, combined with multiple coding. Unlike many dual coding techniques, which
are often written by the same designer or design group, the multiple codes participating in TEAM
are written by independent groups, ensuring unbiased testing. The very longevity of TEAM points
to the considerable success of its stated purpose.

CONCLUSION

Testing of electromagnetic programs has unique challenges resulting primarily from the numerical
nature of the algorithms involved and the unavailability of reliable test data for verification. Although
algorithm correctness can be ensured by standard testing techniques, the accuracy of the solutions
cannot be tested using these methods. The latter challenge is met by comparison of results produced
by multiple codes and multiple formulations. The role of benchmark problems available through the
TEAM series of problems and workshops was emphasized as a successful model for program verifi-
cation.
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